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Abstract: The magnetoresistance effect in sandwiched structure describes the appreciable
magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by
a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to
the revolution of memory applications during the past decades. In this review, we revisited the
magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched
structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then
discussed the optical modulation of this effect via different methods. Finally, we discuss various
applications of these effects and present a perspective to realize ultralow-power, high-speed data
writing and inter-chip connection based on this tunable magnetoresistance effect.
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1. Introduction

The appreciable magnetoresistance (MR) effect known as giant magnetoresistance (GMR)
and tunneling magnetoresistance (TMR) appears in an artificial, nano-scale, sandwiched structure
consisting of two ferromagnetic (FM) layers separated by a nonmagnetic spacer (Figure 1a).
Its successful application has completely revolutionized the information industry and changed our
daily life [1–3]. The underlying process of these MR effects is a switch of the relative magnetization
arrangement, between an antiparallel (AP) arrangement and parallel (P) arrangement, during a sweep
of the magnetic field. Such a magnetization switch induces a large change in electrical resistivity
of the multilayers. The change is usually several orders of magnitude larger than the anisotropic
magnetoresistance (AMR) effect [4]. The discovery of these appreciable MR effects has paved a way
for transforming weak magnetic information into a large electrical signal, leading to numerous
impactful applications. Representatively, the GMR- and TMR-reading head in a hard-disk drive
(HDD) has boosted the computer storage density and capacity, which promoted the era of big data
(Figure 1b) [2,5]. Additional design and optimization of the GMR/TMR sensors have further enabled
applications of position and/or speed sensing [6,7], and even biological probing [8]. Moreover,
the emerging nonvolatile magnetic memory (MRAM) based on the TMR effect has been widely
considered as a competitive choice for next generation universal memory [2]. The integration of these
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nonvolatile memory devices with complementary metal oxide semiconductor (CMOS) devices has
been successfully applied for high-performance logic circuits [9]. Besides these direct applications of
the GMR/TMR effect on sensing, data storage and processing, breakthroughs in the optical tuning
of these effects further promise ultra-fast, high-volume data transmission solutions, which meet the
ever-growing speed and bandwidth demands of inter-chip communication.
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Figure 1. (a) Schematic of a GMR device with a FM layer/spacer layer/FM layer stacking. The thickness
of the spacer layer is labeled as d; (b) GMR read-head for hard drive [2]. Reproduced with permission
from [2].

In the following sections, firstly we review the GMR/TMR effect and the IEC effect in different
material systems, concurrently we discuss the related basic and forefront key research issues. Then we
revisit the development and principles of the optical manipulation of the MR effect. Such manipulation
can be realized via different methods, including switching the relative magnetic alignment via the all
optical switching (AOS) of the magnetic layer or via tuning the IEC effect; or otherwise modulating the
electronic transport of the optical responsive spacer layer. The final section is devoted to the abundant
applications of those effects, including data storage and sensing. At the end we present a perspective
for applying the optical tunable MR to realize ultra-low-power optical date writing and high-speed,
inter-chip connection.

2. Magnetoresistance and Interlayer Exchange Coupling Effect

2.1. GMR/TMR Effect

The GMR and TMR effects originally describe the appreciable resistance change, during a sweep
of applied magnetic field, of a magnetic sandwiched structure with a spacer layer of nonmagnetic metal
or insulator, respectively. Here the magnetic field serves as a tool to switch the relative magnetization
of magnetic layers. The system would exhibit relatively high resistance in antiparallel alignment, with
low resistance in the parallel alignment.

In 1988, the GMR effect was first discovered in antiferromagnetic (AFM) interlayer-exchange-coupled
Fe/Cr multilayers by two research groups separately led by A. Fert and P. Grünberg [10,11]. The AFM
IEC, which we will discuss later, guarantees that the adjacent layers will be at AP alignment in its natural
state. This makes it possible for the applied magnetic field to force a contrastive P alignment [5]. However,
these coupled systems show low sensitivity to the magnetic field due to an enhanced saturation field,
which can be a huge flaw for practical applications. Researchers then developed non-exchange coupled
structures in which two magnetic layers have different cohesive fields [12,13], called pseudo spin-valves,
or where one of them is magnetically pinned by an additional pinning layer via the exchange bias effect,
called a spin-valve [14,15]. The spin-valve structure has greatly contributed to the successful application of
GMR [5]. Apart from different approaches for creating distinct magnetic alignments, a GMR device also has
different device geometries. At the beginning, GMR was detected by electric current flowing in the film
plane (CIP), and later research developed the “current perpendicular to plane (CPP)” geometry [16–18] that
shows a relatively stronger effect [19]. The GMR effect rapidly found impactful applications in data storage,
and attracted tremendous research interest.
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The success of the GMR effect strongly incentivized research into the TMR effect. The very first
report on TMR actually came before the discovery of GMR [20]. However, that experiment had been
performed at low temperature and was hardly reproducible. The breakthrough of appreciable and
reproducible TMR at room temperature (RT) was achieved when amorphous AlOx was adopted as
a tunneling barrier in the magnetic tunnel junction (MTJ) [21,22]. TMR as large as 81% at RT has been
achieved in an optimized AlOx–MTJ system [23]. With novel applications like MRAM still craving
higher MR ratios, researchers continued exploring different materials and found by calculation [24],
and then revealed by experiments, that MgO as barrier material could provide up to 1000% TMR
ratio at 5 K [25–27]. MgO/CoFeB-based MTJ with perpendicular magnetic anisotropy (PMA), which
presents higher switching energy efficiency and extra scalability, has become the mainstream for
MRAM applications [28,29].

Along with the development of the magnetoresistance effect, the underlying physical mechanism
has been better understood. The microscopic mechanism of the GMR and TMR effects is about
electron transport dominated by spin-dependent scattering [30,31] or tunneling [20,24] respectively.
As described by Mott’s two-current model [32,33], electrons of spin-up or spin-down can be imagined
to transmit through two independent channels. If the multilayer is in parallel arrangement, electrons
with a spin direction the same as the magnetization direction will be less scattered (for GMR) or have
higher tunneling probability (for TMR), resulting in low resistance. Conversely, electrons with a spin
direction opposite to the magnetization direction will encounter a large resistance. Thus, the total
resistance of the two channels in parallel connection will be relatively small, while if the multilayer is
in an antiparallel arrangement, both channels will encounter a large resistance, hence leading to a large
total resistance [2]. To realize such a spin-dependent interaction, electrons, which convey the spin
information, should be able to maintain their spin momentum. This is why materials of spacer layer
with a long mean-free-path (for CIP GMR), spin-diffusion-length (for CPP GMR) and small thickness
(for both GMR and TMR) are necessary for an appreciable GMR/TMR effect. Values of these MR
effects will depend on the spin-polarization of magnetic materials, the maintenance of spin momentum
across spacer/barrier materials and the interfaces, and additional spin filtering effects induced by
specific tunneling barriers [34]. As a result, well controls of the ferromagnetic materials, spacer/barrier
materials and their interfaces, together with the emergent techniques of magnetic switching and MR
effect modulation have been considered as key issues of spintronic research [1,35,36].

2.2. Interlayer Exchange Coupling Effect

The discovery and development of the GMR effect, which relies on the manipulation of the relative
magnetic arrangement, has been intimately linked to the research achievement of the IEC effect [37–39].
IEC describes the magnetic interaction between two FM layers, mediated by a nanometer-thick
spacer layer. IEC can be AFM or FM, depending on the spacer layer with specific thickness, which
determines whether AP or P is the energy favorable state [40]. The IEC has been systematically
established in numerous layered structures with different metallic spacer layers [41–44], as well as some
semiconducting, insulating and organic molecular spacers e.g., Si [45–47], GaAs [48,49], MgO [50,51]
and α-sexithiophene [52]. More interestingly, IEC strength is found to oscillate periodically between
AFM and FM states, with varying thicknesses of metallic spacer layer [41–43,53].

The unusual phenomena of IEC has attracted a great deal of research interest in its mechanism.
Microscopically, IEC is an indirect exchange interaction mediated by the electrons of the spacer
layer. Pioneering theoretical researchers have tried to develop a unified theory for both metallic and
insulating spacer layers, by introducing the concept of a complex Fermi surface [54,55]. A more recent
and commonly accepted theory is that the oscillatory IEC is mediated by the quantum well states
(QWS), which have been experimentally observed to occur in the spacer layer [40,56]. QWS describes
the discrete electronic states formed by electron confinement, and those states evolve periodically
with the well width [40,57,58]. The theoretical explanation of the IEC effect by QWS can be briefly
interpreted as follows.
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The IEC coupling strength J (value positive for AFM and negative for FM coupling, indicating the
energy minimization principle) is determined by the energy difference between AFM and FM coupling
states (EFM and EAFM represent the energy of the FM and FM coupling states, respectively) [40]:

2J = EFM − EAFM (1)

The energy of electron gas in the spacer layer can be obtained by

E =
∫ +∞

−∞
εD(ε) f (ε)dε (2)

where D(ε) represents the density of states (DOS), and f (ε) represents the distribution function [40,55].
Due to the splitting of the bands in the magnetic materials, the electrons in the spacer layer with their
spins opposite to the magnetization are strongly reflected at the interfaces between the FM layer and
the spacer layer. Thus, when two magnetic layers are aligned parallel (direction ‘up’ in our example),
as illustrated in Figure 2b, spin down electrons are strongly reflected at both interfaces, like being
trapped in a well, which leads to their confinement. In contrast, such a quantum well situation cannot
occur when the two magnetic layers are aligned antiparallel, as in Figure 2a, because either spin up or
spin down electrons can always penetrate one of the two interfaces with little reflection. Therefore,
the DOS of spin up electrons in the FM coupling state (DFM) is strongly altered by confinement into
nearly a set of delta functions at discrete energy levels, different from the continuous DOS of the AFM
coupling state (DAFM), as shown in Figure 2a,b. According to Equation (2), these different coupling
states result in an inequity between EFM and EAFM. Such an energy difference ultimately determines
the natural preference of one magnetization arrangement over another, which is manifested as the
different types of IEC. Following this theory, the oscillatory behavior of IEC in certain material systems
can be well understood. As the thickness of the spacer layer increases, the QWS energy levels shift
downwards according to quantum mechanics, which generally decreases the EFM. However, when
a QW state crosses the Fermi level (EF) from above, it adds to the integration term in Equation (2),
meaning that EFM increases sharply, which is when FM coupling turns out to be unfavorable [40].
Therefore, changes of the EAFM contribute to the alteration of two types of IEC. (More details of this
mechanism can be found in Reference [5]).
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Figure 2. Electron distribution schema of the (a) AFM coupling and (b) FM coupling state. At the
ground state, electrons occupy only those states below the Fermi level (EF) (occupied states are colored
blue, unoccupied colored gray).

Based on the mechanism of the IEC effect, it is possible to design magnetically-coupled
multilayers with negligible influence to other adjacent layers (that is, synthetic anti-ferromagnet
(SyAF), see references [36,59,60]). The SyAF technique has already contributed to the booming of the
HDD market and the development of MRAM. Besides, the IEC effect also implies a tricky strategy to
realize magnetic switching by switching the coupling type [52,61–65].
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2.3. MR in Different Material System

Traditional MR structures usually consist of two FM metal layers separated by a nonmagnetic
metal spacer (for GMR) or a metal-oxide barrier (for TMR). As indicated by the mechanism
of the GMR/TMR effect, the choice of the spacer can affect the GMR/TMR effect by various
critical aspects, including interface lattice match, spin polarization, spin-diffusion length, mean-free
path, etc. The observation of GMR first succeeded in the molecular beam epitaxy (MBE)-grown,
Fe/Cr/Fe, AFM-coupled, nanometer-thick multilayers with well-defined interfaces [10,11], and later
systematically extended to various nonmagnetic spacer-based systems, including Fe/Cr, Co/Ru,
etc. [41–44]. Among them Co/Cu, whose well-matched crystal structures minimize interface defects
and thus consequential spin-independent scattering, showing a strong MR and IEC effect, making it
an archetypical GMR system [1,42,44]. As for TMR, despite some early observations regarding the
Ge-based junction [20], strong TMR at RT was not achieved until the amorphous AlOx barrier was
adopted [21,22]. A further milestone has been the theoretical prediction and successful observation of
a high TMR ratio in MgO-based systems, where the selective tunneling property of MgO with certain
crystal orientations enhances spin polarization [24–26]. With the MgO-based junction prevailing in
current TMR applications for its large TMR ratio, researchers continue searching for novel material
systems [66–68], including the choice of capping materials [69–71], towards better device performance,
such as larger TMR, a lower resistance area (RA), higher breakdown voltage and lower spin-torque
switch current density [28,29].

Apart from traditional MR structures, tempted by relatively long spin diffusion length and the
potential of electrical and optical modulation methods in semiconductors [1,72], plentiful attempts
have been made to develop MR devices based on semiconductor spacers, including AlAs, GaAs, Si
etc. [72–74]. Unlike all-metal systems, several key issues still remain to be tackled for semiconductor
spacer-based hererostructures. These issues include the lattice mismatch and intermixing effect
which result in poor interfaces between the FM metal and semiconductor, together with the
impedance mismatch that makes the MR too weak to be detected [72,75,76]. Possessing the same
advantage of long spin diffusion length as semiconductors, organic materials furthermore promise
economic mass fabrication and flexible property manipulability from the material’s perspective [77–80].
Various types of organic materials have been employed as a spacer material, with moderate MR
ratios achieved, notably carbon nanotubes [81,82] and small organic molecules like sexithienyl (T6)
and 8-hydroxy-quinoline aluminium (Alq3), etc. [83–86]. Additionally, the photosensitivity of certain
organic materials allows the combination of the MR effect and photoresponse in a single device,
as researchers recently proved using fluorinated copper phthalocyanine (F16CuPc) and C60 fullerene
spacer-based devices [87,88]. A similar case lies in the poly(vinylidene fluoride) (PVDF)-based MTJ,
which enables both magnetic and ferroelectric control of the device [89,90]. Besides exploring spacer or
barrier materials, attempts have also been made to apply novel magnetic layer materials, for instance
half-metals, which provide fully polarized electrons [91,92], or defect-induced magnetism (DIM)
material [93,94], or materials with magnetization tunable by light [95–97], voltage [98,99], heat [100],
etc. The introduction of these novel MR material systems, which either provide an improved MR ratio
or permit additional methods of tuning MR, greatly adds to the theoretical and applicational richness
of the MR effects.

3. Optically Tunable MR Effect

Since the MR effect predominantly relies on the relative arrangement of the two magnetic
layers, a key issue of its application is the ability to control the relative magnetic orientation [101].
Several approaches have been put forward: (1) The very intuitive magnetic field switching
approach; (2) The electric current switching approaches using spin transfer torque (STT) [102–104]
or spin orbit torque (SOT) mechanisms [105–107]; (3) Novel electric field, heat or strain-assisted
approaches [108–111]. However, the operating speed of those approaches are ultimately constrained
by the spin precession time [112]. Moreover, those electric approaches always have bottlenecks of
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bandwidth and data loss issues for high-speed, inter-chip communication. Given that, for highly
demanding novel device applications, optical approaches for high-speed MR modulation or even
magnetic switching have been pushed to the frontier of research [35]. The realization of optically
tunable magnetoresistance (OTMR) promises the integration of the ultra-fast, high-volume feature
of optical information transmission with the non-volatility, high-density features of spintronics
magnetic storage.

Intuitively there are different viable solutions for the optical approach: light can be applied either
to the magnetic layer for a direct influence on magnetization [95–97,112]; or to the spacer layer, to
tune the IEC, which would consequently affect the magnetic arrangement [61,64,65], or otherwise to
tune the electric transport properties [87,88,113,114]. The material choice for the former could be the
AOS magnetic materials, whose magnetization can be switched directly by light. The latter demands
materials with electronic properties effectively tunable by light, such as VO2 with a metal-insulator
transition (MIT) feature, optically-sensitive semiconductor, and Phthalocyanie (Pc), etc. (Figure 3).
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3.1. All Optical Switching

Motivated by the demands of high-speed, large-volume storage applications, researchers have
exploited using light instead of magnetic fields to manipulate magnetization in data recording materials.
While laser has already been used as a heating source in the so-called heat-assisted magnetic recording
(HAMR) to assist magnetic field-driven switching [115], early theoretical and experimental studies
meanwhile confirmed light as an electro-magnetic wave can directly influence the magnetization [116].
Major breakthroughs of AOS, which means deterministic magnetic switching triggered purely by
femtosecond laser pulse, have been achieved during the last decade. Two types of AOS have been
observed experimentally, namely all optical helicity-dependent switching (AO-HDS) and all optical
helicity-independent switching (AO-HIS), depending on whether the magnetic switching relies on the
helicity of light. AO-HDS was once believed to be an effect limited to the rare earth-transition metal
alloy [95]. More recently, general principles for designing and fabricating AOS material systems have
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been put forward, broadening the AOS material choices to include synthetic ferrimagnetic multilayers
and heterostructures, as well as RE-free pure ferromagnetic [Pt/Co], [Ni/Co] multilayers, etc. [96,117],
transparent medium Cobalt-substituted yttrium iron garnet (YIG:Co) [118], and high-anisotropy FePt
film which is a commonly used HAMR media [117]. The other type of AOS, the AO-HIS, has been
discovered in GdFeCo alloy [119]. The magnetization of GdFeCo switches after each single pulse of
femtosecond laser independent of the light helicity. The switching process is driven by the ultrafast
heating with a signature of transient ferromagnetic states [120]. Apart from this direct switching by
light, recent studies also found another switching mechanism for GdFeCo capped by thick metal layers,
which contributes the switching to indirect hot electrons generated by light and propagating through
the metal layers [121,122]. Despite intensive theoretical investigation dedicated to this, ambiguity still
shadows the mechanism of the AO-HDS. Many fundamental questions remain to be answered, such
as the role of the domain size [123], the role of optical spin transfer torque [124], the contribution of
magnetic circular dichroism [125] and the role of the inverse Faraday effect [126].

Although the research into AOS is still in its early stage, people have already been attempting to
bring it into application. Recently a pioneering demonstration of a GdFeCo-based AOS MTJ device
was accomplished. Its free layer and pinned layer materials are GdFeCo and Co/Pd, respectively.
The switching between parallel and antiparallel configurations was achieved by switching the GdFeCo
using femtosecond laser pulse, although only a low MR ratio of 0.6% was achieved at RT (Figure 4) [112].
Moreover, in another newly reported experiment, a picosecond electric pulse of 9 ps was optically
generated by a photoconductive switch. Such a picosecond electric pulse can induce ultrafast magnetic
switching in GdFeCo toggles, which implies possible applications for ultrafast spintronic devices [127].
Further progress of this field will strongly rely on the development of on-chip photonics, emerging
materials with lower requirement of the laser, and advanced device applications.
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Figure 4. Device demonstration of AOS in an MTJ with subpicosecond single laser pulses without
external magnetic field at RT. (a) Schematic of the MTJ structure used in the experiment; (b) Optical
microscope image of a typical MTJ device with an indium tin oxide (ITO) electrode on the top for TMR
measurement; (c) The RTMR(H) minor loop measured by sweeping a perpendicular magnetic field,
which switches the Co/Pd layers (R and H represent resistance and magnetic field separately). The red
line is the smoothing of the raw data (open circles); (d) RTMR of the MTJ device measured during AOS
by 0.4-ps single laser pulses at 0.5-Hz repetition rate. The changes of RTMR in (c,d) have the same
value of ~0.6 ± 0.05 Ω, indicating the GdFeCo layer has been completely switched. Reproduced with
permission from [112].
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3.2. Optical Tuning of IEC Effect

Manipulations of the GMR/TMR effect usually depend on the direct switching of magnetization in
the FM layer, for example, via a magnetic field, a spin current or a laser pulse. However, the existence of
coupling between neighboring FM layers implies the possibility of realizing the switching via a control
of the IEC type. Since the IEC effect relies on the electronic properties of the spacer layer, in theory it
could be effectively tuned by light in devices based on an optically sensitive spacer. Following the
underlying QWS mechanism of IEC as stated earlier, we can understand from the energy’s perspective
the consequence that if the spacer layer is exposed to certain photon irradiation with sufficient fluence,
owing to the different DOS, the electron gas in the AFM and FM coupling states will separately go
through different absorption-transition behaviors, thus bringing about different light-induced energy
changes. This could consequently change the relative magnitude between EAFM and EFM, which would
induce switching between two states as a consequence.

Some experimental and theoretical studies have revealed its feasibility. Pioneering work has been
carried out with semiconducting spacer-based systems. In 1993, a photon-induced IEC change from FM
coupling to AFM coupling in Fe/(Fe-Si) superlattices at low temperature was report [61,128], though
with certain controversy [62,64]. Apart from optically-sensitive semiconductors, another notable
material proposal is the VO2, which features the MIT property [65]. Researchers performed first
principle calculations of the IEC effect between Co-doped, TiO2/VO2-diluted magnetic semiconductor
multilayers. Their results indicated that reversible switching from FM IEC to AFM IEC can be realized
utilizing the temperature-induced MIT feature [65], which might be induced by light as well. Thanks
to this progress in different material systems, device demonstration via optically-tuned IEC may be
realized in the near future.

3.3. Optically Sensitive MR Effect

In some material systems, unlike the previous two cases, light illumination on the spacer
do not necessarily provoke deterministic switching of the magnetic alignment, while the MR can
still be effectively tuned due to the alteration of electronic transport properties [87,88,113,114].
Representatively, such effects are achieved in fluorinated copper phthalocyanine (F16CuPc) and C60

fullerene-based spin valve structures [87,88]. In the former system, photo-generated charge carriers in
the spacer dominate the electric conductivity of the system [87]. Yet in the later, photon irradiation
generates a photovoltage [88]. In both cases, the MR effect can be superimposed on the photoresponsive
effects. Therefore, by cooperatively adjusting the light irradiation and the applied magnetic field,
we can either obtain controllable multiple resistance states, or eliminate the base current of the MR
effect [87,88], which can have abundant applications in high-density data storage and neuromorphic
devices [129].

4. Application

4.1. Application of the GMR/TMR Effect

The rapid adoption of the GMR/TMR HDD head has long been regarded as a successful example
of fundamental research advances quickly transforming into significant commercial applications.
Thanks to the introduction of the GMR/TMR HDD head, we witnessed the capacity of HDD to grow
by over thousands of times in two decades, intriguing a revolution in data-storage which constitutes
the basis of this information era [2]. Besides, possessing unique high sensitivity and large response in
such a small size, the GMR/TMR magnetic sensor can be specifically designed to fit in a vast range of
application scenarios. For example, scalable down to sub-µm size, the TMR sensor permits very high
spatial resolution, making it suitable for high-precision position, angle and motion sensing [19,130–132].
Also, the MR sensors are sensitive enough for detecting geomagnetic fields; meanwhile they can be
integrated into integrated circuit (IC) chips, which makes them widely adopted for navigation, posture
detection, etc. [19,130,133]. With the boom of the Internet of things (IoT), these sensing applications are
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becoming ubiquitous, from daily life to industry management. Another promising field for GMR/TMR
sensors consists in biosensing, where they are used to detect the surface binding reaction of certain
biological molecules labeled with magnetic particles, enabling non-invasive, quick and inexpensive
medical diagnosis [130,134–136]. Still, MR sensors can find broader niche applications, like detecting
defect regions in metal parts, monitoring current density in IC chips, etc. [130,133,137].

Moreover, as the pillar of spintronics, the MR effect has the potential to play a major role in
the beyond-Moore era [35]. One great dilemma of today’s electronic industry is the ever-increasing
power consumption brought on by growing computing demands, contradictory to the pursuit of
portability and the compaction of products. TMR-based MRAM, which features certain key advantages
including non-volatility, low-voltage operation, high-speed, and nearly infinite endurance, permits
alleviating this issue [36,138]. Major chip fabricators have been targeting MRAM as embedded memory
to substitute current volatile RAMs. With its scalability, MRAM also has the potential to be applied
to large volume data storage [139,140]. Besides, a novel conceptional magnetic data-storage device
named racetrack memory, which uses the TMR effect to read information stored in dynamic magnetic
domains or skyrmions, is also under development [141,142].

Lastly, the development of GMR/TMR effects also benefits spintronics-based logic applications.
The integration of MTJ-based memory with CMOS has been successfully applied for high-performance
logic circuits [9]. Moreover, the development of GMR/TMR has boosted research advancements into
magnetic and barrier materials, together with the control of the interfaces. Those achievements continue
promoting various spintronics-based logic applications such as all-spin-logic, spin wave logic, etc.,
which highly rely on efficient spin-charge conversion and the modulation of spin propagation [143,144].

4.2. Application of OTMR Effect

The light-tunable MR effect indicates a novel path for combining photonics with magnetic
technologies [112]. The first intriguing application consists of the data writing of magnetic memory.
The optical writing of a novel AOS-material-based memory bit can be achieved with a single
femtosecond laser pulse [95,121], requiring the switching energy prospectively to be much lower
than the current electrical switching approaches [145]. Admittedly, before reaching a point of practical
application, it still demands further research for AOS material systems with higher MR ratios,
and efforts at the device engineering level to realize downscaled devices switchable by low-power
laser. Different to the optically-switchable MR devices, which mainly provide higher speed and
power-efficiency, the optically-sensitive MR devices feature other advantages. For example, stable
multiple resistance states can be achieved in a single optically-sensitive MR device, which permits
improved density for data storage applications, or otherwise can find its place in various novel
neuromorphic applications. On the other hand, an optically-sensitive, zero-base-current MR device
can function with significantly lower power-consumption [88].

As a perspective, once the on-chip laser technology matures, and a breakthrough of the high-MR
AOS material systems arises, the optically-switchable MR will enable the integration of the ultra-fast,
high-volume optic information transmission technology and the non-volatile, high-density spintronics
magnetic storage technology, which would inaugurate a new vision of efficient data writing and
inter-chip communication (Figure 5).
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“Memory Array” on Chip-2 in an optical writing way utilizing the laser-induced change of MR  
(the “X” may be a laser demultiplexer to perform selected data writing into specific memory unit). 

5. Conclusions 

The collision and blending of magnetics, electronics and nanotechnology have triggered the 
birth of spintronics, which is marked by the discovery of the GMR and TMR effect. These 
magnetoresistance effects and other emerging effects, with abundant applications in the information 
industry, have kept changing our daily life for several decades. In this paper, we have reviewed the 
development of GMR, TMR and other related effects, from their mechanism to novel device 
applications. We first revisited the discovery and mechanism of GMR, TMR and IEC effects within 
various material systems. We then reviewed the optically tunable MR effect by different approaches. 
Finally, we discussed the abundant applications of these MR effects and presented a perspective to 
realize efficient data writing and inter-chip communication. 
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Figure 5. Schematic of the potential applications of the OTMR effect (a) Data writing in optical control
MR chip. This chip, based on the OTMR devices array, can serve as a memory module in the following
chips in (b); (b) Inter-chip optical communication. According to the data stored in the “Memory Array”
on Chip-1, the laser beam from the “On-Chip Laser” can be modulated by the “Optical Modulator” to
convey the information. Once another chip (“Chip-2”) receives the modulated laser beam from Chip-1,
the “Optical Demodulator + X” unit will demodulate the beam and then write the “Memory Array”
on Chip-2 in an optical writing way utilizing the laser-induced change of MR (the “X” may be a laser
demultiplexer to perform selected data writing into specific memory unit).

5. Conclusions

The collision and blending of magnetics, electronics and nanotechnology have triggered the birth
of spintronics, which is marked by the discovery of the GMR and TMR effect. These magnetoresistance
effects and other emerging effects, with abundant applications in the information industry, have kept
changing our daily life for several decades. In this paper, we have reviewed the development of
GMR, TMR and other related effects, from their mechanism to novel device applications. We first
revisited the discovery and mechanism of GMR, TMR and IEC effects within various material systems.
We then reviewed the optically tunable MR effect by different approaches. Finally, we discussed the
abundant applications of these MR effects and presented a perspective to realize efficient data writing
and inter-chip communication.
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