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Abstract: The effects of fluorine (F) doping on the phase, crystal structure, and electrochemical
performance of Na2Ti3O7 are studied by X-ray diffraction (XRD), scanning electron microscopy
(SEM), and electrochemical measurements. F-doping does not change the crystal structure of NTO,
although it has an effect on the morphology of the resultant product. As an anode material for
sodium-ion batteries, the specific capacity of Na2Ti3O7 exhibits a 30% increase with F-doping owing
to the improved sodium ion diffusion coefficient. F-doped Na2Ti3O7 also displays an enhanced rate
capability and favourable cycling performance for more than 800 cycles.
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1. Introduction

At present, lithium-ion batteries (LIBs) are indispensable for power electronics [1,2]. In the
coming decades, LIBs will be used on an increasing scale in the field of utility grid and a future
“energy internet” [2]. However, the limited reserves and cost issues of lithium present great challenges
for grid application of LIBs. Sodium-ion batteries (SIBs) have recently attracted interest because
of their advantages such as low cost, environmentally friendliness, and the availability of rich
sodium resources [3,4]. Various SIB electrode materials have been developed recently, including
sodium metal phosphate [5], Na0.44MnO2 [6], Na0.67Ni0.23Mg0.1Mn0.67O2 [7,8], Na3[Ti2P2O10F] [9,10],
NaMnFe2(PO4)3 [11], V2O5 [12], NiCo2O4 [13], Na3V2(PO4)3 [14], Sb2O4 [15], Na2V6O16 [16],
NaFeF3 [17], and Na2Ti3O7 [18,19], as well as some hard carbon materials [20,21]. Among these
materials, layered Na2Ti3O7 is one of the most ideal choices as negative active materials for SIBs,
with favorable electrochemical performance at a relatively low intercalation voltage of approximately
0.3 V as compared to Na+/Na and a low activation energy (~0.186 eV) for Na ion insertion [22].
Although the capacity of NTO reaches 200 mAh g−1 [23,24], Na2Ti3O7 does not show a better rate
capability or longer cycle life due to the large ionic radius of sodium ions (1.02 Å), which makes their
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diffusion much more difficult [25]. Moreover, the rapid capacity decay during cycling has been ascribed
to the decomposition of Na2Ti3O7 in electrolyte [26]. Therefore, improvement of the rate performance
of Na2Ti3O7 remains a great challenge [27]. Introducing additional vacancies to accommodate Na+ is
favorable for reversible and fast ion intercalation and deintercalation. Since fluorine (F) is the most
electronegative element, F-doping has demonstrated a certain influence on the crystal structure and
stability of NaxV2O2(PO4)2F, leading to improved electrochemical performance [28].

Here, we studied the effects of F-doping on the electrochemical performance of Na2Ti3O7.
The results demonstrated a 30% increase in the specific capacity of Na2Ti3O7 through F-doping
thanks to the improved Na+ diffusion coefficient. Better rate capability and cycle performance were
also observed.

2. Preparation and Characterization

2.1. The Preparation of Na2Ti3O7 and F-Doping Na2Ti3O7 Samples

All reagents in this study were purchased and used directly. Titanium (IV) oxide, anatase (99.6%)
was purchased from Alfa Aesar (Shanghai, China) and anhydrous Na2CO3 (99.8%) was bought from
Sinopharm Chemical Regent Co., Ltd. (Shanghai, China). A solid-phase method was used to prepare
Na2Ti3O7. Titanium oxide and sodium carbonate were mixed well at a molar ratio of 1:3. A 5% excess
of Na2CO3 was added to prevent the composition of the Na2Ti16O13 impurity. The mixture was ground
for 120 min. Then, the mixture powder was pressed to thin pellets, which were sintered at 800 ◦C
for 10 h in a muffle furnace. After the muffle furnace was cooled to room temperature, the product,
Na2Ti3O7 (NTO), was obtained. Na2Ti3O7Fx (NTOFx) was prepared by the same procedure, except
that the calculated amount of NaF was added and the stoichiometric ratio of titanium and sodium was
retained. The Na2Ti3O7 samples with different F-doping amounts were labeled as Na2Ti3O7Fx (x = 0.1,
0.2, 0.3 and 0.4).

2.2. Phase Analysis and Morphology Characterization

The synthesized Na2Ti3O7 and Na2Ti3O7Fx samples were characterized by an X-ray diffraction
analyzer (PANalytical X’Pert3 Powder, Malvern Panalytical, Almelo, The Netherlands) with Cu/Kα

(λ = 1.54178 Å) radiation in the 2 theta range from 5◦ to 80◦. The morphologies of NTO and NTOF0.3

were measured on a scanning electron microscope (SU8020) (HITACHI, Tokyo, Japan). High-resolution
TEM (HRTEM) was tested on an FEI Tecnai, Model G2 F20S-Twin (Brno, Czech), at a working voltage
of 200 kV.

2.3. Electrochemical Test

For the preparation of the anode electrode, 70 wt% active material (NTO or NTOFs), 20 wt%
acetylene black (Alfa Aesar, Shanghai, China), 10 wt% polyvinylidene fluoride (PVDF, KE JING, Hefei,
China) as a binder, and N-methylpyrrolodone (NMP, Alfa Aesar, Shanghai, China) as a solvent were
mixed to form a slurry. Then the slurry was painted on cleaned carbon-coated aluminum foil and dried
at 120 ◦C in a vacuum oven for 10 h. Coin-type cells were used to test the electrochemical performances.
All cells were assembled in a glove box filled with argon in which oxygen and water contents were
less than 0.1 ppm. The glass fiber 1822-047 membrane (Whatman, Shanghai, China) was used as the
separator, 1 M NaClO4 in diethyl carbonate (DEC)/dimethyl carbonate (DMC) (1:1 volume ratio) was
used as the electrolyte (MJS, Nanjing, China), and metal sodium (Innochem, Beijing, China)was used
as the counter electrode. Cyclic voltammetry experiments were carried out with scan rates at a certain
range from 0.02 mV s−1 to 5 mV s−1, with a voltage window between 0.01 V and 2.5 V (versus Na/Na+)
via CHI 640 E (B15536). Electrochemical impedance spectroscopy (EIS) was tested on an Autolab
PGSTAT 302N instrument (Herisau, Switzerland) in a frequency range from 100 KHz to 100 mHz with
a bias voltage of 5 mV.
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3. Results and Discussion

3.1. Structural and Composition Characterization

As shown in Figure 1, the Na2Ti3O7 samples with F-doping amounts of 0, 10%, 20%, 30%, and 40%
are hereafter referred to as Na2Ti3O7, Na2Ti3O7F0.1, Na2Ti3O7F0.2, Na2Ti3O7F0.3, Na2Ti3O7F0.1, and
Na2Ti3O7F0.4 (x = 0.1, 0.2, 0.3, and 0.4), respectively. As the doping amount of F increases, the intensity
of the diffraction peak first increases and then decreases. Several very sharp peaks indicate the high
crystallinity of the samples.
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morphologies (Figure 2c,d), indicating that F-doping has an effect on the morphology of the obtained 
product. 

 

Figure 1. X-ray diffraction (XRD) patterns of NTO and NTOFx: (a) NTO; (b) NTOF0.1; (c) NTOF0.2; (d)
NTOF0.3; and (e) NTOF0.4.

The X-ray diffraction patterns of the NTO and NTOF0.3 samples are shown in Figure 2a. All the
diffraction peaks correspond to monoclinic Na2Ti3O7 with a (PDF No. 31-1329) P121 space group.
No impurity phases were observed, revealing that F-doping does not change the crystal structure of
NTO. Figure 2b,c shows the morphology of the prepared NTO and NTOF0.3. It is indicated that the size
of NTO particles is several micrometres. Most of the NTOF0.3 particles show nanorod morphologies
(Figure 2c,d), indicating that F-doping has an effect on the morphology of the obtained product.
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Figure 3a shows a TEM image of NTOF0.3. The diameter of the nanorod is approximately 100 nm,
and the length is several micrometres. Figure 3b displays a high-resolution TEM (HRTEM) image of
a single nanorod. The interplanar spacing of the ordered stripes marked in Figure 3b is about 0.84 nm,
which corresponds to the (001) lattice plane of Na2Ti3O7. The selected area electron diffraction (SAED)
pattern further indicates that the nanorod is a monoclinic Na2Ti3O7. Na2Ti3O7 nanorods grow along
the (010) direction. To further examine the distribution of the F elements, energy-dispersive X-ray
spectrometry (EDX) mapping analysis was employed. The results demonstrate that Na, O, Ti, and F
elements are uniformly distributed in Figure 3d, which indicates that F was doped into Na2Ti3O7.
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3.2. Electrochemical Performance

In Figure 4a,b, the cell with an NTOF0.3 electrode exhibits the best electrochemical performance.
Therefore, we mainly focused on the investigation of NTOF0.3. Figure 5a,b exhibits the charge and
discharge curves of the NTO and NTOF0.3 electrodes at a current density of 20 mA g−1. The initial
reversible discharge and charge capacities of NTO and NTOF0.3 are 233.4 and 109.7 mAh g−1; 246.3 and
120.6 mAh g−1, respectively. The initial coulombic efficiency is only 46.7% and 48.9% but it reaches
almost 100% in subsequent cycles. The coulombic efficiency of the initial cycle may originate from
the irreversible formation of a solid electrolyte interphase (SEI) film [29–32]. Due to the formation
of the passivating layer on the surface and the reactive Ti–O that leads to electrolyte decomposition,
the irreversible capacity loss in the titanium-based Na electrode is usually serious. However, after
the initial cycle, the low irreversible capacity loss can be suppressed and thus high efficiency can be
achieved when active Ti–O is passivated [33]. There is a sloping voltage plateau at approximately
0.46 V during the charge process, while a plateau is obtained at about 0.63 V during the discharge
process. Furthermore, Figure 5c shows the rate capabilities of NTO and NTOF0.3 electrodes at current
densities ranging from 20 mA g−1 to 500 mA g−1. It can be seen that the specific capacity of the NTOF0.3

electrode is much higher than that of the NTO electrode. Figure 5d displays the cycling performance of
NTO and NTOF0.3 electrodes. Both electrodes can run stably for more than 800 cycles at 100 mA g−1.
The discharge specific capacity of the NTOF0.3 electrode is about 30% higher than that of the NTO
electrode. Figure 5e,f displays the Nyquist plots of NTO and NTOF0.3 electrodes, respectively. All the
plots show a depressed semicircle in the high-frequency region and a sloping line in the low-frequency
region. It is believed that the former corresponds to the charge–transfer resistance (RCT) while the
latter corresponds to the Warburg diffusion process. It can be seen that the NTOF0.3 electrode exhibits
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smaller semicircles (72.1 Ω) at high and medium frequencies when compared to those of the NTO
electrode (147.7 Ω), indicating that F-doping can decrease the charge–transfer resistance. Compared
with the resistances of the electrodes before and after the initial cycle, both the resistances of NTO and
NTOF0.3 after the first cycle are significantly decreased. This indicates that an activation process occurs
during the cycling.
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Figure 5. Electrochemical performances of NTO and NTOF0.3 electrodes. (a) Charge–discharge
profiles of NTO; (b) charge–discharge profiles of NTOF0.3; (c) rate capability of NTO and NTOF0.3

electrodes; (d) cycling performance of NTO and NTOF0.3 electrodes; Nyquist plots of (e) NTO electrode
and (f) NTOF0.3 electrode before and after the initial cycle at a current density of 100 mA g−1, tested
under open circuit voltage conditions with a bias voltage of 5 mV.

To reveal why the NTOF0.3 electrode exhibits enhanced performance compared with the NTO
electrode, the electrochemical kinetics of Na+ deintercalation and intercalation processes in Na2Ti3O7

were studied. Figure 6a,b shows the Cyclic voltammetry (CV) curves of the NTO and NTOF0.3

electrodes. A cathodic peak at 0.16 V and an anodic peak at 0.68 V versus Na/Na+ were observed,
corresponding to typical Na+ insertion/extraction in the NTO lattice, which are in consistent with the
charge and discharge curves. Significantly, a redox pair developed at 0.68 V and gradually augmented
with the scanning rate. This redox may be ascribed to the storage of sodium with low-valence-state
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titanium atoms. These two redox peaks were assigned to the redox couple of Ti4+/Ti3+ over the
discharge and charge processes. The reaction procedures can be depicted by Formula (1) [34]:

Na2Ti3O7 + x Na+ + x e− → Na2+xTi3O7 (0 < x < 3.5) (1)

The redox peaks of NTOF0.3 demonstrate its outstanding kinetic property. Figure 6c,d reveals
the dependence of the logarithm of peak currents (log i) on the logarithm of the scan rates (log v).
Furthermore, the reaction kinetics can be revealed by the formula of i = avb, which can also be expressed
as log i = b × log v + log a, where i is the peak current, a and b denote related parameters, and ν

represents the sweep rate [35,36]. When the value of b is close to 0.5, a battery behavior dominates the
process; when the b value approaches 1.0, it shows the behavior of a capacitor. In Figure 6c, the log i
versus the log v shows a linear relationship. Thus, the b values of the two peaks at 0.25 V and 0.16 V can
be calculated as 0.58 and 0.45, respectively, while the values of b of the two redox peaks for NTOF0.3

are 0.47 and 0.46, respectively. Therefore, these results indicate that a mixed process exists in the NTO
and NTOF0.3 anodes, although a diffusion-controlled process via a capacitive Na+ storage mechanism
should be more dominant.

According to Equation (2) [37]:

IP = 2.69× 105 An
3
2 C0D

1
2 v

1
2 (2)

where Ip represents peak current (A), A is the electrode area (cm2), n is the number of electrons
transferred, C0 is the concentration of Na+ ion (cm2 s−1), D is the diffusion coefficient of Na+

(mol cm−3), and v is the sweeping rate (V s−1) in CV. Thus, the calculated diffusion coefficients of Na
ions in NTO and NTOF0.3 electrodes are 7.73 × 10−9 cm2 s−1 and 1.7 × 10−8 cm2 s−1, respectively.
This result is consistent with the EIS results. These results indicate that F-doping is favourable for
improving electrochemical performance.
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logarithm of the scan rate (log v) for the NTO electrode and NTOF0.3 electrode.

4. Conclusions

In summary, F-doped Na2Ti3O7 nanorods were synthesized successfully by a solid-phase method.
The effects of F-doping on the phase, morphology, and electrochemical performance of Na2Ti3O7 were
investigated. F-doping does not change the crystal structure of NTO, although it has an effect on the
morphology of the resultant product. The specific capacity of Na2Ti3O7 displays a 30% increase by
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F-doping due to the improved Na+ diffusion coefficient. F-doping can the charge–transfer resistance.
The obtained material also shows a better rate capability and cycling performance for more than
800 cycles. F-doped Na2Ti3O7 nanorods are a promising anode for sodium-ion batteries (SIBs).
This work provides a strategy for improving the electrochemical performance of the electrode materials.
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