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Abstract: This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS)
equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit
segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping
procedure that ensures mass conservation at each time step and the compatibility among the
unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven
cavity benchmark, incorporating also temperature observations, comparing the augmented prediction
of the Kalman filter with the Computational Fluid-Dynamic solution found on a fine grid.
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1. Introduction

Data assimilation is a process that allows handling experimental or real-time measurements
inside the modeling framework. The dynamic data-driven method allows analysts to infer data from
the Bayesian approach and analyze the correlation between the predicting model and the relevant
knowledge from experimental measurements. These features open the possibility to learn from
the many experimental datasets available in the industrial process in a non-deterministic setting.
In addition, data assimilation can be used in combination with a simplified mathematical-physics
modeling to obtain an accurate, thanks to the data-driven method, as well as fast running, thanks to
the simplified modeling approach, representation of the phenomena to be studied [1] .

Among the wide range of possible applications, the focus of this study is the computational
fluid-dynamics (CFD) with conjugate heat transfer. In several fields, the simulation-based CFD
modeling is of paramount importance. For example, in nuclear applications, this modeling effort
has the main purpose to assess the safety analysis of the reactor under normal and accidental
conditions [2–4]. In the fluid-dynamics field, the challenging question is how to incorporate available
data from fluid flow and temperature measurements into the available models, and how to take into
account the discrepancy between the model prediction and the knowledge of the scenario coming
from the data. In this sense, the use of data assimilation is a strong potential tool to increase the
robustness and reliability of the analysis with a compatible computational burden. At the state of
art, the integration of data assimilation in computational fluid dynamics is recently investigated in a
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number of different contexts, such as geosciences [5–7], biomedical simulations [8,9], and turbulence
flow [10,11], to name a few.

When dealing with the modeling of complex systems, one of the main challenges is related
to the error model and uncertainties that may origin from lack of knowledge of the underlying
physics—because all the phenomena involved in the system are not known, or because some
of these phenomena are too difficult to model—or from non-affordable computational burden
to resolve adequately the physical model. For instance, in the analysis of turbulent flows, the
last source of discrepancy occurs in the modeling of the turbulent flow itself, where different
modeling approaches can be applied according to the level of accuracy required from the application
field. Reynolds-Averaged Navier–Stokes (RANS) modeling, whether introducing several modeling
approximations in the treatment of the fluid structure, is usually preferred in the engineering field with
respect to more accurate but computationally expensive approaches, such as Large Eddy Simulation
(LES) or Direct Numerical Simulation (DNS). RANS, and in general low fidelity approaches, are
usually able to provide time-averaged quantities of the main variables of interest, being this level of
accuracy sufficient in many engineering applications. On the other hand, the knowledge of the state
of the system calculated with these low fidelity models can be enriched, combining real-time sensor
data to obtain a better estimation of the variables of interest in the system and correcting the possible
departure from the real value due to the model uncertainties.

In addition to the model discrepancies, the degree of uncertainty is also associated with the data
acquisition. In particular, the observation is considered as a random process subjected to a density
function selected a priori or a posteriori. Mathematically, the formulation of the data-driven method is
equivalent to a Bayesian inverse problem in which the state of the system, governed by a set of partial
differential equations, is identified sparsely by the data affected by uncertainty. In broad sense, fixing a
realization of a random process, the inverse problem leads to the minimization of the following:

χ2 =
N

∑
i=1

(ui,obs − ui,predict)
2

σ2
i

(1)

where χ2 is the chi-squared statistics, uobs and upredict denote, respectively, the field observed and
predicted, and σ2 represents the uncertainty. Given the complexity of fluid dynamics problems,
the open-box idea in data-driven approaches is used, instead of the black-box algorithm used in system
identification introduced in [12]. In the former approach, the data driven scheme is incorporated in the
modeling formulation [13] to handle the modeling constraints as the null divergence of the velocity
field in incompressible flows or the consistency between pressure and velocity field imposed by the
Navier–Stokes equations. This last constraint leads to mass conservation and positive semi-definiteness
of Reynolds stresses, which are fundamental requirements to achieve a realistic prediction.

The data-driven algorithms can be divided into sequential and non-sequential ones. Among the
latter, the variational approaches, such as 3D-VAR and 4D-VAR, are the most employed [14]. They are
based on the adjoint operator and optimal control problem, where the misfit defines the functional
constraints of the governing partial differential equations. These approaches allow a highly reliable
simulation and a sensitive analysis from the adjoint analysis. However, their application to fluid
dynamics investigation is effective only over long observation windows and the implementation of
adjoint-based solvers is not available for many simulation tools. On the other hand, the sequential
methods are based on the past observations of the system and from a mathematical point of view rely on
Bayesian covariance and on the resolution of Riccati-type equations [15]. In particular, the covariance
matrix is computed based on linear or pseudo-linear forward model or its approximation via a
sampling method. Among these algorithms, our investigation is focused on the Kalman filter due to its
straightforward integration in the segregate approaches usually employed in fluid dynamics solvers
based on Finite Volume (FV) approximation. From the computational point of view, the main drawback
of using a Kalman filter in such turbulence modeling is related to the assembling of the a priori error
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covariance and model covariance, due to the high number of degree of freedoms (the number of
elements of the numerical grid) and thus the high computational cost.

In the present work, an approach that applies the sequential Kalman filter data-driven algorithm
to the computational thermo-fluid dynamics modeling based on RANS assumption is proposed.
With respect to the algorithm developed in [16], this work focuses on the heat transfer problem
by implementing the data assimilation method for temperature observations. Heat transfer is of
fundamental importance in any industrial problem. Unexpected temperature variations usually implies
non-optimal operating conditions of the equipment, which may lead to faults and accidents. Real-time
monitoring of temperature and its variations is a common practice, but the accurate simulation
and prediction of heat transfer remains an open issue. Uncertainties in heat transfer modeling
is for example related to the empirical correlations adopted for the prediction of convective heat
transfer coefficients, whose validity and accuracy depend, among others, on the turbulent flow itself.
The degree of turbulence greatly influences heat transfer, adding another layer of uncertainty. In
addition to the treatment of temperature, the incorporation of Kalman filtering with the segregated
method that combines the Pressure Implicit Split Operator (PISO) and Semi-Implicit Method for
Pressure-Linked Equations, called PIMPLE, is investigated. With respect to PISO, already implemented
in [16], the PIMPLE algorithm offers more robustness and efficiency when simulations with large time
steps are of interest, as in some pseudo-transient cases. Being an implicit method, PIMPLE is less
sensitive to numerical instability, and more suited for stiff problems, for which the use of an explicit
method would require impractically small time steps to keep the solution stable.

It is worth noting that, usually, the acquisition of experimental data for velocity is not easy,
whereas temperature measurements are more simple to obtain. A common practice in literature is
to use DNS (Direct Numerical Simulation) solutions as placeholders for velocity experimental data,
however as stated before such method is computationally not feasible for complex cases. Therefore,
the ability of the developed integrated algorithm to improve the prediction of both quantities of interest
while having access to only temperature experimental data is investigated. This represents quite a
strong feature of the proposed approach.

The structure of the paper reads as follows. In Section 2, we describe the fundamental algorithms,
namely, the Kalman filter and the segregated approach for the non-linear turbulence model. Section 3
is devoted to the proposed algorithm and how the physical properties are enforced in an open-box
framework. In Section 4, the method is verified with respect to the benchmark case of the lid-driven
cavity, before drawing conclusions in Section 5.

2. Numerical Background

The main objective of this work is to develop a CFD-based algorithm for thermo-fluid problems
integrated with the sequential Kalman filter data-driven algorithm. Among all available CFD
approaches for the Reynolds-Averaged Navier–Stokes equations, the segregated method, commonly
used in the Finite Volume discretization framework, was chosen due to its popularity in the
computational fluid-dynamics field, as well as its two-step structure, formed by state prediction
and correction. This two-step framework is very reminiscent of the structure of the sequential Kalman
filter, in which the state prediction, performed by the state model, is followed by an update performed
by combining the prediction to the information obtained from the experimental measurements, suitably
weighted. Due to this similarity, the integration of the sequential Kalman filter within the segregated
method for CFD is natural. In the following, both the linear Kalman filter and the general framework
of the segregated method are briefly introduced, without entering into details about their numerical
properties. More information on the segregated methods and the Kalman filter can be found in [17,18],
respectively.
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2.1. The Kalman Filter

A Kalman filter is a set of Riccati-type equations which provide a recursive estimator based on
a predictor-update procedure. This estimator is shown to be optimal in the sense that it minimizes,
under some assumptions, the mean of the squared error, defined as the difference between the predicted
state and the corrected one. One of such hypothesis is that the inferred distribution of the experimental
data must be Gaussian, and that the numerical and observation models must be linear [19].

The aim of the Kalman filter is to estimate the state u ∈ RN of a given discrete-time system
governed by the following linear equation:

un = Φnun−1 + Bncn + wn, (2)

where un represents the a priori state estimate, with a measurement z ∈ RM governed by the
following relation:

zn = Hnun + vn, (3)

where Φn ∈ RN×N is the state transition matrix that describes the evolution of the system, Bn ∈ RN×L

represents the control matrix which relates the the control state vector cn ∈ RL to the state vector,
wn ∈ RN contains the uncertainties associated with the model itself, Hn : (n∆t) ∈ RM×N denotes the
transformation matrix, needed to project the state variables in the space of observations, and the vector
vn ∈ RM represents the noise associated with the measurements.

By defining û∗n,n as the a posteriori state estimate at time step n given the measurement zn and
the knowledge of the state priori to step n, the a posteriori estimate error and its covariance can be
defined as:

εn = un − û∗n,n;

Pn,n = E[εnεT
n ].

(4)

(5)

The strength of such an approach lies in the fact that even few measurements taken at a few time
steps and at a few locations of the domain are enough to provide a state estimate which is better than
the one obtained without measurements and to steer the numerical solution towards the true one.
This means that the rank of Hn can be much smaller than that of Φn.

The a posteriori estimate û∗n,n is computed as a linear combination of the a priori estimate un,n−1

and a weighted difference between the actual measurement and a measurement prediction:

û∗n,n = un + Kn(zn − Hnun). (6)

The difference Kn(zn − Hnun) is called the measure innovation, and reflects the discrepancy

between the predicted measurement and the actual one. The matrix Kn ∈ RN×M is called gain, and it
minimizes the a posteriori error.

Since the a priori distribution of the error models is not known, it is assumed that all the inferred
distributions are Gaussian, statistically independent of each other and not temporally correlated.
For the observation, a Gaussian distribution is also assumed, due to its relation with the white noise
commonly associated with measurements [18,20]. For this reason, the uncertainty associated both to
the model and to the observation is taken as described by random variables with Gaussian distribution:

p(wn) ∼ N (0, Qn);

p(vn) ∼ N (0, Rn).

(7)

(8)

The equations for the predictor and update step are as follows:
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• Predictor step
ûn = Φnun−1 + Bncn−1 + wn; (9)

Pn,n−1 = ΦnPn−1,n−1ΦT
n + Qn. (10)

• Update step
Kn = Pn,n−1HT

n (Rn + HnPn,n−1HT
n )
−1; (11)

û∗n,n = ûn,n−1 + Kn(zn − Hnûn,n−1); (12)

Pn,n = (I − Kn Hn)Pn,n−1. (13)

Given an initial guess û∗0,0 and an initial value for the covariance matrix P0,0, the predictor
step equations allow obtaining the a priori state estimate and covariance matrix estimate. Once the
observation is available, the update step starts with the evaluation of the Kalman gain, followed by the
a posteriori state estimate by incorporating the measurement. The final step is to obtain the a posteriori
error covariance estimate. The process is then repeated with the previous a posteriori estimate used as
initial guess for the new a priori one.

The Kalman filter can therefore be seen as a Bayesian approach, where the best estimate is
interpreted in the sense of the Maximum A-Posteriori (MAP). The MAP estimate of a random variable
u is defined as the estimation û∗ which, given the observation vector Z and the knowledge of how both
measurement and model approximated prediction are flawed, maximizes p(u|Z). The Bayes theorem
allows inferring the a posteriori distribution p(un|Zn) starting from the vector of past measurements:

p(un|zn) =
p(un, Zn)

p(Zn)
=

p(un, zn, un−1)

p(zn, Zn)
(14)

For the Kalman filter, the a priori distribution is represented by the model estimation, the
likelihood by the measurement, and the a posteriori distribution by the MAP estimate defined
above.More detailed descriptions of the Kalman filter procedure can be found in [21,22].

2.2. The Segregated Method

The segregated approach for the resolution of the Navier–Stokes equations, along with the energy
equation, is based on an iterative procedure that involves the decoupling between velocity, pressure
and temperature equations. Since the constitutive law of Newtonian incompressible fluid is chosen,
the evolution of the velocity field u, the normalized pressure p, defined as the absolute pressure over
the density of the medium, and temperature T can be described as:



∇ · u = 0;

∂u
∂t

+∇ · (uu)−∇ · (ν∇u) = −∇p− gβ(T − Tre f );

∂T
∂t

+∇ · (uT) = k∆T,

(15)

(16)

(17)

where u represents the velocity vector, ν is the kinematic viscosity of the fluid, p is the normalized
pressure, g is the gravity acceleration, β is the thermal expansion coefficient of the fluid, T is the fluid
temperature, Tre f is a reference temperature, and k is the thermal diffusivity of the fluid.

Two of the most well-known segregated algorithms for the approximation of the time-dependent
Navier–Stokes equations are the PISO (Pressure Implicit with Splitting of Operator) and PIMPLE
(Merged PISO-SIMPLE, where SIMPLE stands for Semi-Implicit Method for Pressure Linked
Equations). Both methods follow the same procedure for the discretization, but, with respect to
PISO, the PIMPLE algorithm is characterized by an additional inner iteration loop which resolves the
non linearity of the Navier–Stokes equations and the energy equation with Picard iterations. This inner
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loop makes the PIMPLE algorithm an implicit method, whereas the PISO algorithm is a semi-implicit
method, since the velocity correction is solved explicitly. The iteration process of the PIMPLE algorithm
allows for simulations with under-relaxation of the solution to improve stability, and adaptivity of the
time step as the simulation progresses. As stated in Section 1, the PIMPLE method is less sensitive to
numerical instability and more suited for stiff problems.

In general, all segregated methods presents a two-step structure, composed by a predictor and a
corrector step. The equations for these two steps are summarized as follows:

• Predictor step

apup = −∑(akuk) + Ψn−1(un−1)−∇pn−1 = Ψ(u)−∇pn−1; (18)

aT,pTp = −∑(aT,kTk) + ΨT,n−1(Tn−1) = ΨT(T); (19)

ρp = 1− βp(Tp − Tre f ).

• Corrector step
∇ · u = ∑(S× u f ) = 0; (20)

u f =

(Ψ(u)
ap

)
f
−
(
∇p
ap

)
; (21)

∇ ·
(
∇p
ap

)
= ∇ ·

(Ψ(u
ap

)
= ∑

(
S×

(Ψ(u
ap

)
f

)
. (22)

In the above, the subscript P represents the discretized field in the considered grid element,
N indicates its neighbours, and ap and an are the coefficients that result from the discretization
procedure. In the case of PISO, the subscript n− 1 refers to the previous time step, whereas, in the
case of PIMPLE, it refers to the previous iteration within the same time step. The non-linearity of the
momentum equation is contained in the term ap and the operator Ψ. The subscript f stands for an
interpolation on the face centres of the mesh elements and S is the corresponding face area.

The predictor of the velocity and temperature fields is obtained by approximating the momentum
Equation (16) and energy Equation (17), respectively. In the former, the non-linear advection term is
simplified by linearization of the new system state around the one at the previous time step (for PISO)
or the one at the previous inner iteration (for PIMPLE), which represents the right hand side of the
equation. This approximation relies on the hypothesis of small values of the time step ∆t, and the error
of such approximation proportionally propagates to ∆t2 [17].

Equations (18) and (19) are solved through iterative techniques. However, usually the predicted
velocity field does not comply with the zero-divergence condition. This requirement is expressed
by Equations (20) and (21). Combining these two equations, a Poisson equation for pressure,
which expresses the zero-divergence condition, is obtained [23]. This pressure field does not necessarily
satisfy Equation (18), but it is used to correct the predicted velocity field. This predictor–corrector
loop continues until a prescribed convergence criterion is satisfied. In the case of PIMPLE, multiple
cycling of the predictor–corrector loop over the same time step are performed using the last iteration
final value as initial guess for the next one r to improve the convergence of the solution. While the
Navier–Stokes equations are non-linear, the segregated method includes the non-linearity into a linear
system resolution. This feature is essential for the implementation of the Kalman filter within a
segregated framework, as shown in Section 3.

3. Method: The Integrated Algorithm

The present algorithm integrates the discrete Kalman filter introduced in Section 2.1 and the
segregated methods presented in Section 2.2 to obtain a divergence-free augmented prediction. The
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approach used for the development of the integrated code is extracted from [16], with the extension
of temperature and the implementation of the Kalman filter within the PIMPLE segregated method.
In general, this integrated algorithm can be divided into three steps, namely a predictor, a corrector
and a regularization step. The first two reflect the predictor–corrector structure of the segregated
methods, whereas the latter represents the update step in the discrete Kalman filter algorithm. A flow
chart outlining the steps of the integrated algorithm is presented in Figure 1.

Figure 1. Flow chart of the integrated algorithm. The blocks with blue borders represent the prediction
step, the ones with red borders are the corrector step, and the purple borders highlight the regularization
step.

At the beginning of the time step n, Equations (23) and (24) are used to estimate the system velocity
and temperature given the ones at the previous time step (or the previous iteration, for PIMPLE).
Regardless of the presence of the observation, the error covariance matrix is evaluated a priori by
Equations (25) and (26), given the state transition matrix at the current time step. The model uncertainty
introduced by the matrix Qn is propagated using the correlation between state variables provided
by Φn and ΦT,n, and this information is stored in the error covariance matrices Pn,n−1 and PT,n,n−1.
The equations are as follow:

• Predictor step
an,pûn,n−1 = Φn(ûn−1,n−1)−∇pn−1,n−1; (23)

an,T,pT̂n,n−1 = ΦT,n(T̂n−1,n−1); (24)

Pn,n−1 = ΦnPn−1,n−1ΦT
n + Qn; (25)

PT,n,n−1 = ΦT,nPT,n−1,n−1ΦT
T,n + Qn. (26)

In the above, ûn,n−1 and T̂n,n−1 are, respectively, the predicted system velocity and temperature
given the ones at the previous time step; Φn and ΦT,n are the state transition matrices for velocity
and temperature; ûn−1,n−1, pn−1,n−1 and T̂n−1,n−1 are, respectively, the system velocity, pressure and
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temperature at the previous time step; Pn,n−1 and PT,n,n−1 are the a priori error covariance matrices for
velocity and temperature; Pn−1,n−1 and PT,n−1,n−1 are the ones at the previous time step; and Qn is the
model uncertainty matrix.

If the experimental measurement for the current time step is not available, the corrector step of
the chosen segregated method is applied to the velocity prediction in order to obtain a divergence-free
solution. Otherwise, the Kalman gains for velocity and temperature are evaluated, and the Poisson
equation is used to impose the zero-divergence condition for the augmented prediction. In the case of
the PIMPLE method, the correction for the velocity prediction with the observation is applied only in
the last iteration of the predictor–corrector loop, that is, the one without under-relaxation.

• Kalman gain evaluation
Sn = Rn + HnPn,n−1HT

n ; (27)

ST,n = RT,n + HT,nPT,n,n−1HT
T,n; (28)

Kn = Pn,n−1HT
n S−1

n ; (29)

KT,n = PT,n,n−1HT
T,nS−1

T,n. (30)

In the above, Sn and ST,n are the measurement covariance matrices for velocity and temperature,
respectively; Rn and RT,n are the uncertainties associated with the experimental observation of velocity
and temperature; Kn and KT,n are the Kalman gain matrices; and Hn and HT,n are the transformation
matrices that map the state variables onto the observation matrix. In general, these matrices are defined

as: Hi,j =

{
1 if i = j and xi is a location
0 otherwise

• Corrector step

û∗n,n = ûn,n−1 + Kn(zn − Hnûn,n−1) =
Ψn(ûn,n−1)

an,p
− ∇pn

an,p
+ Fn; (31)

∇ ·
(
∇pn

an,p

)
f
= ∑

f

(
S×

(
Ψn(ûn,n−1)

an,p
+ Fn

))
f

; (32)

ûn,n =
Ψn(û∗n,n)

an,p
− ∇pn

an,p
. (33)

In the above, û∗n,n is the augmented velocity prediction, zn is the observation, pn is the system
pressure computed at the current time step, ûn,n is the divergence-free augmented velocity, used as
source term for the next iteration, and Fn = Kn(zn − Hnûn,n−1) is the innovation term. The resulting
algorithm guarantees that the predicted velocity ûn,n always respect the zero-divergence constraint,
while this condition is observed for the velocity field ûn,n−1 derived from the model only if ∇Fn =

0. With respect to temperature, since no corrector loop is applied on its equation, the augmented
prediction is evaluated and used to compute the system density using the Boussinesq approximation.

• Corrector step (temperature)

T̂∗n,n = T̂n,n−1 + KT,n(zT,n − HT,nT̂n,n−1); (34)

ρn = 1− β(T̂∗n,n − Tre f ). (35)

In the above, T̂∗n,n is the augmented temperature prediction, zT,n is the temperature experimental
observation, ρn is the fluid density, β is the fluid thermal expansion coefficient, taken as constant in
time, and Tre f is a reference temperature.
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The regularization step is performed only when observations are available. In this step, the error
covariance matrices for the quantities of interest are updated, thus obtaining the a posteriori error
covariance matrices.

• Regularization step
Pn,n = (I − Kn Hn)Pn,n−1; (36)

PT,n,n = (I − KT,n HT,n)PT,n,n−1. (37)

Limitations and Assumptions

The implementation of the Kalman filter within the segregated algorithm is quite straightforward,
due to the similarities between the two-step structure of the two algorithms and the linear nature of
the latter. However, the use of the developed method can be problematic when dealing with large
systems such as those needed for the solution of turbulent flows. The main reasons are:

• The derivation of the state transition matrix Φn from the operator Ψn
• The evaluation of the matrix Qn

Whereas the state transition matrix can be obtained from the operator Ψ, its derivation includes a
matrix inversion, and, considering that this operator varies in time, the computational requirements
for a direct evaluation of the matrix Φn are not acceptable. However, thermo-fluid mechanics problems
exhibit diagonal-dominant state matrices [24], especially when dealing with turbulent configurations
due to the small time scales that have to be imposed to capture the dynamics of the flow. In addition,
most discretization schemes for the Navier–Stokes equations produce diagonally dominant matrices
in order to guarantee the stability and convergence of the iterative solver [23]. Thus, many of the
off-diagonal terms of the state matrix Φ are zero, and, according to Meldi [16], this matrix can be
approximated as: 

Φn =
1

ap,n
Ψn(ûn−1) =

1
an,pδt

I;

ΦT,n =
1

aT,p,n
ΨT,n(T̂n−1) =

1
aT,n,pδt

I.

(38)

(39)

This approximation, made in [16] for velocity and here extended also for temperature, implies
that, if the matrix P is initially diagonal, and Q and R are diagonal during the simulation, P and K are
diagonal as well and, therefore, they are easy to manipulate without an excessive computational effort.

Overall, the structure of the matrix Qn is difficult to predict. Ideally, since this quantity represents
the level of confidence associated with the numerical simulation, it should be derived accounting
for model results. Its structure was investigated in detail in [16]. The most important conclusion
found are that the optimized value for this quantity is directly linked with the truncation error of the
numerical scheme multiplied by ∆t, and that the level of confidence in the numerical model is related
with the discretization error. Taking into account also the numerical errors due to turbulence modeling,
the elements of the matrix Qn are locally calculated for the mesh element i as:

Qi = C
(

1 +
νT,i

ν
∆tot∆xos

i

)
;

QT,i = C
(

1 +
αT,i

k
∆tot∆xos

i

)
.

(40)

(41)

where C ∈ [0, 1] is a constant that indicates the end-user subjective level of confidence on the numerical
model, the superscripts os and ot are related with the order of the numerical schemes used for time
and space discretization, νT represents the turbulence scale viscosity introduced by the model, ν is the
fluid kinematic viscosity, αT is the turbulent thermal diffusivity, and k is the thermal diffusivity of the
fluid. This form for Q, proposed by Meldi [16] for velocity and here extended also for temperature,
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represents a reasonable estimation of the uncertainty associated with the model, which is a priori
unknown. This form of the matrix Q is optimized for the test case discussed in Section 4.

4. Results and Discussion

In this section, the developed algorithm is tested against the classic benchmark of the 2D lid-driven
cavity [25]. Verification is performed by comparing the results obtained by the application of the
developed algorithm with the ones obtained by application of the standard segregated method on a
very fine numerical grid. In this test, the integrated algorithm is used along with numeric observations
taken from a fine grid, although a future application could be its use along with real observations
coming from an experimental campaign. It is important to stress that the 2D geometry is adopted only
for the sake of simplicity, and that the algorithm can be easily extended to the 3D case. The performance
of the tested approach is evaluated by means of the L2 normalized error, computed as follows:

εL2 =
||qCFD − qKalman||

||qCFD||
, (42)

where qCFD represents the solution as computed by the standard algorithm on a fine grid (a so-called
high-order solution) and qKalman is the solution as evaluated by the developed algorithm (the so-called
low-order solution). In addition, the average Kalman gain is used as parameter to evaluate the
performance of the filter, as well as the normalized misfit between measurement and time solution:

Misfit = max
(

qobs − qKalman
qobs

)
. (43)

As an additional figure of merit, the chi-square χ2 is also used [26]. The χ2 merit function is a
maximum likelihood function, typically used as a criterion to fit a set of model parameters to a model
process known as least square fitting. As the Kalman filter is a recursive least square filter, the overall χ2 is
used as an additional figure of merit:

χ2 =
N

∑
i=1

(qi,obs − qi,Kalman

σi

)2
(44)

where σi is the variance associated with the measured state.

4.1. 2D Lid-Driven Cavity

In the lid-driven cavity, the motion of the fluid is generated by the uniform movement of the lid
of the cavity. Due to the simple geometrical shape, the well-defined boundary conditions and the very
large database of numerical results at different Reynolds numbers, this test is considered a benchmark
test case at the state of the art.

The motion of a viscous, Newtonian fluid such as water in an open cavity can be represented by
the velocity, pressure and eventually temperature fields b = (u, p, T), whose behaviors are described
with the two-dimensional, unsteady, incompressible Navier–Stokes equations, along with the energy
equation written in temperature form. The strong form of such model reads:

find (u, p, T) ∈ H1(Ω)× L2(Ω)× H1(Ω) with Ω ∈ Rd (d = dimension of the domain) such that:

∇ · u = 0;

∂u
∂t

+ (u · ∇)u− 1
Re
∇2u +∇p + gβ(T − Tre f ) = 0;

∂T
∂t

+ u · ∇T = ke f f ∆T,

(45)

(46)

(47)
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where u denotes the velocity field, p represents the pressure, g is the gravity acceleration, T is
the temperature field, Tre f an arbitrary reference temperature, ke f f is the medium effective thermal
diffusivity, and Re indicates the Reynolds number, defined as follows:

Re =
Lre f U0

ν
,

where Lre f is the reference length, corresponding in this case to the dimension of the lid moving
direction, U0 is the modulus of the free-stream velocity and ν is the kinematic viscosity of the flow.
For the considered case, this parameter is equal to 105. Indicating the boundary of Ω with Γs for the
stationary walls and Γl for the moving lid, a sketch of the lid-driven cavity geometry is shown in
Figure 2.

x

y



u(x, t) = (1, 0, 0)ms−1 on Γl

∂p
∂n

= 0 m2s−2 on Γl

T(x, t) = 350 K on Γl

u(x, t) = (0, 0, 0)ms−1 on Γs

∂p
∂n

= 0 m2s−2 on Γs

T(x, t) = 300 K on Γs

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

m

m

Figure 2. Domain of the 2-D lid driven cavity and imposed boundary conditions for velocity, pressure
and temperature. The blue boundaries indicates the stationary walls, whereas the red one represents
the lid moving in the positive x-direction. Dirichlet condition are imposed for velocity and temperature
and a Neumann one is used for pressure. In the case without heat transfer, a Neumann condition is
imposed also for temperature.

The computational domain is represented by a squared 2D cavity with a side of 0.1 m. Whereas the
developed algorithm was applied to a grid with medium refinement, a fine one was used for the standard
segregated method, to produce synthetic observations, and for comparison, as shown in Figure 3.

As experimental data for the filter, synthetic measurements are employed. These are taken from a
CFD simulation performed on a very fine grid (100,000 elements) and perturbed with a known noise
to obtain very accurate results. Since in most cases experimental data are provided only in sparse
positions within the domain, this synthetic observation is taken only in a reduced number of domain
cells, as shown in Figure 3. It must be noted how the observation positions are different for the two
quantities of interest to simulate the case of real experimental data. Thus, the synthetic measurements
of velocity and temperature are not strictly related one with the other, because the implementation
of the Kalman filter treats them as two separate quantities. The random uncertainty associated with
real measurements is assumed to follow a normalized Gaussian distribution, to model the white
noise. Therefore, the experimental observations are represented by the input data (namely, the CFD
simulation performed on a very fine grid) in sparse locations contaminated with randomly generated
white noise.
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(a) (b)

Figure 3. Numerical grids employed for the test case (not in scale). (a) medium-refined grid with 3600
elements and space discretization 0.002 m, used for the integrated algorithm. The blue and red dots
represent, respectively, the locations where the artificial observation for velocity and temperature are
taken. (b) High-refined grid with 100,000 elements and space discretization 0.00001 m, used to evaluate
the reference CFD solution and to extract the synthetic data used as observation.

4.2. Test Results

The performed test cases are presented by increasing complexity of the underlying problem.
In all of them, the main focus is on numerical analysis to highlight the properties of the developed
algorithms. The three cases considered are summarized in Table 1.

Table 1. Summary of the algorithms and cases.

Method Kalman Correction (Velocity) Kalman Correction (Temperature)

PISO + KF Yes No
PIMPLE + KF Yes No

Temperature + KF Yes No

In all cases, the simulation is run until convergence is reached. As convergence criterion, the value
of the initial residuals, being the normalized difference between the solution at two consecutive
time steps, is taken. The tolerance of the iterative algorithm is fixed to 10−6, and when the initial
residuals value falls below this threshold, the solution is considered converged, as it is not changing in
a significant way.

4.2.1. Kalman-PISO Algorithm

In the first test, the segregated PISO algorithm is coupled with the standard Kalman filter.
The simulation is performed until 100 s with a constant time step of 5 · 10−3 s. Figure 4 shows
the velocity of the standard algorithm and of the integrated algorithm (evaluated on the same grid) at
different times, along with the difference between the left solution and the reference one computed on
the fine grid. As expected, this difference decreases in the overall domain except in the top right corner
of the square cavity. Although in the present work the location of the observation was taken arbitrarily,
the behavior of the misfit shown here can be used to a posteriori optimize the sensor’s location.

In Figure 5, the time evolution of the average Kalman gain is shown. It can be seen how the mean
value of the gain quickly decreases from 1, meaning that the experimental measurements weights
more with respect to the model when computing the new system state, to a value very close to zero,
meaning that the model weights more with respect to the experimental data.
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  (a) (b) (c)

Figure 4. Contours of the velocity of the coupled algorithm with: the Kalman filter (a); the standard
PISO algorithm (b); and the difference between the time solutions of the filter and of the standard
algorithm computed on the finest mesh (c)
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Figure 5. Time evolution of the average Kalman gain for velocity within the domain, highlighting its
exponential-like behavior and its stationary value once convergence is reached.

This behavior highlights how observations are much more significant at the beginning of the
simulation, when the knowledge associated with the model is lower (because there is less information
about the past history of the model evolution), and experimental data somehow compensate this lack
of information. As the simulation goes on, the model evolves as well, and more and more information
about its past history are available. Therefore, the importance of observations decreases in time, until a
stationary value is reached. In Figure 6, which represents the time evolution of the maximum value of
the normalized misfit, computed as the greatest absolute point-wise difference between observation
and time solution, it can be seen how, when the gain reaches a stationary value, the misfit value
presents a plateau. This implies that the relevance of observations is very low (but not zero), and that
convergence has been reached. As a further figure of merit, Table 2 compares the overall values of the
χ2 over all time steps of the solution computed with the standard algorithm and the one computed
with the integrated one. As expected, the χ2 for the integrated algorithm is much lower than the one
for the standard algorithm, signaling a better fit with the model.

Table 2. Comparison between the χ2 for the segregated method and the integrated algorithm.

Segregated Integrated

0.145 0.065

As an evaluation of the effect of the Kalman filter, the misfit evaluated for the corrected velocity
on a coarse grid is compared to the one evaluated for a non-corrected velocity on the same grid. In both
cases, convergence is reached fairly quickly, however for the former the final, stationary value is one
order of magnitude lower than the latter case, highlighting the performance improvement of the CFD
algorithm due to the implementation of a Kalman filter correction, and without the need of a mesh
refinement. The same behavior can be seen in Figure 7, when computing the normalized L2 error.
These plots show that the time solution computed with the developed algorithm is quite close both to
the CFD one and to the observation, and that the performance of the filter on the coarse grid is much
better than the one for the segregated method on the same mesh.

In terms of computational times, the use of the integrated algorithm causes an increase of the time
needed to perform a single time iteration, and the convergence speed is lower than the segregated
method only. However, given the same grid the results obtained with the filter are more accurate
than the one obtained with the segregated method only. The addition of the filter to the CFD solver
causes an increase of roughly 20% in terms of computational time with respect to the case without it
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(considering the same coarse grid), while providing higher accuracy. On the other hand, this increase
is much lower than the one caused by mesh refinement, which is about ten times as much, as shown in
Table 3.
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Figure 6. Time evolution of the maximum normalized misfit between observation and CFD solution.
This misfit is computed as the difference between the observations (cleaned from the noise) and the
CFD solution computed on the coarse grid and corrected by the Kalman filter.
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Figure 7. Time evolution of the maximum normalized L2 error between observation and CFD solution.
The red line is computed as the error between the reference solution computed on the fine grid, and the
one evaluated on the coarser grid, without the correction by the filter. In the case of the green line, the
CFD solution on the coarser grid has been corrected by the Kalman filter.

Table 3. Comparison between the run times for the segregated method and the integrated algorithm.

Test Case Iteration Time Convergence Time Convergence Iterations

PISO + KF 2.60 s 29.88 s 290
PISO 2.09 s 19.99 s 250

PISO (Fine mesh) 20.87 s 198.87 s 2495
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4.2.2. Kalman-PIMPLE Algorithm

In the second test, the segregated PIMPLE algorithm is coupled with the standard Kalman filter.
The simulation is again performed until 100 s, with an initial time step of 5 · 10−3 s. With respect to the
PISO method shown above, PIMPLE is characterized by an embedded time-adaptivity feature, which
depends on the maximum value of an a-dimensional quantity known as the Courant number, defined
as follows:

Co =
uδt
δx

(48)

At every iteration, a new time step is computed, such that the maximum Courant number
remains below a certain threshold. This feature of the PIMPLE algorithm must be stressed because
the uncertainty associated to the model is related to the time step. Since this uncertainty ultimately
affects the augmented prediction, the influence of time adaptivity on the performance of the integrated
algorithm must be checked. It is important to point out that the PISO and PIMPLE algorithms solve
the same equations, and that the main difference between the two is that the latter uses an inner
predictor–corrector loop for the momentum and pressure equations, solving them more times within
the same iteration to speed up convergence and accuracy.

In Figure 8, the time evolution of the average Kalman gain for the algorithm with time adaptivity
is shown. As can be seen, the behavior of the gain is exactly the same as the one shown by the PISO
algorithm, despite the varying time step.
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Figure 8. Time evolution of the average Kalman gain for the PISO algorithm with fixed time step equal
to 0.005 s (a) and the PIMPLE algorithm (b) with time adaptivity and initial time step equal to 0.005 s.

As shown by Equation (40), the uncertainty associated to the model has been modeled as
dependant from the time step. Therefore, the differences between the two algorithms will be more
significant as the error on the numerical model increases. To highlight the influence of the time step
and the time-adaptivity feature of the PIMPLE method, an higher initial δt, equal to 0.01 s, is used,
enough to show the difference on the performance of the Kalman filter between the PISO and PIMPLE
algorithms. Both the average gain (Figure 9) and the normalized L2 error (Figure 10) are lower in the
case of PIMPLE, as expected since the adaptive time step is used. It is thus expected that an increase of
the time step will lead to worse performance of the filter, in terms of higher average gain and higher
normalized L2 error.

The present analysis leads to the conclusion that the Kalman gain decreases monotonically with
both algorithms. Its performance depends on the specific application the filter is studied on, and in
particular whether the local value of the Courant number (Equation (48)) is such that it causes an
increase or decrease of the time step. The influence of the time step is strictly related on the error
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associated to the model, through the term Q. When the model uncertainties are lower, the influence of
the time step on the filter performance is lower. In the same vein, when the error associated with the
model is not negligible with respect to the one associated with the observation, the model prediction is
always corrected by the filter with the experimental data, and thus the gain does not go to zero even
when a steady-state is reached.
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Figure 9. Time evolution of the average Kalman gain for the PISO algorithm (a) and the PIMPLE
algorithm (b) with time adaptivity and initial time step equal to 0.01 s.
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Figure 10. Time evolution of the normalized L2 error for the PISO (a) and the PIMPLE algorithm (b)
with time adaptivity and initial time step equal to 0.01 s. In both cases, the red lines represent the
difference between the reference solution and the one computed on the coarser grid without correction,
whereas in the green ones the coarser solution is corrected by the filter.

In Figure 11, the time evolution of the maximum value of the normalized misfit, computed as the
greatest absolute point-wise difference between observation and time solution, is described. It can
be seen how this value quickly decreases to 10−1, comparable with the one obtained by the PISO
algorithm. Despite the higher δt, the misfit is quite similar, meaning that, in this particular test study,
the PIMPLE algorithm is performing better than the PISO one.

Table 4 compares the overall values of the χ2 over all time steps of the solution computed with
the standard algorithm and the one computed with the integrated one. Again, the χ2 for the integrated



Materials 2018, 11, 2222 18 of 24

algorithm is much lower than the one for the standard algorithm, signaling a better fit with the model
even with respect to the PIMPLE algorithm.
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Figure 11. Time evolution of the maximum normalized misfit between observation and CFD solution
(with and without correction by the filter).

Table 4. Comparison between the χ2 for the segregated method and the integrated algorithm.

PISO PIMPLE Integrated

0.145 0.096 0.065

In terms of computational times, the time required by the PIMPLE algorithm to perform a single
iteration is roughly the same as the one needed by the PISO method, however the convergence speed
for the fine mesh is much lower. The advantage of using the integrated method is much more evident
in this case than in the previous one. Indeed, at the expense of a slight increase of the convergence time,
the integrated algorithm gives results comparable to the ones obtained using a fine mesh. The increase
in time needed by the filter remains very small compared to the one needed by mesh refinement. These
results are summarized in Table 5.

Table 5. Comparison between the run times for the segregated method and the integrated algorithm.

Test Case Iteration Time Convergence Time Convergence Iterations

PIMPLE + KF 3.01 s 26.54 s 1256
PIMPLE 2.28 s 17.74 s 1104

PIMPLE (Fine mesh) 109.03 s 2679.58 s 6750

4.2.3. Kalman-Temperature Algorithm

In this test, the temperature equation under the Boussinesq approximation is added to the
segregated algorithm. When dealing with heat transfer, the coupling between velocity and temperature
must be considered along with the one between velocity and pressure. However, the Kalman filter
does not take into account this relationship, and the two quantities are predicted separately. In the
following, only temperature measurements are adopted for the filter to check whether the algorithm is
able to improve the accuracy of both the temperature prediction and the velocity prediction. This is of
particular interest because, as mentioned above, is not straightforward to obtain experimental data on
velocity. Again, the simulation is performed until 100 s with a constant time step of 5 · 10−3 s. Figure 12
shows the temperature of the standard algorithm and of the integrated algorithm (evaluated on the
same grid) at different times, along with the difference between the integrated and the reference one
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computed on the fine grid. Again, the behavior of the misfit in the domain can be used for a posteriori
optimization of the sensor’s location.

(a) (b) (c)

Figure 12. Temperature profile within the domain of: the coupled algorithm with Kalman filter (a);
the standard PISO algorithm (b); and the difference between the time solutions of the filter and of the
standard algorithm computed on the finest mesh (c).
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Now, the quantity that couples temperature and velocity is the mass flux. First computed from
the latter, it is used in the prediction of the former. Therefore, it is likely that, if the mass flux
computed from the corrected velocity remains consistent with the one evaluated from the segregated
algorithm, the integrated method will be able to correctly predict the state of the system. For this
reason, the normalized L2 error for the mass flux is computed and shown in Figure 13. Clearly, the mass
conservative sub-step within the algorithm is necessary to have a consistent mass flux. Indeed, the
normalized L2 error for the flux, as computed by the algorithm with mass conservative sub-step, is
one order of magnitude lower than the one computed by the algorithm without sub-step. This also
guarantees the solution to be mass conservative.
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Figure 13. Time evolution of the normalized L2 error for the mass flux. This error represents the
difference between the reference mass flux computed on the fine grid, and the ones computed on
the coarser ones with the correction by the filter, respectively, without (red) and with (green) the
sub-stepping correction in the algorithm.

The results for the coupled case are now presented. Figure 14 shows the time evolution of the
average Kalman gain for temperature. As seen in the previous cases, this behavior highlights how
observations are much more significant at the beginning of the simulation, when the knowledge
associated with the model is lower (because there is less information about the past history of the
model evolution), and experimental data somehow compensate this lack of information. As the
simulation goes on, the model evolves as well, and more and more information about its past history
is available. Therefore, the importance of observations decreases in time, until a stationary value
is reached.

In Figure 15, the maximum value of the normalized misfit, computed as the greatest absolute
point-wise difference between observation and time solution, is shown both for velocity and
temperature. It is worth reminding how only temperature observations are available, meaning
that only the temperature prediction is augmented by the Kalman filter, and indeed the maximum
misfit for temperature quickly decreases below 10−3. However, the most significant result is that also
the maximum misfit for velocity decreases, despite observations for this quantity not being available.
This implies that also the velocity prediction is being augmented by the presence of temperature
observations only, thus proving the ability of the algorithm to provide an accurate and improved
estimation of both quantities of interest even without experimental data on velocity. This can be
explained by the fact that the velocity field is now computed considering the augmented temperature
field. The same behavior can be seen in Figure 16, when computing the normalized L2 error. These plots
show that the time solution computed with the developed algorithm is quite close both to the CFD one
and to the observations.
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Figure 14. Time evolution of the average Kalman gain for temperature, highlighting its exponential-like
behavior and the stationary value reached at convergence.
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Figure 15. Time evolution of the maximum normalized misfit between observation and solution.
Note that the velocity is not actually corrected by the filter; rather, temperature is corrected, and this
augmented value is used in the prediction of the velocity field.

Table 6 compares the overall values of the χ2 over all time steps of the solution computed with the
standard algorithm and the one computed with the integrated one, for both velocity and temperature.
As expected, for both quantities, the χ2 for the integrated algorithm is much lower than the one for the
standard algorithm, signaling a better fit with the model.

Table 6. Comparison between the χ2 for the segregated method and the integrated algorithm.

Quantity Segregated Integrated

Velocity 0.185 0.085
Temperature 25.65 18.43
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Figure 16. Normalized L2 error for velocity and temperature. In the figures, the red and blue line
represent the error evaluated between the reference solution and the one evaluated on a coarser grid
without the correction provided by the filter, respectively, for velocity and temperature. In the case
of the green line, temperature is now corrected by the Kalman filler, and thus velocity is computed
starting from improved temperature values (however, the velocity itself is not corrected).

In terms of computational times, the use of the integrated algorithm causes an increase of the time
needed to perform a single time iteration, and the convergence speed is lower than the segregated
method only. However, given the same grid, the results obtained with the filter are more accurate
than the one obtained with the segregated method only. The addition of the filter to the CFD solver
causes an increase of roughly 30% in terms of computational time with respect to the case without it
(considering the same coarse grid), while providing higher accuracy. On the other hand, this increase
is much lower than the one caused by mesh refinement, which is about ten times as much, as shown in
Table 7.

Table 7. Comparison between the run times for the segregated method and the integrated algorithm.

Test Case Iteration Time Convergence Time Convergence Iterations

Temperature+Kalman 3.84 s 50.43 s 3171
Temperature 2.69 s 37.66 s 2799

Temperature (Fine mesh) 148.53 s 412.57 s 4000

5. Conclusions

The present research work describes the development of a new solver for incompressible flow
based on the integration between the segregated methods and the Kalman filter. Following the
work found in [16], the aim of this approach is to reduce the uncertainties associated with the
numerical simulation by the combination of experimental data within the computational framework.
This integration leads to the evaluation of an augmented flow state prediction, accounting for both
the level of confidence in the model and in the observation. Through the use of the segregated
methods, which perform a linearization of the system of equations that characterizes non-isothermal
incompressible flows, mass conservation of the augmented state is guaranteed.

As a preliminary test, the developed method was studied against the classic benchmark of
the 2D lid-driven cavity. Three different cases, of increasing complexity, were considered. First,
the Kalman filter was integrated with the standard PISO method. Secondly, the integration of the
filter was extended to the PIMPLE algorithm, taking into account its time-adaptivity feature. Lastly,
the algorithm was further expanded to allow the integration of temperature observations. In this case,
despite the presence of temperature experimental data only, it was shown how the algorithm is able to
improve the prediction of both velocity and temperature. In all the above cases, to test the capabilities
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of the new algorithm, synthetic measurements for the two quantities of interest were provided on a
limited number of grid elements.

Overall, the developed method shows better performances than the standard segregated approach
(with respect to the same numerical grid), at the expense of an increase of computational time roughly
equal to 15%. The obtained results also highlight how the integration of the filter with the PIMPLE
algorithm offers some advantages with respect to the PISO one, while requiring additional computational
time. Future works will be devoted to the extension of this technique, for example by extending
the algorithm to deal with compressible fluids and to model heat transfer without the Boussinesq
approximation. The development of a posteriori model for the generation of the probability distribution
of the measurement noise (in the present work, a Gaussian distribution was considered as an a priori
model) in the case of real observation data is also a point of interest. In addition, the combination of the
developed model with a reduced order method is currently under study [27–29].

All the examples and figures are available online at https://figshare.com/articles/An_implemen
tation_of_the_mass_conservative_Kalman_Filter_for_computational_thermo-fluid_dynamics_/717
7004 [30].
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