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Abstract: Non-propagating waves have great potential for crack evaluation, but it is difficult
to obtain the complex solutions of the transcendental dispersion equation corresponding to the
non-propagating wave. This paper presents an analytical approach based on the orthogonal function
technique to investigate non-propagating Lamb-like waves in a functionally graded piezoelectric
spherical curved plate. The presented approach can transform the set of partial differential equations
for the acoustic waves into an eigenvalue problem that can give the generally complex wave
numbers and the field profiles. A comparison of the obtained results with the well-known ones
in plates is provided. The obtained solutions of the dispersion equation are shown graphically
in three dimensional frequency-complex wave number space, which aids in understanding the
properties of non-propagating waves better. The properties of the guided wave, including real,
purely imaginary, and complex branches in various functionally graded piezoelectric spherical
curved plates, are studied. The effects of material piezoelectricity, graded fields, and mechanical
and electrical boundary conditions on the dispersion characteristics, are illustrated. The amplitude
distributions of displacement and electric potential are also discussed, to analyze the specificities of
non-propagating waves.

Keywords: non-propagating wave; functionally graded piezoelectric material; orthogonal function
technique; dispersion; displacement distribution

1. Introduction

Guided ultrasonic waves (GUW) are widely used as a tool for various problems in structural
health monitoring and nondestructive evaluation. Lamb or Lamb-like waves are of great interest
for nondestructive testing of the structures, due to their long propagation distances and their
potential for interacting with defects [1,2]. However, some difficulties can arise in the recognition
and in the interpretation of some parts of signals that are caused by the large number of practical
interaction problems between defects and guided waves. If the defects are near the edge of a structure,
the interaction would be much more sophisticated, since the wave field near the defect or the
edge is transformed, and it represents a diverse superposition of propagating and non-propagating
(evanescent) modes [3,4]. Non-propagating waves would play an important role in the reconstruction
of defect shapes. These waves can be practically detected in the close vicinity of discontinuities.
The error would be generated when processing the guided wave signal without considering
non-propagating modes, which leads to identification errors regarding the shapes and sizes of defects.
Therefore, it is necessary to have a deep understanding of the non-propagating waves. However,
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the research on non-propagating waves in waveguides is limited, especially for demanding cases such
as those involving composite materials or curved structures.

In recent years, functionally graded piezoelectric materials (FGPMs) have received considerable
attention, with widespread use in acoustic electronic devices, measuring instruments, and vibration
control devices [5]. FGPM can improve the important physical properties of coupling between electrical
and mechanical properties, and interface problems, because of the intrinsic advantages of functionally
graded material (FGMs), thus increasing the reliability and lifespan of the modern piezoelectric
structures [6]. Many applications are tightly related to the wave propagation of FGPM. Demands from
the nondestructive evaluation and ultrasonic technology fields make the study of wave propagation in
FGPM structures a topic of practical importance. There are many computational models and methods
that are available in literature to investigate different waves propagating in various FGPM structures,
including the special function method [7,8], the power series method [9], the Legendre polynomial
method [10,11], the inhomogeneous layer element method [12], the Wentzel–Kramers–Brillouin [13,14],
the spectral element method [15], and the Peano-series expansion method [16]. The above investigations
are confined to propagating waves. Indeed, it is difficult to gain the complete root of the transcendental
dispersion equation relating the wave number to the frequency. The real roots corresponding the
propagating waves can be solved easily, but the complex roots corresponding the non-propagating
waves are difficult to obtain.

Unlike propagating wave modes, non-propagating wave modes with non-real wave numbers
decay with propagating distance. Thus, they are usually referred to as evanescent or non-propagating
waves. Many studies have shown the importance of complex waves describing the interaction
phenomena at the vicinity of the defects. Lyon [17] obtained the purely imaginary wave number
solutions for an elastic plate as early as 1955. Later, Mindlin [18] presented the complete spectrum,
including real, imaginary, and complex branches. Using the numerical spectral method, Pagneux
and Maurel [19] determined the complex Lamb wave spectrum; Quintanilla et al. [20] computed
the full dispersion solutions for guided waves in plate and cylinder structures with generally
anisotropic media. Chen et al. [21] investigated the shear horizontal (SH) waves theoretically with
purely imaginary wave numbers in a piezoelectric plate. Using the boundary element method,
Daros [22] investigated the SH waves in a class of inhomogeneous anisotropic media, and presented
the stress intensity factors-frequency curves for exponential inhomogeneous solid in non-propagating
frequency range. Yan and Yuan [23] used a semi-analytical approach to investigate wave mode
conversion from the SH evanescent wave into the propagating wave. Using spectral methods, Dubuc
et al. [24] studied propagating and non-propagating guided waves in a nonuniformly stressed plate.
These studies on non-propagating waves heavily focused on simple materials and structures, such as
isotropic material and flat plate structures. More recently, non-propagating waves in functionally
graded piezoelectric cylindrical structures with sectorial cross-sections, and in functionally graded
piezoelectric-piezomagnetic plates, were investigated by Zhang et al. [25] and Zhang et al. [26] without
considering the different mechanical and electrical boundary conditions. So far, the spherical curved
structures have been seldom studied, which have considerable difficulty in obtaining the complete
dispersion solutions. To the best of the authors’ knowledge, the non-propagating waves in FGPM
spherical curved structures, with different mechanical and electrical boundary conditions, have not
been studied before.

The conventional approaches (root-finding routines or finite element simulations) require a tedious
iterative search procedure or a far greater coding effort to find complex roots. In this paper, we present
a method that is based on the orthogonal function technique, to determine the complex dispersion
solution, and to study the characteristics of non-propagating guided waves in a FGPM spherical
curved plate. The presented method can convert the complicated acoustic wave equations into a
classical eigenvalue problem, which can directly determine complex wave numbers for a specified real
frequency. The complete dispersion curves are plotted in three-dimensional (3D) frequency-complex
wave number space. Two known cases are given to validate the correctness of the presented method.
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The influences of piezoelectricity, graded fields, and mechanical and electrical boundary conditions
on the dispersion curves are illustrated. The amplitude distributions of the displacement and electric
potential are also discussed in detail.

2. Statement of the Problem and Basic Equations

Consider a FGPM spherical curved plate with material properties varying gradually in the r
direction. The spherical coordinate system (r, θ, φ) is used to describe the wave propagation problem,
as shown in Figure 1. Let a and b respectively denote the inner and outer radius, h the thickness,
and the radius–thickness ratio η = b/h.
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In the above three equations, Tij and Di respectively denote the stress and electric displacement.
Cij, eij and ∈ij denote the elastic, piezoelectric, and dielectric parameters of the FGPM, respectively.
εij and Ei denote the strain and the electric field, respectively. ui (i = r, θ, φ) denotes the mechanical
displacement component in the ith direction. Φ is electric potential, and ρ is mass density.

The material parameters vary gradually in r direction; thus, they are the functions of r and can be
fitted into:

f (r) = f (l)(r/h)l , l = 0, 1, 2 . . . , L (4)

where l is the order number, f represents the material parameters, namely C, e, ∈ and ρ. f (l)

are the coefficients that are determined to fit the polynomials into the initial material constants.
For homogeneous material, f (r) = f (0) and f (l) are 0 when l > 0.

Different boundary conditions are considered as follows. For the traction-free boundary condition,
it requires that Trr

∣∣r=a,b = 0, Trθ

∣∣r=a,b = 0, Trφ

∣∣r=a,b = 0. For the mechanical fixed boundary condition,
ui
∣∣r=a,b = 0. For the electric open circuit, Dr

∣∣r=a,b = 0, and for the electric closed circuit, Φ
∣∣r=a,b = 0.

Taking the traction-free and electricity open-circuit case as an example, we introduce a rectangular
window function X(r) to satisfy the material parameters depending on the position, which can be
expressed as:

f (r) = f · X(r), X(r) =

{
1, a ≤ r ≤ b
0, elsewhere

(5)

The derivative of the rectangular window function is δ(r − a) − δ(r − b), with δ being a
step function. This treatment can automatically introduce the boundary conditions into the wave
propagation equations [27,28].

For a free harmonic wave propagating in the circumferential direction of a piezoelectric spherical
waveguide, the mechanical displacement and electric potential can be expressed as:

ui = exp(ikbφ− iωt)Ui(r), Φ = exp(ikbφ− iωt)Y(r) (6)

where Ui and Y represent the vibration amplitude in the ith (i = r, θ, φ) direction and the amplitude
of the electric potential, respectively. k is wave number, ω is the angular frequency, and i is the
imaginary number.

Substituting Equations (3)–(6) into Equation (2) with following substitution into Equation (1), we
can obtain the governing differential equations in terms of the displacement and electric potential
components. Here, the case of an orthotropic FGPM spherical curved plate with polarization in the
thickness direction is given:

1
hl

{
rl+2

(
C(l)

33 U′′ + e(l)33 Y′′
)
+ rl+1

[
(l + 2)C(l)

33 U′ + ikb
(

C(l)
23 + C(l)

44

)
W ′ +

(
(l + 2)e(l)33 − e(l)31 − e(l)32

)
Y′
]
+ rl

[
(l + 1)

(
C(l)

13 + C(l)
23

)
U

−
(

C(l)
11 + C(l)

22 + 2C(l)
12 + k2b2C(l)

44

)
U + ikb

(
(l + 1)C(l)

23 − C(l)
12 − C(l)

22

)
W − C(l)

44 W − k2b2e(l)24 Y
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X(r)

+(δ(r− a)− δ(r− b)) 1
hl
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(7a)

1
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(
e(l)32 + e(l)24

)
W ′ − (l + 2) ∈(l)33 Y′
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[(
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(

e(l)31 + e(l)32

)
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where U, V, and W represent the amplitude of vibration in the r, θ, and φ directions. The prime denotes
the derivative with respect to r.

It is obvious that Equation (7b) is independent, which represents the SH wave. The other three
equations are coupled with each other, which are associated to the Lamb-like wave. Equation (7b) is
relatively easy to be solved analytically, and it has obtained much attention, so here we just consider
the solution of the Lamb-like wave.

We expand the field quantities into the Legendre polynomial basis:

U(r) =
∞

∑
m=0

p1
mQm(r), V(r) =

∞

∑
m=0

p2
mQm(r), Y(r) =

∞

∑
m=0

p3
mQm(r) (8)

where pα
m(α = 1, 2, 3) are the expansion coefficients, Qm(r) is an orthonormal set of polynomials in

interval [a, b], and Qm(r) =
√

2m+1
h Pm(

2r−(b+a)
h ), with Pm being the polynomial of order m.

Substituting Equation (8) into Equations (7a), (7c), and (7d), then multiplying both sides of each
modified equation by a complex conjugate Q∗

j
(r) with j from 0 to M, integrating over r in the interval

[a, b], reorganizing these equations into a matrix form and letting k become more apparent, we can get:

k2A · p + k1B · p + C · p = −ω2H · p (9)

where A, B, C, and H are matrices of the order 3(M + 1)·3(M + 1), which can be obtained by Equation
(7), and is given in the Appendix A p =

[
p1

m p2
m p3

m
]T .

Equation (9) is a positive-definite eigenvalue problem with real roots ω2. Note that in previous
research work (see [10,11]), Equation (9) was transformed into an eigenvalue problem with eigenvalue
ω. For the propagating wave, it is very efficient to specify real k, and then solve for ω. But for
a non-propagating wave, the previous approach is useless because k is complex. It involves a
multivariable search, including the search of the real and imaginary parts of k for a given real ω.
In order to overcome this difficulty, we make some improvements regarding the solving process, which
must be done in order to obtain the complete solutions, including the real, imaginary, and complex
wave number solutions.

Introducing a new vector q = k · p, then substituting it into Equation (9), leads to:

k ·A · q + B · q = −(C−H)p (10)

Multiplying two sides of Equation (10) by inverse matrix A−1, and rearranging the terms yields:

A−1(H−C)p− (A−1B)q = k · q (11)

Combining Equation (11) and the above vector q = k · p, and assuming R = [p q]T , we have:[
0 I

A−1(H−C) −A−1B

]
R = k ·R (12)

where I is the identity matrix.
The problem is then transformed into an eigenvalue problem with complex eigenvalues k(ω),

which can be solved using the routine “Eigenvalues” function of Mathematica.
The computation technique for the electricity closed circuit case is similar to the electricity

open-circuit case. For the traction-free and electricity closed circuit boundary conditions, we need to
modify Equations (2) and (8) as follows:

Tij =
(
Cklεij − eklEij

)
X(z), Di = eklεij+ ∈kl Ei (13)
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U(r) =
∞

∑
m=0

p1
mQm(r), V(r) =

∞

∑
m=0

p2
mQm(r), Y(r) =

∞

∑
m=0

p3
mQm(r)(r− a)(r− b) (14)

Similarly, we can obtain the following governing the differential equations:

1
hl

{
rl+2

(
C(l)

33 U′′ + e(l)33 (Y′′ (r− a)(r− b) + 2Y′(2r− a− b) + 2Y)
)
+ rl+1

[
(l + 2)C(l)

33 U′ + ikb
(

C(l)
23 + C(l)

44

)
W ′+(

(l + 2)e(l)33 − e(l)31 − e(l)32

)
(Y′(r− a)(r− b) + Y(2r− a− b))

]
+ rl

[
(l + 1)

(
C(l)

13 + C(l)
23

)
U −

(
C(l)

11 + C(l)
22 + 2C(l)

12 + k2b2C(l)
44

)
U

+ikb
(
(l + 1)C(l)

23 − C(l)
12 −C(l)

22 − C(l)
44

)
W − k2b2e(l)24 Y(r− a)(r− b)

]}
X(r) + (δ(r− a)− δ(r− b)) 1

hl

{
rl+2

(
C(l)

33 U′

+e(l)33 (Y
′(r− a)(r− b) + Y(2r− a− b))

)
+ rl+1

[(
C(l)

13 + C(l)
23

)
U + ikbC(l)

23 W
]}

= − ρ(l)rl+2ω2

hl UX(r)

(15a)

1
hl

{
rl+2C(l)

44 W ′′ + rl+1
[(

ikbC(l)
23 + ikbC(l)

44

)
U′ + (l + 2)C(l)

44 W ′ + ikb
(

e(l)32 + e(l)24

)
(Y′(r− a)(r− b) +Y(2r− a− b))]

+rl
[
ikb
(
(l + 2)C(l)

44 + C(l)
12 + C(l)

22

)
U +

(
C(l)

66 − (l + 2)C(l)
44 − k2b2C(l)

22

)
W + ikb(l + 2)e(l)24 Y(r− a)(r− b)

]}
X(r)

+(δ(r− a)− δ(r− b)) 1
hl

{
rl+2 C(l)

44 W ′ + rl+1
(

ikbC(l)
44 U −C(l)

44 W + ikbe(l)24 Y(r− a)(r− b)
)}

= − ρ(l)rl+2ω2

hl WX(r)

(15b)

1
hl

{
rl+2

(
e(l)33 U′′− ∈(l)33 (Y′′ (r− a)(r− b) + 2Y′(2r− a− b) + 2Y)

)
+ rl+1

[(
e(l)31 + e(l)32 +(l + 2)e(l)33

)
U′

+ikb
(

e(l)32 + e(l)24

)
W ′ − (l + 2) ∈(l)33 (Y′(r− a)(r− b) + Y(2r− a− b))

]
+ rl

[(
(l + 1)

(
e(l)31 + e(l)32

)
− k2b2e(l)24

)
U

+ikb
(
(l + 1)e(l)32 − e(l)24

)
W + k2b2 ∈(l)22 Y(r− a)(r− b)

]}
= 0

(15c)

The rest of the deduction process is similar, and the other boundary cases are not given here,
to save space.

3. Numerical Results

In the paper, the FGPM spherical curved plate is composed of PZT-4 (inner surface) and
Ba2NaNb5O15 (outer surface). Their material parameters are given in Table 1. We use the Voigt-type
model, as described in the literature [12], to calculate the effective material property, which is expressed
as:

F(r) = FP + (FB − FP)VB(r) (16)

where FP and FB respectively represent the material properties of PZT-4 and Ba2NaNb5O15.
VB represents the volume fraction of Ba2NaNb5O15. In this work, we consider four different gradient
fields, VB(r) = ( r−a

h )
n, n = 1, 2, and 3, namely the linear, quadratic, and cubic graded fields, and the

sinusoidal graded field VB(r) = sin(π
2

r−a
h ).

Table 1. Material parameters of two piezoelectric materials.

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

Ba2NaNb5O15 23.9 10.4 5.0 24.7 5.2 13.5 6.5 6.6 7.6
PZT-4 13.9 7.8 7.4 13.9 7.4 11.5 2.56 2.56 3.05

e15 e24 e31 e32 e33 ε11 ε22 ε33 ρ

Ba2NaNb5O15 2.8 3.4 −0.4 −0.3 4.3 196 201 28 5.3
PZT-4 12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5

Units. Cij (1010 N/m2), εij (10−11 F/m2), eij (C/m), ρ (103 kg/m3).

3.1. Approach Validation and Convergence of the Problem

Since there has been no research on the non-propagating waves in FGPM structures before,
we compute an isotropic plate, and we compare our results with the known results in the literature [20]
from the spectral collocation method to check the validity of our approach. The resulting dispersion
curves for a spherical curved steel plate with a big radius-thickness ratio (η = 100, h = 1 mm),
approximately regarded as a flat plate, are shown in Figure 2. The material parameters are
ρ = 7932 kg/m3, C11 = 281.757 GPa, C12 = 113.161 GPa, and C44 = 84.298 GPa, and the others are
zero. For the three-dimensional plot, we adopt the conventional non-dimensional axis convention.

The non-dimensional wave number and frequency are defined by Ψ = kh/π and Ω = ωh
π

√
ρ

C44 .



Materials 2018, 11, 2363 7 of 17

It clearly shows that the results obtained by the present approach agree well with the available results
from the spectral collocation method.
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The material in the above example is isotropic. We then also calculate the dispersion curves of 
SH wave in a piezoelectric plate, and make a comparison with the available results in the literature 
[21], which serves as a further validation of our approach. The FGPM degenerates to a homogeneous, 
piezoelectric material. The material is GaAs, and the parameters given in the literature [21] are C11 = 
C22 = C33 = 118.8 GPa, C44 = C55 = C66 = 59.4 GPa, C12 = C13 = 53.8 GPa, e14 = e25 = e36 = 0.154 C/m, ϵ11 = ϵ22 = 
ϵ33 = 110.625e−12 F/m2, ρ = 5307 kg/m3, and h = 1 mm. The resulting dispersion curves of the SH wave 
are shown in Figure 3, where the black dotted lines are the analytical results in the literature, and the 
red ones are our results. The numerical solutions by using our approach are entirely consistent with 

Figure 2. Dispersion curves of first three Lamb modes for a steel plate; real branch in blue, purely
imaginary branch in black, complex branch in red. (a) Authors’ results, (b) Quintanilla et al.’s results
from the spectral collocation method.

The material in the above example is isotropic. We then also calculate the dispersion curves of SH
wave in a piezoelectric plate, and make a comparison with the available results in the literature [21],
which serves as a further validation of our approach. The FGPM degenerates to a homogeneous,
piezoelectric material. The material is GaAs, and the parameters given in the literature [21] are
C11 = C22 = C33 = 118.8 GPa, C44 = C55 = C66 = 59.4 GPa, C12 = C13 = 53.8 GPa, e14 = e25 = e36 = 0.154
C/m, ε11 = ε22 = ε33 = 110.625e−12 F/m2, ρ = 5307 kg/m3, and h = 1 mm. The resulting dispersion
curves of the SH wave are shown in Figure 3, where the black dotted lines are the analytical results in
the literature, and the red ones are our results. The numerical solutions by using our approach are
entirely consistent with the analytical results, which show that the present approach is an effective
method in solving guided wave problems.
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We then discuss the convergence of the present approach. We calculate the dispersion curves of
SH wave in the above GaAs plate, for various “M”, as shown in Figure 4. It can be seen that more and
more order modes converge as M increases. When M = 8, the first four modes are convergent. The first
five converge when M = 9, the first six when M = 10, and the first ten when M = 15. Thus, we can think
that at least the first M/2 modes are convergent. From these results, a good convergence of the present
approach can be observed. Similarly, this can be concluded for the Lamb-like wave. In order to save
space, it is not shown here. We take M = 30 in this paper.
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3.2. Complete Frequency Spectrum for a FGPM Spherical Curved Plate

Generally, 3D dispersion curves can provide a clearer visualization and a more in-depth
understanding of the characteristics for the guided wave. Figure 5 shows the complete 3D frequency
spectrum of the Lamb-like wave in a linear FGPM spherical curved plate with an open circuit, η = 10
and a = 9 mm. From these curves, it can be clearly seen that there exists a finite number of real
wave modes, and an infinite number of imaginary and complex wave modes, at any given frequency.
The purely real and imaginary branches always arise in pairs of opposite signs. The complex ones
arise in quadruples of complex conjugates. Purely imaginary and complex solutions correspond to
the non-propagating wave. In view of the symmetry, Figure 6a shows one quadrant of the spectrum,
and Figure 6b shows the projection onto the Ω-Re(Ψ) and Ω-Im(Ψ) planes for clarity. For purely
imaginary branches, most begin at the Ω = 0 plane, and they terminate at cut-off frequencies on the Ω
axis, while a few with small wave numbers begin a certain cut-off frequency and end at the adjacent
one. For complex branches, most begin at the Ω = 0 plane and terminate at the local minima of the
other branches, at low frequency. The real parts of these modes are usually small, and they reduce with
increasing frequency, while a few interlinking the gap between two neighboring imaginary branches
at high frequency appear.
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Figure 7 shows the phase velocity dispersion and attenuation curves of the first few real
and complex branches. The dimensionless phase velocity and frequency and wave number are
defined by Vp = ω/(Re(k) ·

√
C55/ρ), f h = ωh/(2π

√
C55/ρ), and Im(kh), respectively. Apparently,

with increasing frequency, the phase velocity of a propagating mode gradually decreases to a steady
value, but the velocity of an non-propagating mode increases, and is far greater than that of a
propagating mode. For instance, the phase velocity of the fifth complex branch is beyond 6 at
fh = 3–4, but that of the real branches is below 2. Moreover, the wave dispersion is quite weak in this
frequency range.
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3.3. Influences of Piezoelectricity and Boundary Conditions on Frequency Spectrum

To investigate the influences of material piezoelectricity on the frequency spectrum, we assume
the piezoelectric and dielectric coefficients are zero while the others are invariant. Then, the FGPM
spherical curved plate degenerates to a FGM one. The resulting frequency spectrum of the FGM
spherical curved plate is shown in Figure 8. Comparison with Figure 6a, the remarkable influences
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of piezoelectricity on the propagating and non-propagating wave can be found. The influence on
the non-propagating wave is more significant. Those imaginary branches beginning at Ω = 0 plane
and terminating at cut-off frequencies disappear in the FGM spherical curved plate. The complex
branches are also very different, and another local inflection point appears on the sixth real branches
as the frequency increases. As suggested by Onoe et al. [29], the complex branch is sensitive to
material properties.
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Figures 9 and 10 present the obtained frequency spectrum of the FGPM spherical curved plates
with different mechanical and electrical boundary conditions. Comparing Figure 9 with Figure 6b,
we can notice that electricity boundary condition has a more significant effect on the complex branches
than that on the real branches. The complex branches connecting two imaginary branches disappear.
A comparison of Figure 6b with Figure 10 indicates that the effect of mechanical boundary condition
on lower order modes is greater than that on higher order modes. There are two propagating modes
below the first cut-off frequency for the mechanical free boundary condition, but these two modes do
not exist under the mechanical fixed boundary condition.
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closed-circuit boundary conditions.

3.4. Influences of Graded Field on the Frequency Spectrum

Considering the other two graded fields, cubic and sinusoidal graded shapes. The corresponding
frequency spectra are given in Figure 11. The results show that the graded fields have significant
influences on the dispersion characteristics. From a comparison between Figures 6 and 11, we can
notice that the imaginary part of the complex branches for the sinusoidal graded case, at the Ω = 0
plane, it is bigger than that for the other two cases. Interestingly, for the sinusoidal graded cases, there
exists an inflection point on the sixth real branch. For clarity, we also calculate the phase velocity
and group velocity dispersion curves of the Lamb-like propagating wave for the three graded fields,
as shown in Figures 12 and 13. The phase velocity and group velocity for the sinusoidal case is
bigger than that for the linear one, while the linear case is bigger than the cubic case. That is because
different graded fields lead to different material volume distributions. The Ba2NaNb5O15 content for
the sinusoidal graded field is the highest, and the wave velocity of Ba2NaNb5O15 is bigger than that
of PZT-4.
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3.5. Displacement and Electric Potential Fields

The amplitude distributions of physical quantities, displacement, and electric potential fields,
can be obtained according to Equations (6) and (8). We select a special position where the real branch
firstly occurs an inflection point, at about Ω = 1.2, as marked with a circle in Figure 6a. Figures 14
and 15 present the distributions of the physical quantities in the r direction and wave propagating
direction, when Ω = 1.21019, Ψ = 0.21937–0.02803 i, and Ω = 1.21815, Ψ = 0.19264, respectively.
These figures reveal that the complex branch exhibits an oscillatory distribution and propagates a
very long distance (about a few tenths of the thickness). The real branch propagates without any
attenuation. The displacement ur and electric potential distributions change along the thickness
direction in a nearly anti-symmetric manner. Moreover, the displacements of ur are very similar at the
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two frequencies, implying that the non-propagating wave mode will turn into a propagating wave
mode with increasing frequency.Materials 2018, 11, x FOR PEER REVIEW  14 of 17 
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4. Conclusions

This paper presents a method based on the orthogonal function technique to compute the complete
3D spectrum, including real, purely imaginary, and complex branches, for guided wave problems in
FGPM spherical curved plates. A good agreement between our results and available numerical ones
confirms the correctness of our approach. The method throws new light onto guided wave problems
involving composite materials or curved structures, which are usually very demanding for traditional
methods. Characteristics of non-propagating Lamb-like waves in FGPM spherical curved plates are
investigated. Based on the above numerical results, some interesting conclusions can be drawn:
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(1) The presented method can transform the set of differential wave equations into an eigenvalue
problem, thus obtaining the complete solution straightforwardly, which avoids the iterative
search procedure of the traditional methods to find the complex roots;

(2) Some complex branches of the Lamb-like waves can propagate a quite long distance (more
than 10 times the plate thickness). These modes will turn into the propagating modes with
increasing frequency. Complex non-propagating modes exhibit both local vibration and local
propagation, and purely imaginary non-propagating modes exhibit only local vibration and no
local propagation;

(3) Some non-propagating modes have a noticeably higher phase velocity than the propagating
modes. Also, the wave dispersion of the non-propagating mode is quite weak in a certain
frequency range;

(4) The piezoelectricity, graded field, and mechanical and electrical boundary conditions have
significant influences on non-propagating waves.
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Appendix A

The explicit expressions for the elements are:

l Aj,m
11 = − 1

hl b2C(l)
44 β(m, l, 0, j), l Aj,m

13 = − 1
hl b2e(l)24 β(m, l, 0, j), l Aj,m

22 = − 1
hl b2C(l)

22 β(m, l, 0, j), l Aj,m
31 = − 1

hl b2e(l)24 β(m, l, 0, j),
l Aj,m

33 = 1
hl b2 ∈(l)22 β(m, l, 0, j), l Aj,m

12 = l Aj,m
21 = 0, l Aj,m

23 = l Aj,m
32 = 0;

l Bj,m
12 = 1

hl {ib
(

C(l)
23 + C(l)

44

)
β(m, l + 1, 1, j) + ib

[
(l + 1)C(l)

23 − C(l)
12 − C(l)

22 − C(l)
44

]
β(m, l, 0, j) + ibC(l)

23 γ(m, l + 1, 0, j)},
l Bj,m

21 = 1
hl {ib

(
C(l)

23 + C(l)
44

)
β(m, l + 1, 1, j) + ib

[
(l + 2)C(l)

44 + C(l)
12 + C(l)

22

]
β(m, l, 0, j) + ibC(l)

44 γ(m, l + 1, 0, j)},
l Bj,m

23 = 1
hl {ib

(
e(l)32 + e(l)24

)
β(m, l + 1, 1, j) + (l + 2)ibe(l)24 β(m, l, 0, j) + ibe(l)24 γ(m, l + 1, 0, j)},

l Bj,m
32 = 1

hl {ib
(

e(l)32 + e(l)24

)
β(m, l + 1, 1, j) + ib

[
(l + 1)e(l)32 − e(l)24

]
β(m, l, 0, j) + ibe(l)32 γ(m, l + 1, 0, j)},

l Bj,m
11 = l Bj,m

22 = l Bj,m
33 = 0, l Bj,m

13 = l Bj,m
31 = 0;

lCj,m
11 = 1

hl

{
C(l)

33 β(m, l + 2, 2, j) + (l + 2)C(l)
33 β(m, l + 1, 1, j) + (l + 1)

(
C(l)

13 + C(l)
23

)
β(m, l, 0, j)−(

C(l)
11 + C(l)

22 + 2C(l)
12

)
β(m, l, 0, j) + C(l)

33 γ(m, l + 2, 1, j) +
(

C(l)
13 + C(l)

23

)
γ(m, l + 1, 0, j)}

,

lCj,m
13 = 1

hl

{
e(l)33 β(m, l + 2, 2, j) +

[
(l + 2)e(l)33 − e(l)31 − e(l)32

]
β(m, l + 1, 1, j) + e(l)33 γ(m, l + 2, 1, j)},

lCj,m
22 = 1

hl

{
C(l)

44 β(m, l + 2, 2, j) + (l + 2)C(l)
44 β(m, l + 1, 1, j) +

[
C(l)

66 − (l + 2)C(l)
44

]
β(m, l, 0, j)+

C(l)
44 γ(m, l + 2, 1, j)− C(l)

44 γ(m, l + 1, 0, j)}
,

lCj,m
31 = 1

hl

{
e(l)33 β(m, l + 2, 2, j) +

[
e(l)31 + e(l)32 + (l + 2)e(l)33

]
β(m, l + 1, 1, j) + (l + 1)

(
e(l)31 + e(l)32

)
β(m, l, 0, j)+

e(l)33 γ(m, l + 2, 1, j) +
(

e(l)31 + e(l)32

)
γ(m, l + 1, 0, j)}

,

lCj,m
33 = 1

hl {− ∈
(l)
33 β(m, l + 2, 2, j)− (l + 2) ∈(l)33 β(m, l + 1, 1, j)− ∈(l)33 γ(m, l + 2, 1, j)},

lCj,m
12 = lCj,m

21 = 0, lCj,m
23 = lCj,m

32 = 0;
l H j

m = 1
hl ρ(l)β(m, l + 2, 0, j);

With:
β(m, l, n, j) =

∫ b
a Q∗j (r)r

l ∂nQm(r)
∂rn dr; γ(m, l, n, j) =

∫ b
a Q∗j (r)r

l ∂X(r)
∂r

∂nQm(r)
∂rn dr
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