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Abstract: A simple, low-cost method was applied to prepare hybrid photocatalysts of copper
(I) oxide/titania. Five different TiO2 powders were used to perform the study of the effect of
titania matrix on the photocatalytic and antimicrobial properties of prepared nanocomposites.
The photocatalytic efficiency of such a dual heterojunction system was tested in three reaction
systems: ultraviolet-visible (UV-Vis)-induced methanol dehydrogenation and oxidation of acetic
acid, and 2-propanol oxidation under visible light irradiation. In all the reaction systems considered,
the crucial enhancement of photocatalytic activity in relation to corresponding bare titania was
observed. The reaction mechanism for a specific reaction and the influence of titania matrix
were discussed. Furthermore, antimicrobial (bactericidal and fungicidal) properties of Cu2O/TiO2

materials were analyzed. The antimicrobial activity was found under UV, visible and solar irradiation,
and even for dark conditions. The origin of antimicrobial properties with emphasis on the role of
titania matrix was also discussed.

Keywords: photocatalysis; nanocomposites; heterojunction; Z-scheme; Cu2O; TiO2;
antimicrobial properties

1. Introduction

Titanium dioxide (TiO2, titania) is widely recognized as an efficient, stable and green
photocatalytic material (long-term stability, chemical inertness, corrosion resistance and non-toxicity).
Therefore, its application potential in photocatalysis is still growing and presently focused on areas
such as environmental remediation (water treatment and air purification), renewable energy processes
(i.e., water splitting for hydrogen production, conversion of CO2 to hydrocarbons), and self-cleaning
surfaces [1–3]. However, one can distinguish two main problems in the wider application of
TiO2. Firstly, the application of titania is still limited to the regions with a high intensity of solar
radiation due to its wide bandgap (ca. 3.0 to 3.2 eV). Strategies such as titania doping [4], surface
modification [5], semiconductor coupling [6], and dye sensitization [7] can be applied to incorporate
visible light absorption to TiO2. Another important limitation decreasing photocatalytic activity is the
recombination of the photogenerated electron-hole pairs caused by impurities, defects and other factors,
which introduce bulk or surface imperfections into the titania crystal. The solution is the incorporation
of species capable of promoting charge separation (e.g., TiO2 modification with metal ions, noble metals
and heterojunction coupling with other semiconductors). Taking into consideration both described
limitations, the methods to improve photocatalytic activity of TiO2 are similar. Therefore, a proper
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method selection to rectify both limitations is important to prepare a photocatalytic material with
universal properties, active both in ultraviolet (UV) and visible light [8,9].

Copper (Cu) as a candidate for titania modification is a very promising material [10,11]. The first
reason is the advantageous price and well-known antimicrobial properties. In comparison to other
noble metals (gold, platinum and silver), recognized as very efficient co-catalysts of titania, copper,
as the consequence of its abundance in the Earth’s crust, is an inexpensive material, 100 times and
6000 times cheaper than silver and gold, respectively. Copper can exist in the following oxidation
states, i.e., Cu0, CuI and CuII, and therefore the active copper species in TiO2 photocatalytic system
can be recognized as copper oxides (Cu2O, CuO) and metallic copper. Copper oxidation states can
also change as the consequence of sample drying [12–14] and reaction conditions [11,15]. For example,
despite zero-valent copper being easily formed on the titania surface either by photodeposition [12–14]
or radiolytic reduction [16], the contact with air results in fast oxidation of the copper, and the resultant
photocatalysts possess different forms of co-existing copper species (mainly metallic core and oxide
shell). It should be pointed that although copper is easily oxidized, stable zero-valent copper has
been also reported when stabilized by titania aerogel [17]. Considering the above issues (the variety
of copper forms and their relative instability), there is a difficulty in understanding their role in
different reaction systems. Among copper oxides in relation to heterojunction with titania, Cu2O
is one of the few p-type semiconductors which are inexpensive, non-toxic and widely available.
The Cu2O/TiO2 p-n heterojunction system has promising application potential both in the oxidation
of organic pollutants including very good antipathogenic properties [15,18–32] and in photocatalytic
hydrogen production [11,29,33–39].

For example, Bessekhouad et al. proposed that under visible light irradiation, electrons from
Cu2O were injected into the conduction band (CB) of TiO2, and at the titania surface could react with
dissolved oxygen molecules inducing the formation of oxygen peroxide radicals (O2

·−) [21]. In the
case of a UV system, an increase in the content of Cu2O resulted in enhanced efficiency, but resultant
activities at high content of Cu2O were only slightly higher than that of pure TiO2 [21]. Similarly,
Huang et al. found the improvement of photocatalytic activity for a Cu2O/TiO2 system induced
by UV and visible light, i.e., 6 and 27 times higher photocatalytic activity than that for pure P25,
respectively [30,31]. Moreover, it was found that an increase in the content of Cu2O resulted in higher
photocatalytic activity (the highest activity for 70%-Cu2O content). A Cu2O/TiO2 p-n heterojunction
system was also successfully applied for photocatalytic hydrogen generation. Zhang et al. prepared
Cu2O/TiO2 composites through the deposition of copper on titania nanotube arrays [29]. Since the CB
of Cu2O is more negative than that of TiO2, the excited electrons are quickly transferred from Cu2O
nanoparticles to titania, leaving the holes on the valence band (VB) of Cu2O and leading to an effective
reduction of protons to H2.

Moreover, copper, especially copper (I) oxide, has been well known as a antimicrobial agent since
ancient times. Due to its advantages, e.g., inexpensiveness, low toxicity and abundant sources, it has
been applied to improve the photo-induced antimicrobial activity of titania. The proposed mechanisms
include: (i) the structure of surface proteins are denaturated [40]; and (ii) the adsorbed copper ions
induce oxidative stress in the bactericidal process [41], and the accumulation of copper ions inside
bacteria [42]. It was found that the optimal balance of Cu2O and CuO content in CuxO/TiO2 composite
photocatalyst was important to achieve good antibacterial performance under visible light irradiation
and dark conditions and, furthermore, Cu2O/TiO2 was reported to be more active than CuO/TiO2

and CuNPs/TiO2 [18].
To the authors’ best knowledge there is still no comprehensive research paper considering the

effect of a titania matrix in Cu2O-titania heterojunction system for photocatalytic and antimicrobial
properties. The clarification of this issue is important in order to analyze application perspectives
of such photocatalysts. In this study, to evaluate the role of titania matrix, five types of titania were
considered. Heterojunctions between Cu2O and different TiO2 were prepared as physical mixtures
of powders. Enhanced photocatalytic properties were discussed based on three reaction systems:
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methanol dehydrogenation and oxidation of acetic acid under UV/vis irradiation, and 2-propanol
oxidation under vis irradiation. The antimicrobial properties of prepared composite photocatalysts
were tested by using E. coli and C. albicans.

2. Materials and Methods

2.1. Preparation of Cu2O/TiO2 Photocatalysts

TiO2 samples, selected for the preparation procedure, were supplied by several sources: P25
(AEROXIDE® TiO2 P25, Nippon Aerosil, Yokkaichi, Japan), ST-01 (ST-01, Ishihara Sangyo, Yokkaichi,
Japan) ST-41 (ST-41, Ishihara Sangyo, Yokkaichi, Japan), TIO-6 (TIO-6, Catalysis Society of Japan,
Tokyo, Japan), RUT (rutile nanopowder, Sigma-Aldrich, Saint Louis, MO, USA). Cu2O was supplied by
Wako Pure Chemicals, Tokyo, Japan. All materials were used as received, without further processing.
Cu2O/TiO2 composites were prepared by physical mixing of Cu2O and TiO2 powders in an agate
mortar. Titania samples were mixed with different contents of Cu2O resulting in preparation of the
composites containing 1, 5, 10 and 50 wt % of Cu2O. The time of grinding (5 min) was the same for all
samples to ensure appropriate homogeneity of prepared composite powders.

2.2. Characterization

The ultraviolet-visible (UV-Vis) diffuse reflectance spectra (DRS, JASCO, Tokyo, Japan) were
recorded on JASCO V-670 equipped with PIN-757 integrating sphere using BaSO4 as a reference.
Gas-adsorption measurements of prepared titania samples were performed on a Yuasa Ionics Autosorb
6AG surface area and pore size analyzer, Osaka, Japan. Specific surface area (SSA) was calculated
from nitrogen adsorption at 77 K using the Brunauer–Emmett–Teller equation. X-ray diffraction (XRD)
patterns were collected using an X-ray diffractometer (Rigaku intelligent XRD SmartLab with a Cu
target, Tokyo, Japan).

2.3. Photocatalytic Activity Tests

The photocatalytic activity of prepared photocatalysts was tested in three reaction systems:
(1) decomposition of acetic acid under UV/vis irradiation, (2) dehydrogenation of methanol under
UV/vis irradiation, and (3) oxidation of 2-propanol under vis irradiation (λ > 420 nm: Xe lamp, water IR
filter, cold mirror and cut-off filter Y45). For activity testing, 50 mg of photocatalyst was suspended in 5
mL of aqueous solution of (1) methanol (50 vol %), (2) acetic acid (5 vol %), and (3) 2-propanol (5 vol %).
The methanol dehydrogenation system was also tested in the presence of platinum (samples: Pt/TiO2,
Pt/Cu2O/TiO2): hydrogen hexachloroplatinate(IV) (H2PtCl6·6H2O) was added for adjustment to 2 wt
% loading on photocatalyst powders. The suspension for reaction (2) was bubbled with argon before
irradiation. The 35-mL testing tubes were sealed with rubber septa, continuously stirred and irradiated
in a thermostated water bath. Amounts of liberated (1) carbon dioxide in gas phase, (2) hydrogen in
gas phase, and (3) acetone in liquid phase (after powder separation) were determined by GC-TCD (1-2)
(Shimadzu GC-8A equipped with a thermal conductivity detector, Shimadzu Corp., Kyoto, Japan) and
GC-FID (3) (Shimadzu GC-14B equipped with a flame ionization detector, Shimadzu Corp., Kyoto,
Japan).

2.4. Antimicrobial Activity Tests with Xenon Lamp Irradiation

Cu2O/TiO2 samples, bare titania and cuprous oxide (ca. 7.1 g/L) were dispersed in Escherichia
coli K12 (ATCC29425) or Candida albicans (isolated from patients (throat smear) with immunodeficiency
disorders that cause candidiasis (collection from West Pomeranian University of Technology, Szczecin,
Poland)) suspension at concentrations of ca. 1–5 × 108 cells/mL (E. coli K12) or 1–5 × 104 cells/mL
(C. albicans) in a test tube with stirring bar, and then irradiated with xenon lamp (with cold mirror
(CM2) and UV-D36B filter; 300 < λ < 420 nm or CM1 and Y-45 filter; λ > 420 nm) or kept in the dark. As
a control, bacterial or fungal suspension without titania was also tested. Serial dilutions (10−1–10−6) of
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microbial suspension were prepared and aliquots of suspensions were inoculated on Plate Count Agar
(Becton Dickinson Company, Franklin Lakes, NJ, USA for E. coli K12) or Malt Extract Agar (Merck
Millipore Corporation, Burlington, MA, USA for C. albicans) media at 0, 0.5, 1, 2 and 3 h. Media were
incubated at 37 ◦C overnight, colonies were counted, and the colony-forming unit was determined.

2.5. Antibacterial Activity Test with Solar Irradiation

Cu2O/TiO2 (ST-01) or bare titania (ST-01) (0.5 g/L), was dispersed in E. coli K12 (ATCC29425)
suspension at a concentration of ca. 1 × 108 cells/mL in a glass container with stirring bar,
and circulated through glass tubes and irradiated under solar radiation (Sapporo, sunny day, June
2018) or kept in the dark. As a control, bacterial suspension without titania was also tested. The later
experimental procedure was the same as that described above.

3. Results and Discussion

3.1. Characterization of Cu2O/TiO2 Samples

Five commercially available TiO2 were selected to perform the study. Table 1 shows the main
properties of the samples, which represent diversified types of titania matrix, e.g., different morphology,
phase content, crystallite size and specific surface area. Figure 1a shows diffuse reflectance spectra
of prepared Cu2O/TiO2 with 5 wt %-content of cuprous oxide. The strong absorption at UV range
is due to bandgap excitation of titania, and a narrower bandgap of rutile than that of anatase clearly
correlates with the absorption edge at longer wavelengths. The absorption peak between 500–600 nm is
characteristic of the presence of Cu2O. Although the content of Cu2O in each sample was approximately
the same, one can observe significant differences in the shape of Cu2O-absorption region between
samples containing a different titania matrix. It is possible to observe the dependency between the size
of TiO2 particles and the height of Cu2O-originated absorption peak. The Cu2O/TiO2 samples with
small-particulate titania (ST-01 and TIO-6) are characterized by the strongest 500–600 nm absorption
peak of Cu2O. The crystallite size of Cu2O determined by XRD analysis was 65 nm and BET surface area:
23 m2·g−1. The prevalence of anatase or rutile in a titania matrix did not influence the Cu2O-originated
absorption peak. Another confirmation for the phase presence (anatase, rutile, Cu2O) in the prepared
samples are the XRD results, shown in Figure 2. Cuprous oxide was confirmed in all samples (black
patterns after subtraction of titania patterns). Moreover, titania peaks did not change after grinding,
which proves that physical mixing was delicate without changing crystal properties (It is known that
strong grinding/milling could destroyed titania crystals.). Figure 3 shows scanning transmission
electron microscopy (STEM) images with energy dispersive spectroscopy (EDS) mapping, which
indicate that Cu2O particles are uniformly distributed on the surface of titania.

Table 1. TiO2 samples selected for the study.

Sample Name Anatase *
(%)

Rutile *
(%)

Crystallite Size/nm Specific Surface
Area/m2·g−1

Anatase Rutile

P25 83.8 16.2 21 37 59
ST-01 100 - 8 - 298
ST-41 98.3 1.7 70 124 11
TIO-6 - 100 - 16 105
RUT 1.7 98.3 55 82 4

* Crystalline composition without consideration of amorphous phase.
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Figure 3. Scanning transmission electron microscopy (STEM) images with energy dispersive
spectroscopy (EDS) mapping of Cu2O/P25 sample. Mapping colors: Ti-violet; Cu-green.

3.2. Photocatalytic Activity

3.2.1. Ultraviolet-Visible (UV-Vis)-Induced Methanol Dehydrogenation

During the reaction of methanol dehydrogenation (H2 system) under deaerated conditions in the
presence of titania and copper oxides the following reactions may be considered:

TiO2 + hν (λ > 290 nm)→ e− + h+, (generation of electrons and holes) (1a)

Cu2O + hν (λ > 290 nm)→ e− + h+, (1b)

CH3OH + h+ → HCHO + H+, (2)

Cu+ + e− → Cu, (3)

H+ + e− → 0.5 H2, (4)

At the beginning of irradiation, copper oxide is reduced by photoexcited electrons, resulting in
the formation of copper deposits on the surface of the photocatalyst (3). In this system, methanol plays
the role of a hole scavenger (2), as presented in Figure 4.

As a primary issue, the best copper content (wt %) for Cu2O/TiO2 system corresponding to
highest photocatalytic activity was determined for further studies. The following copper contents
were considered: 1%, 5%, 10% and 50%. For all titania-cuprous oxide heterojunctions, the highest
photocatalytic activity was observed for 5 wt % of Cu2O (Figure 4). By increasing the Cu2O content,
the hydrogen evolution rate decreased because of the increase of charge recombination effect [11]
or inner filter effect (competition for photons between two semiconductors). The high content of
Cu2O (50 wt %) caused a significant decrease of photocatalytic activity, probably due to the increase in
the opacity and light scattering (shielding effect) influencing photon absorption (irradiation passing
through the photocatalyst suspension) [43]. Indeed, characterization of Cu2O/P25 samples with
different content of Cu2O clearly showed a significant increase in light absorption with an increase
in cuprous oxide content at vis range (Figure 5a). Additional XRD analysis confirmed the presence
of both titania and cuprous oxide in all hybrid samples (Figure 5b), and the estimated content of
cuprous oxide in hybrid materials was almost the same as that used for the preparation of samples
(inset in Figure 5b).
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Figure 4. Ultraviolet-visible (UV-Vis) photocatalytic activity of samples: (a) Cu2O/P25, (b) Cu2O/ST-01,
(c) Cu2O/ST-41, (d) Cu2O/TIO-6, (e) Cu2O/RUT, prepared with corresponding Cu2O content in
methanol dehydrogenation.

Materials 2018, 11, x FOR PEER REVIEW  7 of 21 

 

 
Figure 4. Ultraviolet-visible (UV-Vis) photocatalytic activity of samples: (a) Cu2O/P25, (b) 
Cu2O/ST-01, (c) Cu2O/ST-41, (d) Cu2O/TIO-6, (e) Cu2O/RUT, prepared with corresponding Cu2O 
content in methanol dehydrogenation. 

 
(a)                                               (b) 

0

20

40

60

80

100

300 500 700 900

10
0-

re
fle

ct
an

ce
 (%

)

wavelength / nm

10 30 50 70 90

in
te

ns
ity

 (
a.

 u
.)

2-theta (degree)

‑‑‑ Cu2O 

― Cu2O/P25-50% 

― Cu2O/P25-33% 

― Cu2O/P25-10% 

― Cu2O/P25-5% 

― Cu2O/P25-1% 

― P25 

0

20

40

60

80

100

0 25 50 75 100es
tim

at
ed

 C
u 2

O
 (%

) 

use Cu2O content (%) 

Figure 5. (a) Diffuse reflectance spectra and (b) XRD diffractograms of Cu2O/P25 samples with
different Cu2O content; Inset: Correlation between use and estimated (XRD) content of Cu2O in
the samples.

Figure 6 shows the photocatalytic activity in hydrogen system for Cu2O/TiO2 with different titania
matrix. These activities were compared with corresponding samples: Pt/TiO2 and Pt/Cu2O/TiO2.
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Obviously, the highest photocatalytic activities were obtained for Pt/TiO2, due to higher work function
(6.35 eV vs. 4.7 eV) and smaller overvoltage for hydrogen evolution for platinum than that for
copper. Although, the activity of Cu2O/TiO2 was 2–3 times lower than that for Pt/TiO2, it should
be remembered that copper is much cheaper than platinum. Moreover, bare titania is practically
inactive in this system (Figure 6), and thus evolution of hydrogen on this cheap photocatalyst is
quite promising. Additionally, it should be pointed out that another possible mechanism, i.e., type II
heterojunction (transfer of photo-generated electrons from CB of Cu2O to CB of TiO2 with opposite
transfer of photo-generated holes) could be rejected due to the inactivity of bare titania (Figure 6).
In contrast to the conclusions of Dozzi et al. [44], the synergistic effect of Pt-Cu was not observed
in this reaction system. This is not surprising since Pt-modified titania is one of the most active
photocatalysts for hydrogen evolution, and thus formation of other charge carriers’ transfers (not
only from CB of titania to Pt), e.g., to VB of Cu2O, should result in hindering of the overall activity.
Photocatalytic activities of Pt/Cu2O/TiO2 were slightly higher than that of Cu2O/TiO2 excluding
samples based on rutile (TIO-6 and RUT). The higher activity for co-modified anatase samples than
that for Cu2O/TiO2 could originate from an increase in the content of active sites for hydrogen
evolution (both on copper and platinum deposits), whereas the reason for the lowest activity for
co-modified rutile samples is unclear. It is possible that more negative CB of rutile than that of anatase
(as recently reported [45,46]) could result in two types of co-existing mechanisms (Z-scheme and type II
heterojunction), i.e., (1) for Pt-modified titania, photoexcited electrons from CB of Cu2O migrates to CB
of titania (type II heterojunction) and then to Pt deposits (together with directly excited electrons from
VB of titania); (2) for Cu2O/TiO2 system, Z-scheme mechanism should be preferential (due to inactivity
of bare titania); (3) for Pt-modified Cu2O/TiO2, similar levels of CBs position for rutile and cuprous
oxide could result in the circulation of photogenerated electrons between both semiconductors, instead
of their transfer to noble metals’ deposits, i.e., VB(Cu2O)→ CB(Cu2O)→ CB(rutile)→ VB(Cu2O).
It should be reminded that Pt was deposited in situ, and thus it is highly possible that it could be
randomly deposited either on cuprous oxide or on titania. The formation of bimetallic deposits Cu-Pt
with metal segregation is also possible, as already reported for titania photocatalysts modified with
Au-Cu [47], and Ag-Cu [13,16]. To clarify the mechanism, detailed studies on sample characterization,
and reference experiments for pre-modified titania with platinum are presently under study.

UV/Vis photocatalytic activity of Cu2O/TiO2 hybrid photocatalysts in this reaction system is
enhanced by the combination of the synergistic effect of formed metallic copper and Cu2O caused
by the effect of Schottky barrier created between zero-valent copper and cuprous oxide (hindering
charge carriers’ recombination in cuprous oxide—its main shortcoming) [33,48] with a Z-scheme system
(see Figure 7) as a type of mechanism of photogenerated carriers migration to form an efficient two-step
charge separation system. Moreover, it should be pointed out that the proposed Cu-Cu2O-TiO2

nanostructure limits the problem of Cu2O instability, i.e., self-oxidation by photo-generated holes
(recombine with CB electrons from titania) and self-reduction by photo-generated electrons (which
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for UV/Vis-induced methanol dehydrogenation with Cu (formed in-situ)/Cu2O/TiO2 photocatalysts.

3.2.2. UV/Vis-Induced Acetic Acid Oxidation

As in the previous reaction system, photocatalytic activity in the UV/Vis-induced acetic acid
oxidation increased with an increase in Cu2O content until 5 wt % (Figure 8). The exception was only
for the TIO-6 sample, where the maximum of activity was found for 1 wt % of Cu2O. A further increase
of Cu2O content was detrimental for the photocatalytic activity. Pure Cu2O was almost inactive in
this reaction because of a high recombination rate [49]. Therefore, either its high content in this hybrid
photocatalyst or dark color (inner filter and shielding effects as discussed in Section 3.2.1) caused low
photocatalytic efficiency under UV/vis irradiation. It should be pointed out that fine titania (ST-01)
and mixed-phase titania (P25) are well known as highly active samples for this reaction (it is difficult
to find more active titania photocatalysts, and probably only decahedral anatase particles (faceted
anatase with two kinds of facets: eight {001} facets and two {001} facets) exhibited slightly higher
activity than that of P25 [50]); and thus an increase in their activities by ca. 4–5 times by modification
with small content of Cu2O (Figure 9) is highly promising for other oxidation reactions and even the
complete mineralization of organic pollutants.

For Cu2O/TiO2 samples with anatase as a dominant titania phase, the significant improvement of
photocatalytic activity was achieved (Figure 9). The reaction efficiency was ca. 4–5 higher than that for
corresponding bare TiO2 regardless of particle size of titania, and catalytic activity (in the absence of
irradiation) of Cu2O/TiO2 samples was negligible. It is important to mention that the preparation of
these samples by physical mixing is not detrimental for overall photocatalytic performance of obtained
heterojunction systems, which is really high. Significantly smaller improvement was observed only for
rutile-based hybrid photocatalysts, in particular, for TIO-6. Figure 10 shows the results of the long
photoactivity experiment for a Cu2O/P25 sample considering the reusability of the photocatalyst
and the comparison to the activity of bare P25. After 6 h of irradiation, an almost linear course
of CO2 liberation was still observed suggesting good photostability in this reaction system during
continuous irradiation (the close reaction system with possible equilibrium between different forms
of copper). However, the loss of photocatalytic activity of the recycled sample (losing the linear
course) was observed for 2 h of irradiation. Fortunately, continued irradiation (2–6 h) resulted in
stable photocatalytic activity. It was confirmed (by XRD analysis) that the content of the Cu2O in
recycled sample decreased, with simultaneous appearance of CuO and Cu (0) in comparison to fresh
Cu2O/P25 sample. Therefore, to extend the reusability of prepared samples, additional operations to
strengthen the connection between these two components, e.g., annealing, or preparation of advanced
nanostructures should be considered. For example, a core (Cu2O)/shell (titania) nanostructure will
be investigated in our future study, similarly to the reported Cu2O/Au nanostructure with gold
nanoparticles (NPs) deposited on Cu2O nanowires [51].
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Figure 10. UV/Vis photocatalytic activity of Cu2O/P25—the photostability study considering the
reusability of Cu2O/P25.

Two types of mechanism could be considered, similarly to H2 system, i.e., Z-scheme and p-n
heterojunction (type II), as shown in Figure 11. Under UV light irradiation, both Cu2O and TiO2 could
be excited, and either photo-generated electrons in TiO2 could recombine with photo-generated holes
in the VB of Cu2O or electrons in Cu2O, and holes in TiO2 could migrate to the CB of TiO2 and VB
of Cu2O, respectively. The first mechanism seems to be preferential resulting in the generation of
charges with stronger redox potential (more negative electrons and more positive holes). It is thought
that photocatalytic activity for the oxidation reactions depends directly on the oxidation potential
of holes, as recently reported for an oxygen activation study by M. Buchalska et al. [45]. The same
study by M. Buchalska et al. proved that anatase was a stronger oxidant than rutile, due to the more
positive position of the VB. Therefore, lower activities of rutile samples could be easily explained by
less positive potential of the VB than that in anatase titania. Consequently, more negative potential
of the CB in the rutile case may result in higher probability of type II heterojunction than Z-scheme,
and thus not so high improvement of photocatalytic activity. Although, heterojunction II results in
lower redox potential than the Z-scheme, the transfer process described above is thermodynamic
favorable, and may result in the prolongation of the lifetime of excited electrons and holes, inducing
higher quantum efficiency. Acetic acid is decomposed either by oxidative species such as O2

·− and
OH·, formed by the reaction of generated electrons with dissolved oxygen and by the reaction of
generated holes from VB of TiO2 with water, or directly by positive holes. It must be remembered
that the lack of holes’ consumption can be the reason for Cu2O photocorrosion [52], and thus the
proposed Z-scheme for anatase samples should be responsible for both high activity (strong redox
ability) and stability.
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3.2.3. Visible Light Photocatalytic Activity

Cu2O as a 2.2 eV-band gap energy-semiconductor absorbs visible light. Therefore, one can expect
that a hybrid system of Cu2O with titania should be more active in the visible light than Cu2O and
titania alone. The results of photocatalytic activity for vis-induced 2-propanol oxidation (Figures 12
and 13) confirmed this expectation. Figure 14 shows the scheme of heterojunction system (Cu2O/TiO2)
with visible light-activation of Cu2O. The visible light-induced electron transfer between CB of Cu2O
and CB of titania should play the key role in the photocatalytic efficiency of this system. Similarly,
as in the case of previous reaction systems 5 wt %-Cu2O content resulted in the highest activity of
Cu2O/TiO2 photocatalysts, independently of the titania matrix (Figure 12a–d), but with the exception
of Cu2O/RUT, where vis photocatalytic activity of bare RUT was higher than that in hybrid system
(Figure 12e). The highest improvement of photocatalytic activity in relation to bare titania (ca. 6 times)
was found for rutile sample: Cu2O/TIO-6 (Figure 12d).

The crucial question is why the vis-induced photocatalytic properties of samples Cu2O/TIO-6
and Cu2O/RUT are so different. Densities of lattice defects (DEF; also known as electron traps (ETs))
equivalent to the concentration of Ti3+ were estimated for different types of titania in the earlier
study [53]. The values of DEF were 50, 84, 38, 242 and 18 µmol·g−1 for P25, ST-01, ST-41, TIO-6
and RUT, respectively. The higher DEF of titania matrix favors the higher vis light-photocatalytic
activity in the considered reaction system (Cu2O/TIO-6), but the lowest DEF of RUT corresponds to
no reaction rate improvement. The presence of Ti3+ ions can be important for the efficiency of the
visible light-induced reaction on Cu2O/TiO2. Photogenerated electrons from Cu2O can be captured by
Ti4+ ions and thus, being reduced to Ti3+. Ti3+ ions (with prolonged lifetime), participate in electron
trapping resulting in retarded charge recombination. These observations are with agreement with the
concept of Xiong et al. on the role of Ti3+ ions in Cu2O/TiO2 heterojunction system [23]. Moreover,
the significant difference in enhancement factor between anatase and rutile hybrid samples of similar
vis activity before modification (ST-01 and TIO-6, due to high content of DEF) could indicate that
localization of CB of titania in respect to that of cuprous oxide is crucial. Therefore, higher proximity
between cuprous oxide and rutile than that between cuprous oxide and anatase could facilitate
an electron migration. Moreover, as M. Buchalska et al. suggested [45] the lower redox potential of the
excited electron of rutile than that of anatase resulted in more efficient O2

·− generation, and thus higher
activity in reactions involving photo-excited electrons as the main mechanism pathway. Similarly,
a higher activity of rutile than anatase was found for plasmonic photocatalysis by gold-modified
titania, in which “hot” electron transfer from plasmonic gold NPs to CB of titania was proposed [54].
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oxygen species (ROS) resulting in the cell’s inactivation. It should be pointed out that the contact 
between Cu (I) and bacteria is essential for bacterial inactivation, in addition, surface Cu-ions are 
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Figure 14. Schematic mechanism of heterojunction (type II) for vis-induced 2-propanol oxidation with
Cu2O/TiO2 photocatalysts for anatase (a) and rutile (b).

3.3. Antimicrobial Properties of Cu2O/TiO2

At first, the bactericidal property of Cu2O was investigated in the dark, under UV and visible
light, and the results obtained are shown in Figure 15a. Cuprous oxide exhibited high bactericidal
activity, and irradiation with UV and visible light slightly enhanced the intrinsic activity of Cu (I).
It means that light irradiation could promote electron transfer between Cu and bacterial cells (Cu
extracts electrons from bacteria, causing proteins denaturation [40]) and generation of reactive oxygen
species (ROS) resulting in the cell’s inactivation. It should be pointed out that the contact between
Cu (I) and bacteria is essential for bacterial inactivation, in addition, surface Cu-ions are crucial for
bactericidal property [55].

Bare titania exhibited bactericidal property under UV light irradiation, due to the generation
of ROS, such as •OH, O2

−• and H2O2, in which the activity seemed to arise from the particle
size. In contrast, compared to the activity of anatase and without titania, bare rutile titania did
not show significant enhancement under UV irradiation, which is not surprising because the
photocatalytic activity of rutile is generally lower than that of anatase [54], as already discussed
for acetic acid oxidation.

Under UV light irradiation, all Cu-modified anatase samples (Cu2O/ST-01, Cu2O/P25 and
Cu2O/ST-41) showed the enhancement of bactericidal activity. Qiu et al. have already reported
that the bactericidal activity under visible light irradiation attributed to multi-electron reduction by
electrons on Cu (II) in CuxO clusters which was transferred from the VB of titania by inter-facial charge
transfer (IFCT), in contrast, Cu (I) in CuxO clusters showed anti-pathogen effect in the dark [55]. In
this regard, it is proposed that similar mechanism could be responsible for enhanced UV-activity
of Cu2O/TiO2 photocatalysts, i.e., IFCT from titania to Cu, as well as hindering of charge carriers’
recombination (as discussed above). Interestingly, the dark activity of Cu2O/ST-41 was higher than
the visible one. It is probable that the contact between Cu (I) and bacteria could be affected, i.e., large
titania ST-41 (crystal size = ca. 70 nm) could not cover Cu particles; on the other hand, small titania
particles of ST-01 and P25 (ca. 8 and 21 nm, respectively) could cover NPs of cuprous oxide inhibiting
the direct contact with bacteria and/or release of Cu ions from the surface of Cu (I). In the contrary,
Cu (I)-modified rutile titania did not show the highest activity under UV irradiation, furthermore,
the tendency of activity was different between two rutile samples (Cu2O/TIO-6 and Cu2O/RUT).
In the case of Cu2O/TIO-6, it is probable that direct bactericidal activity of Cu (I) in the dark might
exceed the generation of ROS which was attributed to the activity of the multi-electron reduction on
Cu by IFCT under UV and visible light irradiation, and vice versa in the case of Cu2O/RUT.
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of solar radiation was quite low compared to an artificial source of light (xenon lamp), used in 
laboratory experiments (Figure 16). On the other hand, Cu2O/ST-01 showed high activity under solar 
light and better than that in the dark (ca. one order of magnitude). It is thought that additionally to 
dark activity of Cu (I), and similarly to acetic acid oxidation, enhanced generation of reactive oxygen 
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Figure 15. E. coli K12 survival shown as CFU/mL during inactivation of bacterial cells; (a–f) in the dark
(grey symbols), under UV irradiation (300 < λ < 420 nm; violet symbols) and under vis irradiation (λ >
420 nm; green symbols) on bare (diamond, dashed line) and modified titania (circle, solid line), (g) E.
coli K12 survival without titania in the dark, under UV and visible. Error bars (Cu (I) oxide) indicate
the standard deviations calculated from two or three independent measurements.

The most active photocatalyst, i.e., Cu2O/ST-01 was additionally tested under natural solar
radiation, and data obtained are shown in Figure 14. Interestingly, no bactericidal activity was
observed both in the absence of photocatalyst and for bare titania (ST-01), despite the fact that titania
ST-01 showed some activity under UV irradiation (Figure 15b,g), possibly because the light intensity of
solar radiation was quite low compared to an artificial source of light (xenon lamp), used in laboratory
experiments (Figure 16). On the other hand, Cu2O/ST-01 showed high activity under solar light and
better than that in the dark (ca. one order of magnitude). It is thought that additionally to dark activity
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of Cu (I), and similarly to acetic acid oxidation, enhanced generation of reactive oxygen species could
result in activity improvement (Z-scheme shown in Figure 11a).Materials 2018, 11, x FOR PEER REVIEW  16 of 21 
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line) and reference experiments without any photocatalyst (triangle, dashed line) under solar light
irradiation (orange) and in the dark (gray).

Concluding, it is clear that the bactericidal property of Cu2O/TiO2 originates mainly from the
presence of cuprous ions, and photocatalytic activity only slightly enhanced the effect. Therefore, it is
suggested that positively charged Cu (I) could both attract a negatively charged bacterial membrane
(due to the presence of lipopolysaccharide) and inactivate cells by intrinsic activity of Cu (I).

In order to investigate deeper the antimicrobial effects of cuprous oxide/titania system,
the fungicidal activities (C. albicans) were additionally studied, and data obtained are shown in
Figure 17. It was found that copper (I) oxide remarkably suppressed fungal survival only under
irradiation with UV light. The initial fungicidal rate was quite slow, and then accelerated after 1 h of
irradiation. It is important to take into account the structure of fungal cells (yeast) and the surface
charge of the cell wall. Although the electrostatic potential of C. albicans cells’ surface is negative [56],
their cell walls are rigid, they have a nuclear membrane and the size of cell is larger than that of
bacteria. Therefore, despite Cu (I) oxide being easily in contact with cells, it could take a longer time to
kill fungal cells than bacterial cells. It could be considered that the fungicidal mechanisms are similar
to bacterial ones, and in addition, as reported by K. Danmek et al., Cu inhibits the activity of cellulase
(in Aspergillus melleus), which could induce the inhibition of glycan decomposition and eventually the
lack of nutrients [57]. The inactivation of C. albicans by cuprous oxide/titania was greatly promoted by
UV light irradiation, and the activities in the dark were not so effective, unlike bactericidal activity in
the dark. All Cu2O-modified titania samples under UV irradiation reached detection limit within 1–2 h.
Therefore, it is proposed that, in the case of fungi, although the influence of intrinsic activity of Cu
(I) is slow, the effect of ROS on cell components might be fast, resulting in the difference of velocities
between Cu2O and Cu2O/TiO2. The activities under visible light (Cu (I) oxide and Cu2O/ST-01) were
almost the same as that in the dark suggesting that enhancement of antifungal activity was not only
caused by possible formation of superoxide anion radicals (Figure 14). Accordingly, it is proposed that
significant enhancement of activity under UV irradiation for Cu2O/TiO2 photocatalyst could result
from a Z-scheme mechanism (Figure 11a) leading to either enhanced generation of hydroxyl radicals
(by both holes from VB of titania and electrons from CB of cuprous oxide) or direct decomposition of
fungal cells by photogenerated charge carriers. It will be clarified in our further studies by comparing
ROS generated in UV, visible and dark conditions. Summarizing, it was found that fungicidal activities
of cuprous oxide in the dark were promoted by modifying with titania, indicating that the activity was
not derived from the sole activity of Cu2O but also by heterojunction of Cu2O and TiO2.
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(g) E. coli K12 survival without titania in the dark, under UV and visible.

4. Conclusions

In summary, a simple and low cost-method, realized by mixing of copper (I) oxide and titania,
yields an efficient hybrid photocatalyst. By using a different titania matrix, one can adjust the both
photocatalytic and antimicrobial properties of the resultant material. Considering the methanol
dehydrogenation reaction, the enhanced efficiency of Cu2O/TiO2 photocatalysts originates from
the combination of the Cu-Cu2O Schottky barrier with a Z-scheme system. A large improvement
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of photocatalytic activity of copper (I) oxide-titania system in comparison to corresponding bare
titanium(IV) oxides was found for UV/Vis-induced acetic acid oxidation, mainly for a titania matrix
with anatase as a dominant phase. Taking into consideration oxidative reactions, Cu2O/anatase is an
example of a very efficient Z-scheme system, induced by UV/Vis irradiation, with a good perspective
of application for solar systems dedicated for wastewater treatment, confirmed by good photostability,
but the reusability of prepared photocatalysts needs further improvement. The mechanism of
photocatalytic activity of rutile-based samples could be described as the type II heterojunction system.
Furthermore, these two mechanistic variants, Z-scheme and heterojunction-type II, were also suggested
for visible light-induced oxidation of 2-propanol for anatase and rutile-based samples, respectively.
The photocatalytic efficiency in this system was correlated with the concentration of Ti3+ ions in
a titania matrix (density of lattice defects)—the highest concentration of Ti3+ for TIO-6 means the
highest vis-photocatalytic activity rate. Another important issue examined in this study was the
antimicrobial property of Cu2O/TiO2 materials. All prepared samples possessed bactericidal and
fungicidal properties, which were observed for UV, visible, solar irradiation, and even for dark
conditions. It was concluded that antimicrobial activity depends not only on intrinsic properties of
Cu2O but also heterojunction between copper (I) oxide and titania.
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