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Abstract: Polyoxymethylene (POM) fiber was treated with atmospheric dielectric barrier discharge
(DBD) plasma to enhance the surface activity of the fiber and interfacial interaction with cement.
The physical and chemical properties of samples with different DBD plasma treatment durations
were tested and analyzed. Scanning electron microscopy (SEM) and atomic force microscopy (AFM)
revealed that the surface roughness of the sample increased significantly as a result of the DBD
plasma treatment. Fourier transform infrared spectrophotometer (FTIR) and X-ray photoelectron
spectroscopy (XPS) analysis showed that a large number of –COH and –COOH groups were formed
on the surface of the sample after DBD plasma treatment. The hydrophilicity of the POM fiber
was greatly improved with the increase in the treatment duration. When the treatment duration
was longer than 120 s, the fiber surface contact angle decreased from 90◦ to 43◦. The DBD plasma
treatment resulted in a decrease in the tensile strength of the POM fiber, but the increase in the
amount of –COH and –COOH on the surface of the POM fiber and the increase in the roughness
resulted in an increase in the fiber pull-out bonding strength in cement from 2.15 N to 4.68 N.
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1. Introduction

Polyoxymethylene (POM) is a linear polymer without branches and has a high density and
high crystallinity [1,2]. Further, it has excellent features such as good mechanical properties [3],
wear resistance, dimensional stability [4,5], chemical resistance, and electrical insulation [6].
In particular, it has good tenacity and outstanding fatigue resistance, so it is often used as reinforcing
fibers which can greatly improve the overall performance of the composite materials [7,8]. POM fiber
has excellent creep resistance and stress relaxation resistance. Further, it shows no fatigue phenomenon
under alternating stress and continuous vibration, so the POM fiber can be used as a fiber-reinforced
material for cement mortar, e.g., in constructing bridges, tunnels, dams, and highways [9]. It can
reduce the damage caused by the accumulation of stress in these structures. However, the polyether
group in the POM fiber has a low polarity and the bonding strength with the cement material is not
high. Further, the surface needs to be treated to improve its performance and to improve the interfacial
adsorption strength between the fiber and the cement [10].

There are many methods for surface modification of fibers. Plasma surface modification is a
dry modification method that does not require water. Moreover, it is fast and has a high efficiency
and simple operation. It also causes no pollution and requires less energy than other methods.
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Further, the modifications only occur on the fiber surface up to 50–100 nm depth, and thus does
not change the properties of the fiber matrix [11–13]. During plasma treatment, air molecules
undergo excitation, ionization, or dissociation, resulting in new excited states, metastable states,
free particles, active groups, and various low-temperature plasma active substances such as ions,
electrons, and photons [14,15]. It provides abundant active particles and free radicals for chemical
reactions. Charged particles, i.e., a mixture of excited atoms and photons, collide with molecules on the
substrate surface, causing extensive chemical and physical interactions between the plasma and the
fiber surface, such as surface cleaning, physical etching, chemical modification, and polymerization,
which can impart new surface characteristics to the fiber [16,17]. Therefore, plasma treatment
technology is an effective surface modification technology, and has received more and more attention.

Since POM fiber is an organic material, it differs from cement materials in terms of mechanical,
deformation, and physical properties. Upon incorporation of POM fibers into cement, a new interface
transition zone is formed, i.e. fiber–matrix interface transition zone. This increases the number
of internal defects, expands the stress concentration region, and ultimately affects the mechanical
properties and durability of the cement [18,19]. Cement contains a large amount of Ca2+ and Mg2+

ions, which can undergo chemical interactions with the –OH on the surface of fibers during the
hydration process, so that the interface strength of the fiber–cement matrix is greatly improved [20,21].
POM fibers are linear molecules with no polar side groups, and it is difficult to chemically modify
their side groups to form –OH structures. Therefore, only the surface of the fibers is treated by plasma
technology to form –OH, thus effectively improving the interface strength between the fiber and
cement and improving the mechanical properties.

In this study, to improve the interface strength between POM fibers and cement, the surface
modification of fibers was performed using the low-temperature air dielectric barrier discharge (DBD)
plasma surface-modification technology to study the effect of plasma treatment durations on the
surface properties of fibers. The surface morphology and roughness of fibers were characterized
by SEM and AFM. The changes in surface chemical groups before and after fiber plasma treatment
were analyzed by XPS and FTIR. The hydrophilic POM fiber surface was analyzed by contact angle
measurement, and the mechanical properties of the fiber and its pull-out bonding strength in cement
were tested.

2. Experimental Section

2.1. Materials

POM fibers prepared by melt spinning as continuous monofilament with a diameter of 200 µm
were supplied by Sobute New Materials Co., Ltd., Nanjing, China. Absolute ethyl alcohol was supplied
by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, and standard Portland cement P.O. 42.5
was obtained from Huaxin Cement Co., Ltd., Nantong, China.

2.2. Plasma Treatment and Methods

POM fibers were soaked in absolute ethyl alcohol for 30 min, and then the impurities and residues
on the fiber surface were washed away with deionized water. The fibers were put into a vacuum drying
oven at 90 ◦C for 2 h, and were then treated with plasma. All surface modifications of POM fibers
were carried out using atmospheric-pressure DBD equipment (APP-350, Institute of Microelectronics
of Chinese Academy of Science, Beijing, China). The working mechanism diagram of the DBD plasma
treatment equipment is shown in Figure 1.
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Figure 1. Schematic diagram of DBD plasma treatment equipment.

The DBD plasma was produced between two parallel aluminum electrodes, and the upper
aluminum electrode was covered with a 10-mm-thick quartz glass as a dielectric layer. The length and
width of the electrodes were 200 cm and 35 cm, respectively. The distance between the quartz glass
layer and the ground electrode was 2 mm. The tension rollers were used to keep the fiber straight.
The fibers were kept stationary during the whole treatment. After the treatment, the fibers were quickly
removed by turning the roller and wrapped around the surface of the roller. The plasma treatment
power was 300 W, an air atmosphere was employed, and the treatment duration was changed between
30 s and 180 s.

The changes in the surface morphology of POM fibers as a result of DBD plasma treatment were
analyzed by Hitachi S4800 SEM (Hitachi, Tokyo, Japan). All samples were sprayed with gold and
observed under a working voltage of 3 kV. Besides, the surface modifications were also investigated
using a Bruker Dimension Edge AFM (Bruker, Billerica, MA, America). The 5 µm × 5 µm scans were
recorded in the tapping mode, and the surface average roughness was analyzed.

The surface functional groups of POM fibers were analyzed by FTIR spectra recorded on Nicolet
iS10 (Thermo Scientific, Waltham, MA, America) over the wavenumber range from 400 to 4000 cm−1.
The attenuated total reflection (ATR) spectra was recorded at 0.4 cm−1 resolution and using 32 scanning
times. The chemical composition of the fiber surface was analyzed using Escalab 250Xi XPS (Thermo
Scientific). The X-ray radiation source was Al Kα radiation (1486.6 eV) with an operating power of
150 W, and the spectra were taken at 90◦. The pass energies for the survey scan and C1 s scan were
160 eV and 40 eV, respectively.

The water contact angle was measured by a JC2000 C2 Contact Angle Analyzer (Zhongchen
Digital Technic Apparatus Co., Ltd., Shanghai, China). Deionized water was sprayed as a mist on
the fiber surface by the sprayer. The contact angle was recorded after the droplets stabilized, and the
average value was obtained from 15 measurements.

The tensile strength and pull-out bonding strength of the POM fibers were studied using the
Instron 5696 universal testing machine (Instron, Norwood, MA, America). The collet spacing
was 5 cm and the stretching speed was 100 mm/min. A plastic mold made from polymethyl
methacrylate (PMMA) was used to prepare the specimen for the pull-out test, and the mold dimensions
were 10 cm × 1 cm × 0.5 cm (L × W × H) [22,23]. Subsequently, the cement paste prepared with
water/cement ratio of 0.35 was carefully poured into the mold from the space between ten staple fibers
which were separated by 1 cm distance. Then, vibration was performed to form a uniform cement
matrix around the fibers. After one day of curing, cutting was performed and demolded to obtain a
pull-out test sample of 1 cm × 1 cm × 0.5 cm. Then, the samples were cured in a standard moist room
at the temperature of 20 ◦C and relative humidity of 95% for seven days.
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3. Results and Discussion

3.1. Surface Morphology Analysis

SEM images of POM fiber with different plasma treatment durations are shown in Figure 2. It can
be seen that the surface of the untreated fibers is relatively smooth, but there are longitudinal stripes
and uneven protrusions. Etching of varying degrees appears on the surface of the fiber after plasma
treatment. The longer is the treatment duration, the larger is the surface etching cave [24,25]. When the
fiber was treated with the DBD plasma for 30 s, a small number of cracks and irregular holes appeared
on the surface of the fiber. As the treatment duration increased, the number of cracks and holes
gradually increased. When the treatment duration reached 90 s, cracks and holes were spread over the
surface of the fiber. With the further increase of treatment durations, it was found that the surface of
the fiber was a little sticky. That means the fiber surface has partially melted.
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Figure 2. SEM images: of untreated POM fiber (a1,a2); and fiber subjected to DBD plasma treatment
for: 30 s (b1,b2); 60 s (c1,c2); 90 s (d1,d2); 120 s (e1,e2); and 180 s (f1,f2).

The three-dimensional AFM images of POM fiber before and after DBD plasma treatment are
presented in Figure 3, and the obtained surface average roughness (Ra) and the root mean square
roughness (Rms) are shown in Table 1. The results show that the surface morphology of fibers changed
significantly as a result of the DBD plasma treatment. The surface of the untreated fibers was relatively
smooth, and the values of Rms and Ra were 7.38 and 5.72 nm, respectively. With the treatment
durations increasing, the roughness of all samples increased significantly. When the plasma treatment
duration was 180 s, Rms and Ra of the treated fibers increased to 14.20 nm and 10.40 nm, respectively.
This indicated that the surface roughness of fibers could be effectively controlled by adjusting the DBD
plasma treatment duration.
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Figure 3. AFM images of: untreated POM fiber (a); and fiber subjected to DBD plasma treatment for:
30 s (b); 60 s (c); 90 s (d); 120 s (e); and 180 s (f).

In DBD plasma treatment, the energy is sufficient to destroy the chemical bond energy in the
fiber [26,27]. The etching of the fiber surface intensified as the treatment duration increased, which
means some of the chemical bonds on the surface of the fiber may be broken, resulting in new surface
characteristics. At the same time, the oxygen plasma has a filamentous discharge phenomenon, causing
thermal abrasion, evaporation, degradation, and other processes on the surface of the fiber, and some
structures are oxidized and removed, resulting in remarkably increased surface roughness [28,29].
When the DBD plasma treatment duration continued to increase to more than 120 s, the surface of
the fiber began to fuse a little bit, which affected the surface roughness of the fiber to a certain extent.
In general, with the increase of plasma treatment duration, the surface roughness of treated fiber is
higher than that of untreated fiber.

Table 1. Surface roughness of POM fiber before and after the DBD plasma treatment.

Condition Rms Roughness (nm) Ra Roughness (nm)

Untreated 7.38 5.72

Plasma treatment for

30 s 7.40 5.47
60 s 13.10 9.31
90 s 15.30 10.10

120 s 12.50 9.97
180 s 14.20 10.40

3.2. Chemical Analysis of Surface

The FTIR spectrum of the POM fiber before and after DBD plasma treatment is shown in Figure 4.
The double peaks at 900 cm−1 and 935 cm−1 in the figure are the combined peaks corresponding
to the stretching vibration of –C–O–C– and the rocking vibration of –CH2–, respectively, which are
the characteristic spectra of POM [30]. It can be seen in Figure 4 that, as the DBD plasma treatment
duration increased, the characteristic absorption peak intensity increased significantly. This indicates
that the plasma bombardment destroys the chemical structure (such as –C–O–C– and –CH2–) of the
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fiber surface during plasma treatment. The plasma-treated samples all showed a weak conjugated
carbonyl –C=O absorption peak at a wavelength of about 1650 cm−1, and a typical hydrogen bonding
–OH peak appeared between 3300 and 3500 cm−1, indicating that the DBD plasma treatment results in
the appearance of a certain number of hydrophilic groups such as –C–OH and –COOH on the surface
of the fiber.

Materials 2018, 11, x FOR PEER REVIEW  7 of 14 

 

carbonyl –C=O absorption peak at a wavelength of about 1650 cm−1, and a typical hydrogen bonding 
–OH peak appeared between 3300 and 3500 cm−1, indicating that the DBD plasma treatment results 
in the appearance of a certain number of hydrophilic groups such as –C–OH and –COOH on the 
surface of the fiber. 

 
Figure 4. FTIR spectrum of untreated POM fiber and fiber subjected to DBD plasma treatment for 
different durations. 

XPS survey spectra of the POM fiber before and after DBD plasma treatment are shown in Figure 
5. Two strong electron peaks at 285 eV and 532 eV in the spectrum are C1s and O1s peaks, 
respectively, and the N1s peak at 400 eV is too small to show. Nitrogen was present in a very small 
amount before and after DBD plasma treatment, and the content remained almost the same, 
indicating that the nitrogen in the air did not participate in the reaction during the plasma treatment. 
Table 2 shows the relative chemical compositions and atomic ratios of fibers before and after DBD 
plasma treatment as measured by XPS. The POM fiber is mainly composed of three elements, namely, 
carbon, oxygen, and hydrogen, and the proportions of carbon and oxygen are 78.72% and 20.13%, 
respectively. As the treatment duration increases, the content of oxygen increased gradually, and the 
content of carbon decreased in contrast. When the DBD plasma treatment duration was 120 s, the 
proportion of oxygen atoms increased to 26.38%, and the proportion of carbon elements decreased to 
72.70%. In the DBD plasma treatment, the oxygen in the air is ionized, resulting in a high-energy 
excited state, and it reacts with the activated carbon atoms and active hydrogen atoms generated by 
the bombardment of –CH or –COC– bonds on the surface of the fiber to form new –COH or –COOH 
bonds. 
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XPS survey spectra of the POM fiber before and after DBD plasma treatment are shown in Figure 5.
Two strong electron peaks at 285 eV and 532 eV in the spectrum are C1s and O1s peaks, respectively,
and the N1s peak at 400 eV is too small to show. Nitrogen was present in a very small amount before
and after DBD plasma treatment, and the content remained almost the same, indicating that the
nitrogen in the air did not participate in the reaction during the plasma treatment. Table 2 shows the
relative chemical compositions and atomic ratios of fibers before and after DBD plasma treatment
as measured by XPS. The POM fiber is mainly composed of three elements, namely, carbon, oxygen,
and hydrogen, and the proportions of carbon and oxygen are 78.72% and 20.13%, respectively. As the
treatment duration increases, the content of oxygen increased gradually, and the content of carbon
decreased in contrast. When the DBD plasma treatment duration was 120 s, the proportion of oxygen
atoms increased to 26.38%, and the proportion of carbon elements decreased to 72.70%. In the DBD
plasma treatment, the oxygen in the air is ionized, resulting in a high-energy excited state, and it reacts
with the activated carbon atoms and active hydrogen atoms generated by the bombardment of –CH or
–COC– bonds on the surface of the fiber to form new –COH or –COOH bonds.
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Table 2. Relative chemical composition and atomic ratios determined by XPS for untreated POM fiber
and for fiber after DBD plasma treatment.

Condition
Chemical Composition (%) Atomic Ratio (%)

C1s O1s N1s O/C N/C

Untreated 78.72 20.13 1.15 0.26 0.01
30 s Plasma treatment 77.10 21.85 1.05 0.28 0.01
60 s Plasma treatment 76.39 22.71 0.90 0.30 0.01
120 s Plasma treatment 72.70 26.38 0.93 0.36 0.01

To study the change in the surface functional groups of POM fibers after the DBD plasma
treatment, the C1s peak obtained by the XPS scan was treated by peak separation, and two sub-peaks,
as shown in Figure 6, were obtained. The sub-peak at 284.6 eV is the C1s peak assigned to –CH and the
one at 287.5 eV is the C1s peak corresponding to C–O or C=O [31–33]. The results of peak separation
before and after DBD plasma treatment and the changes in the surface groups of fibers are presented
in Table 3. The data show that the number of –CH bonds on the surface of the fiber is significantly
reduced by plasma treatment, while the number of C–O and C=O bonds is significantly increased.
Combined with the previous test analysis results, it can be inferred that the DBD plasma treatment
results in the formation of polar groups such as carbonyl group, carboxyl group, and hydroxyl group
on the surface of the fiber.
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Table 3. Results of deconvolution analysis of C1s peaks for untreated POM fiber and fiber after DBD
plasma treatment.

Condition
Relative Area Corresponding to Different Chemical Bonds (%)

C–H C–O/C=O

Untreated 78.51 21.49
30 s Treated 75.46 24.54
60 s Treated 74.50 25.50

120 s Treated 70.99 29.01

3.3. Hydrophilic Analysis of Surface

The relationship between the contact angle of deionized water and the plasma treatment duration
is shown in Figure 7. The results show that the contact angle of the untreated POM fibers was 90◦,
and the contact angle was significantly lowered after the DBD plasma treatment. When the plasma
treatment duration was 30 s, the contact angle became 78◦, and when the plasma treatment duration
was increased to 120◦, the contact angle decreased to 43◦, indicating that a large number of hydrophilic
groups appeared on the surface of the material as the plasma treatment duration increased [34,35].
As shown in Figure 6, the XPS spectra indicate that the –CH bond transformed into –COH or –COOH,
so the hydrophilicity of the fiber surface improved greatly. However, as the DBD plasma treatment
duration increased, the contact angle did not decrease further; for example, it was 43◦ at 120 s and
42◦ at 180 s. This is due to the limited oxygen content in the air. As the treatment duration increases,
the –COH or –COOH content does not continue to increase, and the degradation of the POM molecular
chain increases.
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3.4. Tensile Properties of Fiber

The effect of treatment duration on the tensile strength of POM fiber is shown in Figure 8.
The mechanical properties of the fibers deteriorated with increasing treatment duration. When the
treatment duration is less than 180 s, the tensile strength of the fiber decreased from 24.54 N to 21.83 N,
and the strength loss rate reached 11.04%. This is because the DBD plasma treatment causes a large
amount of etching and results in the formation of micropores on the surface of the fiber; as a result,
the fiber strength decreases, thus, as the plasma treatment duration increases, the mechanical properties
of the fiber deteriorate. However, since the POM fiber selected for this experiment has a large diameter
of 200 µm, the surface nanoscale etching and micropores do not have a substantial influence on the
mechanical properties of the fiber. Thus, after plasma treatment, the mechanical properties of the fiber
remain suitable for application in cement.
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3.5. Pull-Out Bonding Strength Analysis

The pull-out bonding strength of POM fibers for different durations is shown in Figure 9.
The pull-out bonding strength of the fiber in cement mainly depends on the interaction between
the fiber and the cement interface layer, and its pull-out bonding strength is much smaller than the
tensile strength of the fiber itself. The results show that, with the increase in the DBD plasma treatment
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duration, the pull-out bonding strength of the fiber in the cement increases significantly. When the
plasma treatment duration was 180 s, the pull-out bonding strength of the fiber increased to 4.68 N
from 2.15 N. There are two main reasons for the increase in the pull-out bonding strength. On the
one hand, as the plasma treatment duration is increased, the surface roughness of the fiber increases;
therefore, the friction coefficient between the cement and the fiber increases, thus the pull-out bonding
strength of the fiber in cement is increased. On the other hand, as the treatment duration increases,
the amount of –OH and –COOH groups on the surface of fiber increase. In the hydration process
of cement, a large amount of ions, such as Ca2+ and Mg2+, can interact with the –OH and –COOH
of fiber surface, which is beneficial to improve the interface strength between the fiber and cement.
The SEM photos of interfacial transition zone on pull-out fibers are shown in Figure 10a,b. Obviously,
the residual cement on the surface of untreated fiber is very few. On the contrary, the treated fiber
surface has more coagulation residues which are evenly distributed. EDS detection was carried out
for the circle area on plasma treated fiber surface, and the results showed that there were a lot of
calcium and magnesium in this area, as shown in Figure 10c,d. These prove that the –OH and –COOH
groups on the surface of the plasma treated fibers interact with Ca2+ and Mg2+ in the cement, which
is enhancing the interfacial strength between the fibers and cement. In addition, after the plasma
treatment, the POM fiber modulus increased, and it can withstand larger load under a small strain.
After the cement material is subjected to the same stress, the incorporation of plasma treated fiber can
prevent crack generation and propagation more effectively than untreated fiber.
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4. Conclusions

In this study, the effects of the DBD plasma treatment duration on the properties of POM fiber,
such as surface morphology, chemical analysis, hydrophilicity, tensile strength, pull-out bonding
strength of the fibers in cement, and EDS of interfacial transition zone were studied. Fibers with
different surface roughness can be obtained by controlling the DBD plasma treatment duration.
The DBD plasma treatments result in a decrease in the amount of –CH groups on the surface of the
fiber, an increase in the amount of the –COH and –COOH groups, and an increase in the hydrophilicity
of the surface of the fiber. The hydrophilicity of the fiber greatly increased and the tensile strength of
the fibers decreased as the DBD plasma treatment duration increased. However, due to the increase
in the amount of –OH and –COOH on the surface of the fiber and the increase in the roughness,
the pull-out bonding strength of the fiber in the cement significantly increased, which will prevent the
generation and propagation of the cement cracks more effectively.
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