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Abstract: NiTi shape memory alloys (SMAs) are a class of functional materials which can
be significantly deformed and recover their original shape via a reversible martensitic phase
transformation. Developing effective joining techniques can expand the application of SMAs in
the medical and engineering fields. In this study, ultrasonic spot welding (USW), a solid-state joining
technique, was used to join NiTi sheets using a Cu interlayer in between the two joining sheets.
The influence of USW process on the microstructural characteristics and mechanical behavior of the
NiTi joints was investigated. Compared with conventional fusion welding techniques, no intermetallic
compounds formed in the joints, which is extreme importance for this particular class of alloys.
The joining mechanisms involve a combination of shear plastic deformation, mechanical interlocking
and formation of micro-welds. A better bonding interface was obtained with higher welding energy
levels, which contributed to a higher tensile load. An interfacial fracture mode occurred and the
fracture surfaces exhibited both brittle and ductile-like characteristics with the existence of tear ridges
and dimples. The fracture initiated at the weak region of the joint border and then propagated
through it, leading to tearing of Cu foil at the fracture interface.

Keywords: NiTi shape memory alloys; microstructural characterization; failure behavior; fracture
morphology; ultrasonic spot welding

1. Introduction

Near equiatomic NiTi is one of the most important shape memory alloys (SMAs) due to its
excellent functional properties, namely shape memory effect and superelasticity, combined with high
corrosion resistance, as well as, biocompatibility [1,2]. The functional properties originate from a
reversible phase transformation between austenite with a B2 cubic structure and a B19” monoclinic
martensite [3,4]. When the material is deformed in the austenitic phase it can exhibit superelastic
properties, that is, it can undergo a significant deformation during loading with full recovery to its
original shape upon unloading [5]. The excellent mechanical and functional properties exhibited
by these alloys make this material widely desired in both medical and engineering fields [6-9].
To achieve successful fabrication of complex parts of NiTj, it is necessary to develop effective and
efficient processing technologies due to the poor machinability of these alloys. In recent years, various
welding technologies have been used to join NiTi SMAs both to themselves and to other conventional
engineering alloys such as stainless steels [10,11], Ti6Al4V alloys [12-14] and Cu-based alloys [15].
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Joining techniques such as resistance spot welding [11,16], arc welding [17] and laser welding [10,12]
are some examples which are capable to produce defect-free joints. However, a major drawback of the
NiTi joints produced by traditional fusion welding techniques is the formation of brittle intermetallic
compounds (IMCs) in the weld region, such as Ti;Ni, which tend to reduce the mechanical strength of
joints [17-20]. In addition, fusion welding methods can also contribute to significant changes in the
transformation temperatures which can impair the potential applications of the joints [19,21].

Considering the possible formation of IMCs in the weld metal, the addition of an interlayer is
suggested as a potential solution to adjust the chemical compositions in the weld region and improve
the mechanical properties of NiTi joints [12,22]. Cu is a soft metal with a melting point lower than NiTj,
and it shows not only high thermal and electrical conductivity, good corrosion resistance and ductility
but also a good metallurgical compatibility with NiTi [23-25]. For this reason, Cu interlayers have
been used in dissimilar laser welding of NiTi to titanium alloys or stainless steel [14,26,27] to limit
the mixing of the base material (BM) and increase the mechanical properties of the joints. It has been
found that proper selection of the thickness of the Cu interlayer can enhance the mechanical properties
of joints by reducing the amount of brittle Ni-Ti-based IMCs [14].

The thermal history experienced by NiTi during welding can significantly affect its shape memory
and superelastic properties [28]. Thus, it is necessary to reduce the heat input of the welding process
to restrict the thermophysical deterioration in the weld zone [26]. Solid state joining techniques
are known for their low heat input and possibility to avoid solidification defects. For example,
friction welding has been carried out on NiTi SMAs in recent years [29-31]. However, it has been
reported for dissimilar joints of NiTi to stainless steel obtained by friction welding that high welding
times can promote the formation of brittle phases at the weld interface [30]. Currently, there is a need
to develop other solid-state techniques that can successfully join NiTi to itself and to other relevant
engineering materials.

Ultrasonic spot welding (USW) is a rapidly developing non-melting joining method which is
widely used in plastic forming, electronics and automotive fields [32,33]. As compared to the fusion
welding processes, such as resistance and laser welding, USW can produce high strength joints
without metal depletion or reduced extension of the heat affected zone. Such translates into almost
no detrimental effects produced on the BM. USW is especially suitable for achieving effective joints
of miniature components [34,35], such as metallic foils, wires and plates, which make this process
particularly interesting to weld materials with lower weldability. Traditionally, studies have been
mainly focused on the joining of light materials for weight reduction in industrial products [32-35].
However, knowledge on the use of USW in NiTi SMAs is currently extremely limited. Thus, carrying
out USW on NiTi is a very worthwhile investigation since this technique has great potential for
the fabrication of variable electromagnetic switches, radiator fins and other components based on
NiTi SMAs.

In the current study, the operating procedures, weld morphology, chemical compositions, interface
characteristics and the tensile shear properties of the ultrasonic spot welded NiTi joints with Cu
interlayer were analyzed and discussed. Additionally, the effects of welding energy on microstructural
characteristics and failure behavior were investigated in detail.

2. Materials and Methods

2.1. Materials

Ni-Ti shape memory alloy sheets (50.8 at.%), 150 um thick, were used as the BM.
Copper (99.9% purity) foils with a thickness of 20 um were chosen as the interlayer material.
The as-received NiTi alloy sheets were subjected to cold rolling and subsequently stress relieving
annealing by heat treatment at 400 °C for 45 min in Ar atmosphere to stabilize the phase transformation
temperatures. The DSC result of the BM showed that the transformation start and finish temperatures
of austenite and martensite are —45.43, —12.5, 22.91 and —58.75 °C, respectively, which suggests that
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the NiTi alloy was fully austenitic at room temperature, presenting superelastic behavior. The NiTi
sheets were machined into rectangular specimens of 60 mm length and 15 mm width (8 mm width for
tensile test of NiTi BM), and the Cu foil was processed into a square shape of 15 mm x 15 mm, which is
equal to the overlapped region of the BM specimens. Prior to welding, the oxide layer on the NiTi
surface was removed by using a mixed solution of 7.5% HF, 20% HNO3 and 72.5% H,O for 40-50 s.

2.2. Ultrasonic Spot Welding

USW was performed using a SONICS MSC4000-20. The schematic diagram of the USW system is
shown in Figure 1a, which was comprised of ultrasonic generator, transducer, amplitude transformer,
sonotrode tip and anvil. The size of the sonotrode tip was a square of 8 mm x 8 mm, consisting of
10 x 10 gridding knurls with a spacing and a depth of 0.8 mm and 0.4 mm, respectively. Figure 1b
depicts the relative welding positions of both the NiTi and the Cu interlayer. The ultrasonic vibration
direction during the USW process was perpendicular to the longitudinal direction of the NiTi sheets.
In this study, the energy control mode was used, during which process the welding time and power
input were adjusted automatically. The main process parameters selected were a frequency of 20 kHz,
a welding amplitude of 55 pm and a constant clamping pressure of 0.38 MPa, with different energies
of 500, 700 and 1000 J, respectively. The USW process was performed at the center of the overlapped
position, as shown in Figure 1b.

Ultrasonic Clamping force

generator | ransducer
Amplitude

Q9 m transformer

——

Vibration direction

Sonotrode tip
=NiTi
Anvil

Cu interlayer

Figure 1. (a) Schematic illustration of USW process; (b) Schematic diagram showing the welding
position of NiTi with Cu interlayer.

2.3. Microstructural Characterization

The surface profiles of the NiTi welds obtained using different welding parameters were examined
using a digital microscope (VHX-2000C, KEYENCE, Osaka, Japan). Additionally, the metallographic
observations were performed on the transverse section of the weld, which was parallel to the ultrasonic
vibration direction. After mounting the cross sections of the welded joints, mechanical polishing using
sandpapers from 240 to 2000 grits, followed by polishing solution agent was performed. The etching
process was conducted in an acid solution consisting of 3% HF, 14% HNOj3; and 82% H,O (in volume)
with an immersion time of 20-30 s. The microstructures and chemical compositions of the cross sections
for different welds were characterized via an optical microscope (OM; GX71, OLYMPUS, Tokyo, Japan)
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and with a scanning electron microscope (SEM; SU1510, HITACHI, Tokyo, Japan) equipped with an
energy dispersive spectroscopy (EDS) analysis system.

2.4. Evaluation of Mechanical Properties

Tensile lap shear tests of different joints were performed using an electro-mechanical universal
testing machine (AG-100KNA, SHIMADZU, Kyoto, Japan) and the displacement speed was set
at 0.1 mm/min. The tensile performance was expressed as joint failure load, determined as the
average of three specimens at each welding energy condition. The micro-morphologies and chemical
compositions of the fracture surfaces were analyzed by SEM and EDS. In this present work, the trial
experiments had shown that in all the welded joint failure always occurred along the bonding interface.
Therefore, it was decided to investigate the phase composition of this region using X-ray diffraction
(XRD; D8 Advanced, BRUKER, Karlsruhe, Japan) analysis. XRD was performed at 40 kV and 40 mA
with Cu-K« radiation.

3. Results and Discussions

3.1. Surface Morphology of Welds

Representative surface morphology at the sonotrode tip and anvil sides of different samples after
the USW process are exhibited in Figure 2. Figure 3 shows the depths of surface indentations at the
edge of samples as depicted with red rectangles.

Figure 2. Surface morphology of different samples obtained with different welding energies:
(a) sonotrode tip and (b) anvil sides of 500 J; (c) sonotrode tip and (d) anvil sides of 700 J; (e) sonotrode
tip and (f) anvil sides of 1000 ]J. The red squares indicate the regions analyzed to determine the surface
indentation depth depicted in Figure 3.
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Figure 3. Indentation depths of different samples.

From Figure 2, it can be observed that the indentations of sonotrode tip and anvil were distinct on
the specimen surfaces, and distinct levels of oxidation were observed on the weld material surface
during welding process, due to NiTi’s temperature sensibility and the open structure of the ultrasonic
welder. Higher welding energy translates into a higher temperature experienced by the material
making it more prone to surface oxidation. With increasing welding energy, the indentation depth
in both sides exhibited an increasing trend, as shown in Figure 3, and the insert image shows the
three-dimensional morphology of the surface indentation. During the USW process, continuous
shear vibrations were applied to the NiTi BM by the action of sonotrode, which quickly generated
frictional heat at the weld interface, leading to the rising of temperature and the material was softened,
thus shear plastic deformation took place on the material surface [32,36-38], resulting in the formation
of indentations. Under the same welding parameters, the depth of indentations depends on the
accessibility of the sonotrode knurl penetrating into the NiTi material surface, during which a tighter
engagement was provided, leading to more relative slippages and friction at the weld interface [36].
Therefore, with the welding energy increasing from 500 ] to 1000 ], more frictional heat was generated
at the weld interface during the USW process, and then the plastic deformation of NiTi increased
since the welding energy was dispersed by shear deformation, resulting in the increasing depth of
indentations on the weld material surface aided by a softening behavior of the material caused by the
temperature raise.

3.2. Bonding Morphology of USW Joints

The bonding morphology at the weld interface of the welds obtained by varying the welding
energies was examined in the cross section along the center of the joints parallel to the vibration
direction as presented in Figure 4.
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Figure 4. (a,b) interface morphology of the welded joint obtained at 500 J at the center (a) and near the

periphery (b) of the joint; (c,d) interface morphology of the welded joint obtained at 700 ] at the center

(c) and near the periphery (d) of the joint; (e,f): interface morphology of the welded joint obtained at

1000 J at the center (e) and near the periphery (f) of the joint; (g) microstructure interface of weld of

1000 J obtained by optical microscope. The white lines in Figure 4. (a,c,e) represent the locals where

EDS line scans were performed.

Figure 4a,b, respectively, depict the interface morphology in the center and near the periphery
of the weld obtained for a welding energy of 500 J. From Figure 4a it can be observed that the weld
interface showed a wave-like pattern and the thickness of the Cu interlayer was uneven due to the
effect of plastic deformation on the material surface, implying the occurrence of material flow at
the interface of the deformed material. Under the position of indentation of the sonotrode tip in
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the material, the thickness of Cu interlayer at the weld interface was thinner than that of the anvil.
The weld interface was noticeably intact, resembling a friction-induced bonding characteristic [39].
Joining of NiTi with the Cu interlayer took place by the formation and growth of micro-welds at
the weld interfaces owing to the close metal-to-metal contact, which produced mutual diffusion and
metallurgical bonding along the interface [33,38,40]. Additionally, unbonded regions were observed
near the periphery of the weld, indicating insufficient diffusion during the process. During the USW
process, the highest temperature was located at the central area of the weld, thus the bonding between
the NiTi and the Cu interlayer was significantly more effective close to this location that in the border
of the weld [37]. In comparison, the welded joint obtained with a welding energy of 700 J, which is
shown in Figure 4c,d, also presented unbonded gaps along the border of weld interface were also
visible. However, these were less often observed due to increased diffusion occurring as a result of the
increasing temperatures generated by the increase in the welding energy during the process [39,41].

Observations of the cross-section of the joint obtained at 1000 ] showed that both at the center and
periphery of the joint complete bonding was obtained, as depicted in Figure 4e f. It can be observed
that the joining interface in Figure 4f was better than that in Figure 4b,d, since no unbonded zones
were observed. This can be explained by the greater plastic deformation and increase in temperature
that occurred under the indent tips at both the sonotrode tip and anvil sides when 1000 J of energy
were used. These results indicate that a good interfacial bonding was obtained during the NiTi with
Cu foil USW process.

Figure 4g showed that NiTi and the Cu interlayer were complexly intertwined in the visible weld
interface obtained for a welding energy of 1000 J, which contributes to a better bonding along the weld.
During the USW process, under the clamping pressure and ultrasonic vibration, the NiTi BM adhered
to the Cu foil and then shear deformation, as well as, mutual rubbing of the faying surfaces occurred.
Some works [36] have shown that the strength of ultrasonic spot-welded joints is related to interfacial
waves, mechanical interlocking and microbonds produced along the weld interface. From the results
presented above, it can be concluded that with increased welding energy, more shear friction heat and
plastic deformation energy were generated at the weld interface thus promoting joining between the
NiTi BM and the Cu interlayer. Mutual extrusion and abrasion between the faying surface of NiTi
and the Cu interlayer was a main source for friction heat and plastic deformation. The presence of
unbonded zones in the weld interfaces obtained for lower welding energies, would promote premature
fracture of joints during tensile testing, since when applying the load, the unbonded areas would
become the starting points for crack initiation and propagation until failure of the joint occur.

The EDS line scan analysis at the weld interface center of different joints obtained by various
welding energy conditions (the test positions for EDS analysis were depicted with white lines in
Figure 4) were conducted to determine the chemical composition and to infer about the potential
phases in the interface diffusion layer formed between NiTi and Cu. The results are shown in Figure 5.

It is apparent that the content distribution of Ti and Ni followed the same trend, which is opposite
to the change for Cu: a decrease in either the Ni or Ti content would be compensated by an increase
of Cu. The EDS line analysis results revealed a smooth and rapid change in composition of both
NiTi and Cu across the weld interface border. As indicated by the ellipse in Figure 5a, changes in
relative contents of NiTi and Cu elements suggests the onset of slight diffusion at the weld interface.
However, the width of the diffusion zone at most weld interfaces was too small to put into evidence
the formation of any IMCs layer. Therefore, the joining mechanisms of NiTi with Cu interlayer by USW
can be concluded as the combination of solid-state shear plastic deformation, mechanical interlock,
the formation and further expansion of micro welds, which was consistent with other previous
studies [36,42,43]. Despite the element content fluctuation, it can be seen that the peaks and valleys in
the element distribution profiles kept mostly stable in the rich Cu area, as shown in Figure 5a,c,e.
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Figure 5. Chemical composition across the weld interface of NiTi joints with Cu interlayer: (a,b) 500 J;

(c,d) 700 J; (e,£) 1000 J. The positions where the EDS line scans were performed are indicated by the

white lines in Figure 4 (a,ce).

The EDS analysis results also showed that the maximum content of Cu in the thinner Cu
area (as depicted in Figure 4) gradually decreased with increasing welding energy, as presented
in Figure 5b,d,f, with values of around 89.4%, 79.5% and 32.7%, respectively. It can be reasoned that
more Cu foil was squeezed out at some positions of the weld interface with increasing welding energy.
Since Cu is a soft metal with high conductivity and low yield strength, it is believed that the existence
of Cu layer in the weld can compensate the thermal stress produced during the USW process [44].

3.3. Mechanical Performance and Failure Analysis

To evaluate the mechanical performance of the ultrasonic spot welded NiTi joints using Cu
interlayer, tensile shear tests were conducted. Figure 6 summarizes the load-displacement curves
for all welding conditions. Additionally, the load-displacement curve for a NiTi/NiTi weld obtained
without Cu interlayer for a 1000 ] of energy is also added for comparison.
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Figure 6. Load-displacement curves of NiTi joints with and without Cu interlayer at different
welding energies.

The failure loads of all joints were defined as the peak tensile load on the load-displacement
curve, with each joint representing its own weld strength under certain welding conditions based
on the joint performance results. The failure load of the base metal with 0.15 mm thickness and
8 mm width, used in this present work is about 810 N. As shown in Figure 6, it is noticeable that a
significantly higher failure load of 520 N was achieved at a welding energy of 1000 J. This higher failure
strength is in accordance with the result of weld interface morphology of the 1000 J joint in Figure 4,
where good bonding between NiTi and Cu was obtained due to sufficient mechanical interlocking and
metallurgical adhesion as a result of a more concentrated vibratory energy. It further indicates that
the weld joint with welding energy of 1000 ] has the good load capacity, which can be used in distinct
engineering fields. Furthermore, the use of the Cu interlayer can improve the mechanical properties of
the welded joint: when no Cu interlayer is used the fracture load of the 1000 J weld is of approximately
200 N [45], which is significantly lower than the 520 N obtained when the Cu interlayer was used.

In this present work, the fracture location of all the joints occurred at the welded interface.
Figure 7a,b show the schematic diagram of the fracture mode and the overall image of the fracture
surface of the tensile test sample, respectively, which exhibits the interfacial fracture mode with some
welded spots clearly observed. The dominant failure mode was characterized by a tearing behavior
along the weld interface: it can be observed that the Cu foils present some tearing features on the
fracture surface. In addition, to further understand the weld behavior and failure mode of ultrasonic
spot-welded joints, the micro morphology of the corresponding fracture surface of 1000 ] joint after
tensile shear tests were observed by SEM. The EDS point scan analyses were performed on different
areas of fracture surface, with these results presented in Figure 7e,f h.

The judging criteria for a good weld quality could can be determined by the mechanical properties
of the weld but also by the observation of developed weld spots on the fracture surfaces. Three distinct
regions were observed on the fracture surface, as exhibited in Figure 7c: weld spots, scratched regions
and tearing regions of Cu. The magnified images of the inserts indicated in Figure 7c suggested that on
the ultrasonic spot welded NiTi joints with Cu interlayer, more significant deformation was observed
under indentations of the sonotrode tip and anvil. As can be seen from Figure 7d, the fracture surface
near the periphery of the weld spots was much smother and presented plastically deformed zones,
while tear ridges and dimples can be observed at the center, as shown in Figure 7e f, suggesting that
the interface bonding strength near the periphery of weld spot was lower than that at the center of the
weld interface.
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Figure 7. (a) Schematic diagram of fracture mode; (b-h) fracture morphologies of the tensile failed
sample made at a welding energy of 1000 J; (b) overall view of fracture surface; (c) overall view of
fracture surface by SEM; (d) magnified image of a weld spot depicted in (c); (e,f) magnified image of
box in (d); (g) overall view of Cu interlayer on the fracture surface; (h) magnified image of box in (g).

Brittle fracture characteristics can be observed in the weld spot zone as the high-magnification
SEM image presented in Figure 7e reveals. Furthermore, the features in the fracture region of the
NiTi weld spot exhibited smooth step patterns and river marks with cleavage-like characteristics.
The EDS point analysis showed that this region had a composition of 50.1 at.% Ni and 49.9 at.% Ti,
which is good agreement with the expected composition for the as-received NiTi BM. At the weld
interface, some intergranular cracking can also be observed due to the strain incompatibility between
different grains, which is similar to that observed in NiTi-Cu dissimilar laser welds [15]. In addition,
fine dimples also existed in the ductile fracture zone of the weld spot, as shown in Figure 7f. The EDS
result shows the composition of dimples in weld spot zone was 3.6 at.% Ni, 3.6 at.% Ti and 92.8 at.%
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Cu, indicating that ductile failure occurred mainly in the position of softer Cu foil. This can justify the
increasing load capacity of the joints obtained with the Cu interlayer: when Cu is used as an interlayer
part of the deformation is accommodated by it which provides better mechanical properties than when
no interlayer is used.

An overall view of the Cu interlayer on the fracture surface is presented in Figure 7g, and obvious
tearing characteristics of Cu can be observed. The magnified image of the insert presented in Figure 7h
consisted of both scratched regions and plastically deformed zones. Compared with the NiTi surface,
compact dimples existed in the position of Cu interlayer, suggesting that shear fracture occurred
through void nucleation, growth and coalescence. During the tensile shear process, a higher tensile
load can be transmitted to the 1000 J joint due to a good interface combination, resulting in a higher
ultimate tensile load, which is in accordance with the tensile results presented in Figure 6. Additionally,
in this study, considering the mechanical performance of joints previously discussed, it is believed that
the addition of Cu interlayer into the faying surfaces is critical to enhance the bonding strength due to
the increase of friction coefficient [46,47].

The SEM images of the fracture surfaces also verified that the joint was composed of micro welds
between NiTi and Cu interlayer. It is possible that the fracture originated from the weak regions in the
weld spot border, since this is a suitable location for nucleation and propagation of a crack, and when
the crack tip reaches at the boundaries of weld spot, it can easily propagate through it, resulting in
the fluctuation of tensile loads due to the existence of the multiple spots connection mechanism of
ultrasonic spot-welded NiTi with Cu interlayer, as shown in Figure 6. Meanwhile, the Cu foil between
NiTi began to tear, contributing to the process of tensile test until the fracture failure, with the joint
being able to deform even more.

X-ray diffraction analysis was carried out at room temperature to evaluate the influence of USW
on the phases composition of NiTi weld. The diffraction patterns of both BM and of the fracture surface
in the center of the 1000 ] weld are depicted in Figure 8.

—— NiTi BM
B2(110) —— Fracture surface
Cu (111) '
; 2 St £2§
= & NN oNo
> \ CL__EZ cliBz‘Cu
@
§ B2(110)
E —_—
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Figure 8. XRD patterns of NiTi BM and fracture surface of 1000 ] weld.

The indexed pattern of the NiTi BM only consisted of B2 cubic austenite, without traces of B19’
monoclinic martensitic phase, indicating the NiTi BM would be fully austenitic at room temperature.
Comparing to the NiTi BM, the fracture surface of ultrasonic spot welded NiTi weld exhibited an
additional pure Cu phase due to the addition of the Cu interlayer into the NiTi interface. It is
noteworthy that no intermetallic phases, such as Ti;Ni or NizTi which are usually formed during some
fusion welding processes of NiTi [17-20], were detected in the weld region. Furthermore, the XRD
results are consistent with the EDS line scan in Figure 5 where no intermetallic compound layer
was found. It is believed that restricting the formation of the brittle phases at the weld interface is
beneficial to reduce weld embrittlement, which can further prevent the formation of cold cracking [44].
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In addition, the formation Cu-based intermetallics was not observed in this study either, although in
fusion-based welding of NiTi to Cu they were already reported [13,15].

4. Conclusions

Ultrasonic spot welding of NiTi SMAs with Cu interlayer was performed varying the welding
energy levels. The weld morphology, interface characteristics and failure behavior of the joints were
analyzed in detail. The following main conclusions can be drawn:

1. With the welding energy increasing from 500 ] to 1000 J, more frictional heat was generated at the
weld interface and the plastic deformation of NiTi BM increased, leading to the increasing depth
of indentations on the weld surface.

2. The ultrasonic spot welded NiTi weld interface presented a wave-like pattern with uneven
thickness of Cu interlayer. The occurrence of shear deformation and mutual rubbing of the faying
surfaces contributed to the formation and growth of microwelds at the weld interfaces. NiTi and
Cu interlayer were intertwined together at the welding energy of 1000 J.

3.  EDSline scan and XRD analyses revealed no intermetallic layer formation at the joint interface
for all the samples although slight diffusion occurred.

4. The ultimate tensile shear load increased with increasing welding energy due to better mechanical
interlocking and metallurgical adhesion at the weld interface.

5. The micro-morphologies of the fracture surface consisted of weld spots, scratched regions
and tearing regions of Cu. Both brittle fracture characteristics of NiTi and ductile fracture
characteristics of Cu interlayer were observed in the weld spot zone.
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