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Abstract: The mould foot roller is a key component of a continuous casting machine. In order to
investigate the possibility of using laser cladding to repair mould foot roller, Fe-based powders
and 42CrMo steel are used in this work. The laser cladding process parameters were optimized by
orthogonal experiments. The chemical compositions, microstructure, properties of the cladding layer
under the optimum process parameters, and substrate were systematically investigated by using
optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),
X-ray diffraction (XRD), microhardness test, wear test, and salt spray corrosion test. The results
indicate that the primary factor affecting the width and depth of the cladding layer is laser power.
The scanning speed also has a significant effect on the height of the cladding layer. The optimum
process parameters for repairing the mould foot roller are 2 kW laser power, 4 mm/s scanning speed,
and 15 g/min feeding rate of powder. Along the depth direction of the cladding layer,
the microstructure of the coating gradually transforms from plane crystal, cell grains, or dendrites
to equiaxed grains. The matrix is mainly martensite with retained austenite; the eutectic phase is
composed of netlike M2B, particulate M23(C,B)6, and M7(C,B)3 phase. The hardness of the cladding
layer is significantly improved, about three times that of the substrate. The weight loss of the
cladding layer is just half that of the substrate. Its wear resistance and corrosion resistance have been
significantly improved. The work period of the laser cladding-repaired foot roller is much longer
than for the surfacing welding-repaired one. In summary, laser cladding technology can increase the
life of mould foot rollers.

Keywords: laser cladding; Fe-based powder; process parameters; microstructure; properties; mould
foot roller

1. Introduction

Laser cladding is an advanced surface-strengthening and repair technology for the production of
good metallurgical bonding coatings [1–4]. It serves as an effective and appropriate method to improve
the substrate properties by forming dense coatings. The process is to melt and solidify the pre-alloyed
powder onto the substrate, and the connection between the coating and the substrate is a metallurgical
bond with small dilution [5]. Compared with conventional techniques such as thermal spraying or
submerged arc welding (SAW), the coatings obtained by laser cladding exhibit higher surface quality
and have a low dilution rate, high bonding strength with substrate, small heat-affected zone, and less
material loss. Moreover, it is also a cost-saving and efficient technique, and has extensive applications in
many industrial fields [6–8]. Therefore, laser cladding technology has attracted considerable attention.

Materials 2018, 11, 2061; doi:10.3390/ma11102061 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-6866-4773
http://www.mdpi.com/1996-1944/11/10/2061?type=check_update&version=1
http://dx.doi.org/10.3390/ma11102061
http://www.mdpi.com/journal/materials


Materials 2018, 11, 2061 2 of 15

Fe-, Ni-, and Co-based alloy powders are explored and applied more extensively and commercially
in all coating materials [9–12]. Compared with other alloys, Fe-based alloy coatings have more
advantages [13–18]: (1) The chemical composition and expansion coefficient are closer to the
substrate (steel). Therefore, the coating can combine with the substrate well. It does not produce
cracks or holes. (2) Not only is the microhardness and toughness of the Fe-based coating as good
as that of the Ni-based and Co-based alloys, but the production cost of Fe-based alloy powder is
much lower, which is the biggest advantage in commercial applications and large area repair. (3) The
Fe-based coating, containing a large amount of corrosion-resistant elements (Cr, etc.), has superior
wear resistance and corrosion resistance. (4) The existence of B and Si elements can decrease the
melting temperature of the alloy and increase the fluidity of the powder. Moreover, their oxidation
resistance and slagging function can protect the molten pool. As a result, it is worthwhile investigating
the properties of Fe-based alloy powder.

The mould foot roller is a key component of the continuous casting machine, which plays an
important role in the steel industry [19]. The performance of mould foot rollers not only directly affects
the service life, but also the quality and efficiency of steel products. The working environment of
mould foot rollers is very harsh, including high working temperature, wear and tear. The corrosion
resistance of mould foot rollers is also a big concern because the cooling water is from seawater
desalination. The 42CrMo steel cannot protect against wear and corrosion [20–23]. Therefore, it is
probably a good idea to clad a layer of Fe-based alloy powder on the 42CrMo substrate. During the
process of laser cladding, the cladding parameters play an important role in the size of the cladding
layer [24]. The process parameters, such as laser power, powder feeding rate, laser scanning speed,
laser beam spot size and shield gas flow, have significant influences on the final manufactured product.
The effect of process parameters on the properties of cladding has been studied extensively [25–27].
However, each work requires an appropriate choice of process to satisfy its particular needs, and a
systematic study is still lacking.

In this work, nine different groups of processing parameters were designed through orthogonal
experimental tests. The microstructure, hardness, wear resistance, and corrosion resistance of the
coating were tested. We hope to provide experimental guidance on the use of laser cladding Fe-based
alloy to repair mould foot rollers.

2. Experimental Materials and Methods

2.1. Material Preparation

Plates of 42CrMo steel, with dimensions of 100 mm × 50 mm × 10 mm, are used as the substrate.
The cladding material is an Fe-based alloy powder whose particle size was 50~105 µm, as shown
in Figure 1. The compositions of the 42CrMo steel substrate and alloy powder are given in Table 1.
Before experimentation, the powder was dried in a tube furnace (OTF-1200X, HF-Kejing, Hefei, China)
and mixed in a ball shaker for 12 h to achieve uniform distribution. We sanded the surface of the
substrate with sandpaper and cleaned it with acetone.

A fiber laser is used for laser cladding in this work, with a wavelength of 1070 nm and 6 kW power.
The fiber laser cladding system mainly includes an IPG YLS-6000 fiber laser (IPG Photonics Corporation,
Oxford, MA, USA, 5 mm × 5 mm square spot), and a DPSF-2 powder feeding system with a coaxial and
a cooling system. The energy distribution is uniform. When a laser cladding process was completed,
the specimens were air-cooled to room temperature. High-purity argon gas (≥99.9%) was used as a
shielding gas to protect the molten pool; the flow rate was about 15 L/min. Based on previous research,
the laser cladding parameters in this work are given in Table 2. The schematic sketch of the laser
cladding process is shown in Figure 2b.
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Figure 1. The morphology of Fe-based alloy powder.

Table 1. Compositions of the alloy powder the substrate (wt %).

Element C Cr Ni Mo Mn Si B Co Fe

Alloy powder 0.2 16.0 2.5 0.5 - 0.75 1.0 0.5 Bal.
42CrMo steel 0.38 0.90 - 0.19 0.60 0.17 - - Bal.

Table 2. The different parameters of orthogonal experiment groups.

Group Number No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

Laser power (kW) 1 1 1 2 2 2 3 3 3
Scanning speed (mm/s) 2 4 6 2 4 6 2 4 6

Feeding rate (g/min) 10 15 20 15 20 10 20 10 15
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2.2. Microstructure Observation

All analytical specimens were sectioned by wire-electrode cutting, with a dimension of 10 mm ×
10 mm × 15 mm. All specimens, after sanding and polishing, were etched in a solution of aqua regia,
HCl and HNO3 in a volume ratio of 3:1. The height, width and depth of the layer were measured using
OLYMPUS BX51 optical metallographic microscope. The microstructures of the cladding layer and
substrate were examined by means of optical microscope (OM, OLYMPUS BX51, OLYMPUS, Japan) and
scanning electron microscope (SEM, JSM-7800F Prime, JEOL, Osaka, Japan) with Energy-Dispersive
Spectrometer (EDS, JSM-7800F Prime, JEOL, Osaka, Japan) attached. The phase components were
determined by X-ray diffraction (XRD-7000S, Shimadzu, Kanagawa, Japan). Cu-Kα radiation at 40 kV
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and 200 mA was used as the X-ray source. The specimens were scanned in an angular 2 θ ranging
from 20◦ to 80◦. The step size was 0.2◦ and the collection time was 10 s [28].

2.3. Hardness and Wear Resistance Tests

The microhardness of the cladding layer was measured using a HV-1000 digital microhardness
tester (SIOMM, Shanghai, China). In the middle of the cladding layer, 10 points, with an average
interval of 0.1 mm, were selected for measurement. The average value of microhardness was calculated
after getting rid of the maximum and the minimum values. The microhardness value of the sample
from best laser process parameters was measured every 0.2 mm along the depth direction from coating
to substrate. The test load was 500 g, with a 10 s loading time. Rockwell hardness was tested using
the HR-150A-type Rockwell hardness tester (Shanghai optical instrument factory, Shanghai, China)
with a load of 150 kg. The Rockwell hardness was the average value of 10 random test values from the
multi-pass sample surface.

The wear resistance was tested using M-200 wear test machine (Air Times, Beijing, China).
The specimen size is 10 mm × 10 mm × 12 mm. The grinding ring material is high-carbon steel
GCr15 steel with quenching hardness and specifications of 60~62 HRC and ϕ 40 mm × 10 mm,
respectively [29]. The test was performed at 20 ◦C for 30 min with a test load of 30 kgf at 200 rpm.
The wear loss of the sample was weighed using TG328B type balance (METTLER TOLEDO, Zurich,
Switzerland), whose sense and range are 0.1 mg and 0~200 g, respectively. The morphology of the
worn surfaces was observed using Quanta FEG650 scanning electron microscope (FEI, Hillsboro,
OR, USA).

2.4. Salt Spray Corrosion Test

The corrosion property of the cladding layer and substrate was tested using an FQY015 salt spray
corrosion tester (Shanghai Laboratory Instrument Works, Shanghai, China). The concentration of
sodium chloride solution was 5 wt %, and the spray mode was continuous. The test temperature
was 35 ◦C. The weight of the sample was measured every 24 h using a TG328B analysis balance.
The total test time was 168 h.

3. Results and Discussion

3.1. Optimization of Process Parameters

3.1.1. The Macro Appearance of Laser Cladding Layer

Figure 3 represents the macro morphology of cladding layer obtained in different process. From
Figure 3, the cladding layers are well formed, while the geometry size of No. 2 and No. 3 cladding
layer is very small. This is mainly due to low laser power and a fast scanning speed in both groups,
which means that the laser energy density is not enough to completely melt the powder. As a result,
it cannot form a good metallurgical bond with the substrate. Moreover, there are obvious differences
in height and width among all the cladding layers because of the different processing parameters.

The morphology of the cross section of the single track cladding layer is shown in Figure 4. It can
be seen from Figure 4 that the cladding layer mainly consists of a cladding zone (CZ), a fusion line (FL),
the heat-affected zone (HAZ), and the substrate (S). The existence of the fusion line means that the
cladding layer combined with the substrate well. We did not find cracks or porosity in the cross section,
which means that the cladding layers are well formed. The test data for the height, width, and depth
of the cladding layer are shown in Table 3.
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Table 3. Size of all nine groups of samples.

Number No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

Height (µm) 2506.8 2335.0 1961.1 2914.2 2140.4 944.4 3311.9 1228.8 1296.5
Depth (µm) 22.8 15.9 10.8 115 50.6 48 262.9 183.8 100.9
Width (µm) 4175.6 3618.8 2226.9 6189.6 5331.2 4805.4 7323.5 6137.6 6009.6

3.1.2. The Analysis of Orthogonal Experiment Results

Through the analysis of orthogonal experiment data and the comprehensive comparison,
complex multi-factor processing problem can be converted into a single-factor problem.
The relationship and comparison between the factors and the test data can be found. The results of the
range analysis data are given in Table 4. K value represents the average of the respective level values
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for each factor. R is the range analysis data of each factor, which is the maximum value minus the
minimum value from K1 to K3 in the same column. Its size reflects the degree of influence of a factor
on a certain index. The greater R value makes the effect of the process parameters better.

Table 4. Range analysis data sheet.

Laser Power (kW) Scanning Speed (mm/s) Powder Feeding Rate (g/min)

Height
(µm)

Depth
(µm)

Width
(µm)

Height
(µm)

Depth
(µm)

Width
(µm)

Height
(µm)

Depth
(µm)

Width
(µm)

K1 2003.1 16.5 3340.4 2911.0 133.6 5896.2 1560.0 84.9 5039.5
K2 1999.7 71.2 5442.1 1901.4 83.4 5029.2 2181.9 77.3 5272.7
K3 1945.7 182.5 6490.2 1136.1 53.2 4347.3 2206.6 108.1 4960.5
R 57.4 166.0 3149.8 1774.9 80.4 1548.9 646.6 30.8 312.2

The K values in Table 4 are shown in a line chart in Figure 5. Combined with the results of the
range analysis data, it can be seen that the scanning speed has the greatest impact on the height of
the CZ. As the scanning speed decreases, more powder is melted into the pool, which contributes to
increasing the height. The biggest factor affecting the depth is the laser power. The other two variables
have little influence on the depth. The main reason is that, as the power increases, the energy input
gradually increases, which makes more S melt into the pool, leading to an increase of depth after rapid
solidification. The R value of the laser power to width is the biggest, which also demonstrates that laser
power has a major effect on the width. The second is the scanning speed and the feeding rate of powder.
The increase in laser power causes the longer time of the molten pool, which results in an increase of
the width. According to the actual repair needs of the foot roller, we need to obtain a CZ with the height
of about 2 mm. Hence, the target line was set at 2000 µm in the ordinate scale in Figure 4a. It can be
seen that the 2 mm CZ could be obtained when the laser power, scanning speed, and powder feeding
rate were 1–2 kW, 4 mm/s, and 15 g/min, respectively. Based on the height, it is desirable that the
width of the CZ was larger while the depth of the CZ becomes smaller. Therefore, the minimum depth
and maximum width were taken as target values. The results are shown in Figure 5b,c. Considering
the best value of the three factors, the optimum process parameters for repairing the foot roller are
2 kW laser power, 4 mm/s scanning speed, and 4 mm/s powder feeding rate.
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3.2. Microstructure and Hardness of the Cladding Layer

3.2.1. Microstructure and Phase Analysis

Figure 6 represents the microstructure of the bottom and middle part of the CZ. From Figure 6,
the microstructure, close to the fusion line, is a planar structure. As the distance from the fusion
line increases, the microstructure of the CZ changes to cell grains, as shown in Figure 6a. When the
distance from the fusion line further increases, the microstructure gradually changes to dendrites and
equiaxed grains.

It is known that the ratio of G/R determines the microstructure of the CZ, where G is the
temperature gradient, and R is the solidification rate [30]. At the bottom of the molten pool, the G
value is high while the R value is very low, which means that the G/R value is relatively large near
the fusion line, and the plane interface is unstable due to small constitutional super-cooling. So a
dendritic structure is formed that is nearly perpendicular to the fusion line, as shown in Figure 6a.
However, with the distance from the fusion line increasing, the G and R values gradually decrease
and increase, respectively, so the value of G/R decreases gradually from the bottom to the surface of
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the laser molten pool. Therefore, at the middle of the molten pool, the value of G/R is low and the
constitutional supercooling becomes larger, which leads to the formation of an equiaxed structure.
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According to the results of the EDS mapping (as shown in Figure 8) and XRD, the eutectic M2B
has a reticular structure and gathers in the grain boundary. The M23(C,B)6 is a particulate or short
rod-like phase, which was dispersed uniformly in the matrix. M7(C,B)3 and M23(C,B)6 are formed by
the eutectoid reaction of γ-Fe with different C content. Since the solubility of B in γ-Fe and α-Fe is
very low, after adding excess B element, the segregation at grain boundary makes a part of B element
form M2(B,C), and the rest of B element is dissolved into M7C3, forming M7(C,B)3 [32]. Cr has a higher
tendency to form carbides than Fe, so it is easier to form M7C3 [33]. From Figure 8, the microhardness
of the cladding layer is more than 500 HV; Lin also finds that the hardness of the Fe-based alloy
coating ranges from 500 HV0.2 to 700 HV0.2 [34], which indicates that the matrix may be martensite.
The elevated Cr and Mo content can make Ms and Mf be reduced, which forms retained austenite
at room temperature [35]. Therefore, the retained austenite also exists in this CZ, although the XRD
results are not shown. It was noted that carbides and borides play an important role in strengthening
the matrix and increasing the wear resistance of the CZ.
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3.2.2. Hardness

Figure 9 shows the microhardness and Rockwell hardness of CZ and S. The microhardness
distribution of the CZ and S of a single track specimen through the depth are shown in Figure 10.
From Figure 9, the microhardness of the CZ is about three times that of the S. The Rockwell hardness
of the CZ also is about three times that of the S. From Figure 10, the curve indicates a ladder shape,
in which the average hardness of the FZ is about 700 HV. The hardness of HAZ reaches about 550 HV,
while the microhardness of the unaffected S is 220 HV. The microhardness of the CZ is much higher
than that of the S. The microhardness of HAZ is higher than that of BM, because part of the hard
phase diffuses to the HAZ. Meanwhile, rapid cooling at high temperature plays the role of quenching,
which also improves the microhardness. Although the microhardness of the Fe-based alloy coating is
lower than that (>1000 HV0.2) [34] of 5 wt % Cr3C2 reinforced Fe-based composite coating, but the cost
of the Fe-based alloy coating is cheaper.
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3.3. Wear Resistance and Corrosion Resistance

The wear loss of CZ and S is shown in Figure 11. As can be seen, the wear loss of the CZ is only
half that of S under the same wear conditions, which means that the wear resistance of the CZ is
obviously better than that of S. Figure 12 represents the wear surface SEM images of the CZ and S.
From Figure 12a, there are some fine particles, debris, and small scratches on the surface of the CZ.
In comparison, a large amount of particles and debris, as well as large spalling blocks, can be found on
the surface of S, as shown in Figure 12b.
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The microhardness and Rockwell hardness of the cladding layer are much higher than those of 
the substrate. The main reason is that the characteristics (rapid heating and cooling) of laser cladding 
can refine the grain size, which plays the role of fine grain strengthening. Secondly, a large number 
of hard phases with high hardness (M2B (1300 HV), M7(C,B)3 (1300~1800 HV), and M23C6 (1450 HV)) 

Figure 12. The SEM images of wear surface: (a) CZ; (b) S.

Figure 13 shows the surface macroscopic morphology of the CZ and S after a salt spray
corrosion test. The weight gain comparison of the two specimens is displayed in Figure 14. It can be
seen that the corrosion resistance of CZ is better than that of S. During the experimental process, the CZ
has little oxidation area and weight gain, which is also in stable condition after 96 h. The weight of
the substrate increases continuously, and the erosion area becomes larger until the entire surface is
seriously oxidized and corroded. The colour of the corrosion layer gradually changed from brown
to black, which means that the corrosion degree is getting deeper.
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3.4. Discussion

The microhardness and Rockwell hardness of the cladding layer are much higher than those of
the substrate. The main reason is that the characteristics (rapid heating and cooling) of laser cladding
can refine the grain size, which plays the role of fine grain strengthening. Secondly, a large number of
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hard phases with high hardness (M2B (1300 HV), M7(C,B)3 (1300~1800 HV), and M23C6 (1450 HV))
precipitates from the matrix during the solidification process [36,37], which produces a second phase
strengthening effect. Moreover, the matrix phase of the cladding zone is martensite (480~560 HV) [29],
which also improves the hardness of the cladding layer.

The wear resistance of the cladding layer is obviously better than that of the substrate.
The microstructure of the cladding layer contains the martensite matrix and hard phase. A martensite
matrix with high hardness can provide good support to the carbides and borides along the
grain boundary. Hence, it is difficult for the hard phase to fall off during the wearing process.
Conversely, these hard phases with high hardness can also provide good protection to the matrix
phase [38], forming a wear-resistant framework during the wearing process, which in turn reduces
the wear loss of the matrix. Hence, the cladding layer has excellent wear resistance. The hard phase
gradually protrudes and gets worn out after shedding the matrix phase. A small amount of debris can
be formed during repeated wearing, as shown in Figure 12a. The matrix phase, martensite, also has
high hardness. It can protect the hard phases from being pushed over and pressed into the matrix
when they emerge in the wear process. Therefore, the scratches are small and shallow.

Different from the cladding layer, there are lots of particles, debris, and large spalling blocks on
the surface of the substrate, as shown in Figure 12b. The matrix of the substrate has low hardness.
The matrix is susceptible to wear at the beginning; after the hard phase explodes, it get peeled off
into particles and debris during the wearing process. The falling hard phase can easily adhere to the
grinding ring in the form of small pieces due to the adhesion effect, which cut into the matrix.

In corrosion tests, due to the humid environment, Fe is oxidized to form Fe2O3 and adheres to the
surface of the sample in two specimens. The presence of NaCl also accelerates the oxidation process.
Since the matrix of the cladding layer is fine martensite and the solid solution contains antioxidant
elements including Cr (16 wt %), the cladding layer is similar to martensitic stainless steel. Therefore,
its corrosion resistance is significantly better than the substrate. The good corrosion resistance of the
cladding layer is beneficial to provide protection to the substrate, and can also improve its service life
in industrial applications.

3.5. Comparison under Service Condition

In order to test and verify the effect of laser cladding, two kinds of foot roller were used. One was
repaired by resurfacing welding; the other was repaired by laser cladding of the optimized process
parameters and Fe-based powder. After three working periods, the surface morphologies of the
cladded layer and the substrate were as shown in Figure 15. It is obvious that the condition after
laser cladding looks much better than after resurfacing welding. Lots of cracks, wear, corrosion,
and deformation can be seen in Figure 15b, which means that the foot roller could not be used
any more. On the contrary, only a few defects appeared in Figure 15a.
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laser cladding; (b) repaired by resurfacing welding.
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4. Conclusions

In this paper, laser cladding technology was used to repair a mould foot roller. The article is in
two parts, including the optimization of process parameters and research into the microstructure and
properties of the cladding layer under the optimum process parameters. The main research results
were as follows:

(1) The laser power has the primary effect on the width and depth of the cladding layer. The scanning
speed has a significant effect on the height. The optimum process parameters for repairing
the mould foot roller are 2 kW laser power, 4 mm/s scanning speed, and 15 g/min powder
feeding rate.

(2) Along the depth directions, the crystal styles of the cladding zone gradually transformed
from planar, dendritic, to equiaxed grain. The microstructure of the cladding layer consisted of
matrix phase (martensite) and eutectic phase (netlike M2B, particulate M23(C,B)6, and M7(C,B)3).

(3) The microhardness and Rockwell hardness of the cladding layer are about three times that of
the substrate. The weight loss of the cladding layer is just half that of the substrate.

(4) The wear resistance and corrosion resistance of the cladding layer are better than those of
the substrate. The excellent wear resistance is mainly due to the existence of martensite and
eutectic phase with high hardness.
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