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Abstract: The objective of this research is to develop an experimental-theoretical analysis about the
influence of the cooling medium and the geometry of the welding bead profile in fatigue life and
the associated parameters with structural integrity of welded joints. A welded joint with cruciform
geometry is considered using SMAW (Shielded Metal ArcWelding), plates in structural steel ASTM
A36 HR of 8 mm of thickness, and E6013 electrode input. A three-dimensional computational model
of the cruciform joint was created using the finite element method. For this model, the surface
undulation of the cord and differentiation in the mechanical properties of the fusion zone were
considered, the heat-affected zone (HAZ) and base material, respectively. In addition, an initial
residual stress field, which was established experimentally, was considered. The results were a set
of analytical expressions for the weld magnification factor Mk. It was found that values for the
latter decrease markedly in function of the intensity of the cooling medium used in the post welding
cooling phase, mainly due to the effect of the residual compressive stresses. The obtained models
of behavior of the weld magnification factor are compared with the results from other researchers
with some small differences, mainly due to the inclusion of the cooling effect of the post weld and the
variation of the leg of the weld bead. The obtained analytical equations in the present research for Mk
can be used in management models of life and structural integrity for this type of welded joint.

Keywords: cruciform joint; fatigue; semi-elliptical crack; cooling; weld magnification factor;
fracture mechanics

1. Introduction

One of the common failure phenomena in structural engineering materials is fatigue failure.
This is associated with certain flaws in the material or any geometric detail, which, after a certain
number of load cycles, generate the initial fatigue crack. Either through manufacturing or created by
situations of use, pre-existing flaws create the critical conditions from which the material breakage
is developed. Fracture mechanics’ purpose is to analyze and determine the mechanical behavior of
structural elements, when considering the existence of flaws in the material to define the conditions or
criteria of breakage [1].

The first theory that explains the fracture of cracked solids, known as linear elastic fracture
mechanics (LEFM), was initially proposed by Griffith at the beginning of the last century (Griffith,
1920), and subsequently developed by Irwin, in the second half of the same (Irwin, 1957). Up to its
appearance, only the failure by plastic collapse, where the material deforms plastically without any
fracture, had well-structured physical and mathematical foundations. The LEFM came to fill the gap
that existed in the opposite situation of the plastic collapse, when the fracture occurs in conditions
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of small deformation and in stress levels that are much lower than those that lead to the start of the
material plastic deformation processes [2].

Using the principles of the LEFM, it is possible to assess the stable propagation of fatigue cracks
in welded joints when using the empirical relationship proposed by Paris and Erdogan [3,4].

da
dN

= C(∆K)m = C
(
β∆σ
√
πa
)m (1)

To:
∆Kth ≤ ∆K ≤ ∆KIc (2)

where the C and m parameters are constant of the material for a range of stress ∆σ and R (load rate)
fixed; ∆K is the range of the stress intensity factor; β is a dimensionless function that depends on
the geometry of the component and the crack size (a); ∆Kth is the range of the stress intensity factor
threshold; and, finally, ∆KIc is the fracture toughness of the material for the condition of plane-strain.

When the stress intensity factor reaches a critical value, and the ASTM E399 and ASTM D5045
requirements are met, the critical value can be regarded as a material property called fracture toughness
for plane-strain, KIC. For that value, crack starts its unstable spread, fracturing the component into two
parts. In this way, the local fracture approach on Mode I is determined, on the basis of the following
expression [5–7].

βσf
√
πa→ KIc (3)

In welded joints, the stress fields in front of the crack are more complex to determine due to the
microstructural changes that occur as a result of the thermal cycle of the cooling system [8]. The crack
tip in a weld can be described as a semi-elliptical curve with depth (a) and length (2c). In general,
using Mode I, the stress intensity factor is given by [9].

KI = Yσ
√
πa (4)

where σ is the applied stress, and Y is a correction factor dependent on the load and the geometry of
the crack size. The Y parameter is influenced by a number of factors that can be represented as follows:

Y =
Mk + MS + Mt

∅o (5)

where Mk is a factor which considers the presence of the weld; MS is a correction factor of the free
surface area near the crack tip; Mt is a correction factor of the free surface in the crack tip; and, finally,
∅o complete is the integral of the ellipse. The latter can be expressed as:

∅o =
∫ π/2

0

{
1−

(
1− a2

c2

)
sen2∅

}1/2

d∅ (6)

where ∅ is defined as the angle of the ellipse. Values of MS and Mt depend on the joint geometry, and
failing to evaluate them can lead to an error that is normally about 0.13%. The latter is due to the fact
the stress field is low-intensity when the distance is greater from the weld toe. Therefore, it can be
avoided [10].

A number of researchers have determined expressions for the calculation of Mk, such as Lie and
Zhao, and Maddox and Andrews, who made a review of the British Standards PD6493 and BS7608,
for the steel structures cruciform design subjected to fatigue, establishing a value of Mk between 0.83
and 1.00 for cracks located at the weld of toe [11,12]. The Hobbacher researcher, found an expression
for Mk, for the case of a cruciform welded joint and 0.02 mm-sized crack, finding that the effect of the
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weld of toe produces a variation of 5% for various relationships of assessed aspects. The obtained
equation by Hobbacher is described below [13]:

Mk = C
( a

T

)k
for Mk ≥ 1 (7)

The magnitudes of C and k are dependent on the aspect and the geometry of the joint. Maddox
presented a dimensionless factor Mk, which allows for the estimation of the influence of stresses that
are generated by the geometric profile of the welded joints on the stress intensity factor [12].

Mk =
K

σ
√
πa

(8)

The researcher [9,14] carries out a comparative analysis between the estimated models by Maddox,
Andrews, and Hobbacher for the determination of the weld magnification factor Mk. In this work, it is
determined that the crack depth is a parameter that affects between 15% and 65% of the parametric
equation for the calculation of Mk. Equally, researcher Brennan [15] developed a comparative
parametric equation for the determination of the weld magnification factor, in a cruciform welded joint.
In addition, the results were compared with those previously developed by the researchers [10,16,17],
establishing a good level of correspondence between the magnitudes encountered and the previous
research. In the case of welded joints in test tubes with cruciform geometry, Zhao and Lie [11] include
a set of equations for estimating the effect of misalignment on different types of welded joints with a
semi-elliptical surface crack. Takeshi shows [18] shows that failures start at the root of the weld being
the stress hub that defense the propagation of the crack and its life.

The study using numerical methods of the transient thermal behavior of the welding process
goes back to the 1980s, highlighting the work done by Friedman [19]. Among the numerical methods
used to carry out the study of transitional period thermal behavior, the finite element method: one of
the most popular methods. This technique has gained special importance, mainly when it includes
a mesh refinement around the tip of the crack, besides the effect of the thermal cycle in the stress
intensity factors KI assessment and the weld magnification factor Mk. Although, conceptually, the
factors are obtained in a direct way, finite element analysis, with conventional elements near the crack
tip, underestimates the stress increase in gradient and displacement. Instead of using ever smaller
elements, size 1/

√
r, some researchers [20,21] introduced a direct method, by moving the composed

node of 8-noded quadrilateral elements up the quarter points in the crack tip and relocating the
nodes of the mid-point to a fourth at the end of the crack. In the case of linear elastic deformation,
the elements Plane2 (2-D, 6-noded triangle), Plane82 (2-D, 8-noded quadrilateral), and Solid95 (3-D,
20-noded brick), are used in ANSYS [16] to stabilize the residual stress field by moving the nodes to
a fourth of the tip of the crack. Once the field of stress is established, the parameters of fracture are
obtained [22]. Certain configurations of elements and nodes produce unique displacements. While
this type of behavior is undesirable for the majority of the analyses, it is ideal for elasticity problems
in cracks. By forcing elements in the crack tip to have a unique deformation, 1/

√
x can improve the

accuracy and reduce the need for a high degree of refinement of mesh in the crack tip. This singular
deformation is only applied in the crack tip.

Some contributions of this research are the three-dimensional computational analysis of a welded
joint by using the finite element method, Another contribution is the surface weld bead and the
differentiation in the mechanical properties of the fusion zone, the heat-affected zone (HAZ), and
the base material zone. In addition, the use of an initial residual stress field for the welded joint and
adjacent region to emulate the actual experimental model. The fundamentals of Fracture Mechanics
were employed in the numerical modeling of the welded joint with the presence of a surface crack
semi-elliptical type discontinuity at the weld toe. The latter is defined as a semi-elliptical surface crack
with a small aspect. Because of this study, a set of mathematical models for the weld magnification
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factor were obtained for cruciform welded joints, which can be used in the prediction of the fatigue life
of this type of welded joint.

2. Materials and Methods

For the definition of the experimental and analytical procedures, previous studies were used
as reference in cruciform test tubes that were subjected to biaxial cycles of stress to analyze fatigue.
In these studies, the thicknesses, welding dimensions, and size and penetration depth of the weld
were observed. For the experimental development of the present work, a carbon steel ASTM A36
HR Commercial 8 mm thickness and material of the electrode E6013 were used. The Shielded Metal
ArcWelding (SMAW) process is a simple, low cost and suitable way of joining most metals and alloys
commonly used in industry [23]. The electrical characteristics of the process (SMAW) used in the joint
are shown in Table 1, for each weld size (leg).

Table 1. Main characteristics of the welding procedures used.

Weld Size (Leg) Diameter of the Electrode E-6013 Electrical Parameters Forward Speed

3 mm 3/32” 102 volts, 72 A CD 20 cm/min
5 mm 1/8” 71.2 volts, 98 A CD 20 cm/min

For the purpose of generating an experimental input to the simulation runs and compare the
residual stress from the thermal cycle [24], the measurement of temperature on the test specimen
was carried out. The latter was made during the post welding cooling for the two media (air and
water) by using two type K thermocouples. They were located laterally on each edge of the bead
welded. The thermocouples were connected to a data acquisition card NI DAQ 9211, mounted on the
NI CDAQ-9172, and then to the personal computer. The layout of the thermocouples in the measuring
cylinder is shown in Figure 1. LabView Signal Express 2011 software (National Instruments, Austin, TX,
USA) was used to acquire and process data from the thermocouples, and to obtain the cooling curves.

Figure 1. Connection of the thermocouples. (a) Welded specimen; (b) Connected thermocouples.

For the process of plate-cutting, the technique of high-density plasma was used. Due to the
cutting technique used, the heat affected zone (HAZ), with a thickness of 8 mm, reached a millimeter
of depth of the surface that results from the cut. After this preliminary cut, the central area of the test
piece went into a mechanical process through milling to remove the endings of the weld bead, prone
to higher density of defects product at the beginning, and breakdown of the electric arc. The geometry
of the fixture to be used in the tests after final machining is presented in Figure 2.
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Figure 2. Geometric fixture test (mm scale).

The variables used for the manufacture of the test specimens are indicated below in Table 2.

Table 2. Variables for manufacturing.

Weld Size (Leg) C Cooling Medium

3 mm Air calm
5 mm Water

Fatigue tests were performed by axial load on cruciform geometry specimens, for different load
ratios (R), defined as:

R = Pmin/Pmax, where; Pmin: Minimum load and Pmax: Maximum load

The assembly made for the test is shown in Figure 3.

Figure 3. Assembly for the axial fatigue test.

The operating parameters of the equipment used are indicated in Table 3.
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Table 3. Parameters of the equipment.

Parameters Magnitude Unit

Maximum load 900 Kgf
Frequency of operation 12 Hz

Engine power 3 Hp
Nominal Motor Amperage 8.6 A

Supply voltage 206 v
Amperage at the Operation point 8.3 A
Load application cycles per Hour 8200 Cycles

Diameter Drive Pulley in 6 In
Diameter Pulley Driven in 12 In

Transmission Ratio 0.5 -
Motor Speed rpm @ 60 Hz 3445 Rpm

To begin the simulations by the finite element method, the software ANSYS ([16], Swanson
Analysis Systems, Inc., Canonsburg, PA, USA) was used. The determination of stress intensity factors
for geometries and application modes of simple loads can be carried out through easily implemented
analytical solutions. But, when the geometries and loads are more complicated, these induce complex
stress and strain fields on the structural component; therefore, it is recommended to use the finite
element method to determine said factors [25]. Also, the displacement correlation technique (DCT) is
relatively simple to perform and offers sufficient precise solutions for the purpose of this work. Thus,
the DCT method is employed in the modeling of the cracks in the weld joint analyzed.

To describe the stress field intensity in the region near the crack vertex, it is necessary to use
singular elements, with an additional node at a distance of a quarter of the size for the fissure vertex.
With these singular elements, the stress intensity factors can be calculated in the following way.

KI =
µ

k + 1
·
√

2π
L
·{4(vb − vd) + (ve − vc)} (9)

KII =
µ

k + 1
·
√

2π
L
·{4(ub − ud) + (ue − uc)} (10)

With:

µ =
E

2(1 + ν)
k =

{
3− 4ν (plane strain)

3−ν
1+ν (plane stress)

. (11)

where:

KI, KII: Stress intensity factors for load modes I and II, respectively (MPa·
√

m).
E: Elasticity modulus of the material (MPa).
ν: Poisson’s ratio of the material.
L: Characteristic length of the singular element (mm).
ui; vi: Displacements of the nodes of the singular elements (mm).

Figure 4 shows the singular elements, the location of the nodes and the displacements employed
in calculating the stress intensity factors.
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Figure 4. Disposition of control nodes on the crack vertex.

The tip of the crack must be meshed with small singular concentric elements and should not vary
in size as the crack extends. The rest of the component is meshed with quadrangular elements that
provide adequate precision.

Various methods are available to establish the orientation of the crack as it extends, although they
basically lead to similar results. This work uses the strain energy density method on the crack vertex
(ψ), which is expressed according to (12). The relative local minimum of ψ corresponds to a large
volume change and is identified with the region that is dominated by macro dilatation leading to crack
growth. Accordingly, this method establishes that the crack propagates in the direction of minimum
strain energy released [26].

ψ = A11K2
I + 2A12KIKII + A22K2

II (12)

where: Aij: Coefficients that depend on the material’s elastic properties.
A three-dimensional (3D) computer model of the cruciform test tubes for each of the two legs of

welding considered included the temperature profiles obtained experimentally and the determination
of the profile of stress for the residual cooling conditions in calm air and water, as shown in Figure 5a.
At a later stage in the modeling, surface semi-elliptical, a crack was included at the weld toe, as shown
in Figure 5b. The interest in this second model focused on studying the stress-strain field near the
front of the semi-elliptical crack under various conditions of cyclic loading (changing the load ratio R).
Crack sizes used in this work for the computer simulations are shown in Table 4, naming c, the size of
the semi-major axis, and a, the dimension of the semi-minor axis of the semielliptical crack.

Figure 5. (a) The temperature profile for the cooling cycle post welding and residual stress C = 5 mm,
(b) semi-elliptical crack on welding and plane generated for the finite element model.
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Table 4. Crack sizes of semielliptical section.

Semi-Major Axis (c) (mm) Semi-Minor Axis (a) (mm)

0.15 0.06
0.23 0.09
0.30 0.12
0.45 0.18
1.25 0.50
2.50 1.00
5.00 2.00
7.50 3.00

With the FEM (finite element method) model implemented, the values of the weld magnification
factor are determined for crack sizes that appear in Table 2. The weld magnification factor is
calculated by:

Mk =
KI (MEF)

σnom
√
πa

(13)

where:

KI (MEF): Stress intensity factor obtained by FEM (MPa·
√

m).

σnom: Nominal stress (MPa).

The magnitudes of the nominal and alternant stress of operation appear in Table 3. It is calculated
using the following equation:

σnom =
F

TL
(14)

Being:

F: Load operation (N).
T: Plate Thickness (mm).
L: Length of the weld bead (mm).

σalt =
F

2CL
(15)

Being:

C: weld size leg (mm).

The values of the nominal and alternant stresses of the axial fatigue test are shown in Table 5.

Table 5. Nominal and alternant stresses for the fatigue test.

Load Rate
(R = Pmin/Pmax)

Nominal Stress
σnom (MPa)

Alternant Stress
σalt (MPa)
C = 3 mm

Alternant Stress
σalt (MPa)
C = 5 mm

0 55.2 71.3 100.9
−0.5 36.8 35.5 64.6

3. Discussion and Results

As a product of computational modeling, a residual stress profile was obtained for each of the
legs of welding and cooling media analyzed. In Figure 6, the residual stress profile is shown for a
vessel with a leg of five millimeters, where the zero position indicates the location of the weld toe.
It was found that the modeled residual stresses were compressive-typed increasing in the closeness of
the weld bead, and its magnitude is directly related to the intensity of the cooling medium and the size
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of the bead. Water is a more intense cooling medium, introducing a rate of cooling in the initial range
analyzed of −112 ◦C/s, and a residual stress at the weld toe for a leg of 5 mm equal to −119 MPa.
On the other hand, it was found that large legs induce higher residual stresses, prompted by the need
for a greater heat input to the board and greater three-dimensional restriction to thermal contraction.

Figure 6. Residual stress obtained from the theoretical model MEF for a leg of (a) 3 mm, (b) 5 mm.

Using the axial fatigue machine, stress-life tests were carried out for the specimens under study.
The experimental results for the different cooling media and welding legs are shown below, in Figure 7a.
It is observed that more severe cooling media reduce fatigue life. In Figure 7b, it is observed that the
size of the leg did not considerably affect the life of the specimens. In Figure 7c, it is observed that the
more tensile load ratios minimize the life of the specimens.

Figure 7. Cont.
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Figure 7. Diagrams Stress—Number of Cycles. (a) For water and air; (b) For a weld size leg 3 mm and
5 mm; (c) For a load ratios 0 and –0.5.

The behavior of the weld magnification factor Mk in the presence of residual stresses was evaluated
analytically. Weld magnification factors Mk obtained with the presence of a residual stress field have
been appointed in the present research. This allows for making a distinction on this factor in the sense
that it involves the effect of the residual stress field in the calculation of the stress intensity factor.
The expression (9) is used in the calculation of Mk in function of the dimensionless crack depth (a/T)
and the possible combinations between weld size (leg) and the cooling medium used, being:

a: Semi-minor axis (mm).
T: Plate Thickness (mm).

In Table 6 the values obtained for Mk are shown for the different relationships of load rate, type
of cooling, and weld size of the study object. The behavior of the modified Mk factors, in function of
the dimensionless size of crack, is shown in Figure 8 for the two sizes of legs analyzed.
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Figure 8. Modified weld magnification factor Mk to crack at the weld toe: (a) weld size (leg) of 3 mm
and (b) weld size (leg) of 5 mm.
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Table 6. Modified weld magnification factor Mk to crack at the weld toe: (a) weld size (leg) of 3 mm
and (b) weld size (leg) of 5 mm.

Load Rate (R) a/T Cooling Air Cooling Water Free of Residual Stress

(a) Modified weld magnification factor Mk for weld size (leg) of 3 mm.

0

0.008 0.848 1.345 1.449
0.011 0.884 1.389 1.384
0.015 0.878 1.399 1.404
0.023 0.884 1.408 1.357
0.063 0.783 1.260 1.077
0.125 0.662 1.067 0.853
0.250 0.547 0.811 0.746
0.375 0.472 0.676 0.758

−0.5

0.008 1.159 1.851 1.428
0.011 1.206 1.911 1.384
0.015 1.199 1.925 1.404
0.023 1.207 1.937 1.357
0.063 1.069 1.733 1.077
0.125 0.904 1.469 0.854
0.250 0.746 1.135 0.746
0.375 0.644 0.930 0.750

(b) Modified weld magnification factor Mk for weld size (leg) of 5 mm.

0

0.008 0.551 0.333 1.575
0.011 0.534 0.359 1.531
0.015 0.522 0.352 1.471
0.023 0.522 0.378 1.307
0.063 0.454 0.393 0.969
0.125 0.440 0.422 0.803
0.250 0.398 0.422 0.668
0.375 0.373 0.413 0.717

−0.5

0.008 0.719 0.455 1.575
0.011 0.697 0.491 1.538
0.015 0.681 0.494 1.472
0.023 0.682 0.529 1.307
0.063 0.593 0.536 0.969
0.125 0.574 0.576 0.804
0.250 0.520 0.576 0.674
0.375 0.509 0.564 0.717

The theoretical obtained results in the present work for the modified weld magnification factor
Mk, for condition of free stresses, were compared with the results that were obtained by other
researchers [9–13,15–17]. In Figure 9, results for the weld magnification factor are shown, for the
case of a crack at the weld toe and without residual stress, and verifies the correspondence of the
developed numerical model with the results obtained by other researchers. The analytical results
obtained involve several weld sizes and load rates.
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Figure 9. Weld magnification factor Mk without residual stress vs. results of other researchers: (a) weld
size of 3 mm and (b) weld size of 5 mm.

In Figure 9a,b, it can be noted that the weld magnification factor Mk is independent from the load
rate and has a similar behavior to that proposed by other researchers. Using the obtained information
in Table 6 for the modified weld magnification factor Mk, including the effect of the residual stress
reached by the air and water cooling media, it is possible to make a comparison with the results
that were obtained by other researchers. This comparison of results is shown in Figures 10 and 11.
The observed trend with the modified weld magnification factor is to markedly diminish in function of
the post weld cooling medium intensity, for the range of relative size of crack a/T > 0.1. This behavior
is related to the coupled benefits of the residual compressive stresses that arise during the post-welding
cooling for the region where the modeled crack occurs in the present work.



Materials 2018, 11, 81 14 of 18

Figure 10. Modified weld magnification factor Mk with the presence of residual stress vs. other
researchers: (a) air and weld size of 3 mm and (b) water and weld size of 3 mm.
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Figure 11. Modified weld magnification factor Mk with the presence of residual stress vs other
researchers: (a) air and weld size of 5 mm and (b) water and weld size of 5 mm.

With the results that were obtained for the weld magnification factor, a regression analysis is
carried out to obtain analytical equations that relate to the dimensionless size of the crack. Table 7
shows the expressions of Mk(a/T) for the free condition of residual stresses. In Table 8, the expressions
of Mk(a/T) are shown for the condition of post-weld cooling in calm air. Finally, Table 9 shows the
expressions of Mk(a/T) for the condition of post-weld cooling in water (in the equations Ω = a/T). These
analytical expressions are particularly useful to establish models for the prediction of fatigue crack
propagation and the design of a life management program for welded structures of the studied type.
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Table 7. Adjusted expressions for the weld magnification factor for the free condition of
residual stresses.

Weld Size (Leg)

3 mm 5 mm
Mk = 0.0077Ω3 − 0.1121Ω2 + 0.351Ω + 1.1592 Mk = 0.0101Ω3 – 0.1361Ω2 + 0.3671Ω + 1.3123

Valid for: 0.02 ≤ Ω ≤ 0.33.

Table 8. Adjusted expressions for the modified weld magnification factor Mk for the condition of post
weld cooling in calm air.

Load Rate (R)
Weld Size

3 mm 5 mm

0 Mk = 2.5098Ω2 − 2.0772Ω + 0.9002 Mk = 1.5822Ω2 − 1.0261Ω + 0.5416
−0.5 Mk = 4.5708Ω2 − 3.7817Ω + 1.6383 Mk = 3.2069Ω2 − 1.8877Ω + 0.9443

Table 9. Adjusted expressions for the modified weld magnification factor Mk for the condition of post
weld cooling in water.

Load Rate (R)
Weld Size

3 mm 5 mm

0 Mk = 3.2442Ω2 − 3.2442Ω + 1.4311 Mk = 7.0363Ω3 − 5.4379Ω2 + 1.2513Ω + 0.338
−0.5 Mk = 5.5871Ω2 − 5.7921Ω + 2.6206 Mk = −117.47Ω4 + 97.992Ω3 − 28.427Ω2 + 3.4545Ω + 0.6097

4. Conclusions

We conducted a theoretical experimental study about the behavior of fatigue in welded joints
with cruciform geometry. A 3D simulation model of the welded joint was used throughout the finite
element method where several features were introduced, such as the superficial natural undulation
of the weld bead and established, and the mechanical properties of the fusion zone, the heat affected
zone and the base material, respectively. In addition, a residual stress field was introduced for the
welded joint and the surrounding region, which emulates the one obtained experimentally. In the
computational simulation of the superficial semi-elliptical crack at the weld toe, a convergence of the
model for 405428 nodes, with a computational cost in central processing unit (CPU) time of 2680 s for
each iteration, was reached.

It was determined that the residual stresses are of compression higher for the more intense cooling
medium (water). In addition, in Figure 6, it can be noted that larger weld size induces greater residual
stresses, prompted by the need for a greater heat input to the joints and to the greater three-dimensional
restriction to a thermal contraction of the weld joint. Fatigue tests indicate that more severe cooling
media minimizing the life of the welding specimens in the same way as the more tensile load ratios.
It is observed that the specimens mainly failed in the weld toe.

A unique finding of the present work is the reaching of analytical expressions obtained by the weld
magnification factor Mk for two sizes of the weld and two post welding cooling media. The analytical
equations obtained consider the residual stresses induced by these two post welding cooling mediums.
The analytical expressions for Mk in the present research have good correspondence with the obtained
results by other authors, in the case of welded joints without residual stresses. These expressions
can improve the calculation codes, testing standards, and the structural integrity of welded joints
verification. It can be noted that the observed trend with the modified weld magnification factor is to
markedly diminish, in function of the intensity of post welding cooling medium for a dimensionless
crack size below a/T < 0.1. This behavior is related to the coupled benefits of the residual compressive
stresses that arise during the post-welding cooling for the assessment region for the crack–type studied.
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