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Abstract: This paper examines the effect of uniaxially aligned carbon nanotube (CNT) on flexural
and free vibration analysis of CNT-reinforced functionally graded plate. The mathematical model
includes expansion of Taylor’s series up to the third degree in the thickness co-ordinate. Since there
is a parabolic variation in transverse shear strain deformation across the thickness co-ordinate, the
shear correction factor is not necessary. A nine-node two-dimensional (2D) C0 isoparametric element
containing seven nodal unknowns per node was developed in the finite element code. The final
material properties of CNT-reinforced functionally graded plate are estimated using the extended rule
of mixture. The effect of CNT distribution, boundary condition, volume fraction and loading pattern
are studied by developing a finite element code. An additional finite element code was developed
for the study of the influence of concentrated mass on free vibration analysis of CNT-reinforced
functionally graded plate.

Keywords: functionally graded material; carbon nanotube; cubic variation of thickness co-ordinate;
finite element method; bending; free vibration; concentrated mass

1. Introduction

In the modern age, carbon nanotube (CNT)-reinforced composite plates have found considerable
application in civil, mechanical, aeronautical and marine engineering due to their exceptional
mechanical, thermal and electrical properties. The high tensile properties of CNT make CNT-reinforced
composites preferable in tension-dominated applications such as pressure vessels. The concentrated
mass is generally used to reduce the fundamental frequency to the desired value. The CNTs are
allotropes of carbon having a length scale in the order of nanometres discovered by Iijima [1], having
higher strength/weight ratio and lower density. Due to their superior properties, the CNTs are
substantially preferable as a reinforcing choice for advanced composites. The Eshelby-Mori-Tanaka
approach and a 2-D generalised differential quadrature method was used by Aragh et al. [2] for the
frequency analysis of continuously graded CNT-reinforced cylindrical panel. The effect of singly
walled carbon nanotubes (SWCNTs) on bending and vibration analysis of CNT-reinforced functionally
graded (FG-CNT) plate was studied by Zhu et al. [3] with the help of the finite element method.
Their mathematical model is based on the first order shear deformation theory (FSDT). Yas et al. [4]
developed a three-dimensional model to study the vibration behaviour of functionally graded
cylindrical panel reinforced with CNT. The element-free kp-Ritz method was used by Lei et al. [5] to
study the free vibration analysis of CNT-reinforced composite (CNTRC) plate assuming an FSDT based
displacement field. The deflection and stresses developed in CNT-reinforced composite cylinders have
been studied by Dastjerdi et al. [6] using the mesh-free method. The FSDT-based displacement model
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was adopted by Zhang et al. [7] to analyse the flexural and free vibration response of CNT-reinforced
composite panel. The Eshelby–Mori–Tanaka approached was used by them to calculate the final
properties of CNT-reinforced cylindrical panel. The ending behaviour of FG-CNTRC cylindrical shell
under mechanical loading was studied by Mehrabadi and Aragh [8]. They also incorporated the
Eshelby–Mori–Tanaka approach, to calculate the effective material properties of uniformly distributed
(UD) and FG-CNT-reinforced cylindrical shell. Budarapu et al. [9] developed a method to calculate
the natural frequencies of multi-walled CNT embedded in an elastic medium. The higher order shear
deformation theory (HSDT) is used by Sankar et al. [10] to study the static and free vibrations of
FG-CNTRC plates and sandwich plates. Nami and Janghorban [11] used a three-dimensional elastic
theory to analyse the free vibration behaviour of FG-CNTRC plate. Zhang et al. [12] explored the
behaviour of CNT-reinforced plate with elastically restrained edges, using the element-free Ritz
method incorporating FSDT, while Macias et al. [13] used FSDT along with a four-noded shell
element for the investigation of CNT-reinforced functionally graded skew plate. Zhang and Selim [14]
and Selim et al. [15] have both used Reddy’s HSDT displacement field for the dynamics analyses
of FG-CNT-reinforced composite plate. The vibration analysis of doubly curved composite shell
panel reinforced with CNT was studied by Pouresmaeell and Fzelzadeh [16]. Tornabene et al. [17]
and Fantuzzi [18] adopted a micro-mechanical model for the study of dynamic behaviour of
FG-CNT-reinforced arbitrary shaped plate and shell. They used Non-Uniform Rational B-Splines
(NURBS) curves to obtain the arbitrary shape. Banic et al. [19] explored the vibration behaviour of
composite plate and shell, reinforced with agglomerated CNT, which rested on Winkler–Pasternak
elastic foundation. The mechanical properties are estimated using a modified rule of mixture.
The non-linear thermo-elastic frequency analysis of CNT-reinforced functionally graded single and
doubly curved shell has been carried out by Mehar et al. [20]. The FSDT was used by Huang et al. [21]
to study the bending and free vibration behaviour of laminated CNT-reinforced plate. They have
used the extended rule of mixture to compute the effective properties of material and adopted
four-variable theories for a mathematical model. Asadi et al. [22] discussed the aero-thermo-elastic
behaviour of supersonic FG-CNTRC flat panel in a thermal environment. The model is based on the
FSDT incorporated with the von Karman geometric non-linearity. The experimental, numerical and
simulation model for deflection behaviour of CNTRC plate was developed by Mehar and Panda [23].
Demirbas [24] developed an elastic theory for thermal analysis of functionally graded material (FGM)
plate subjected to in-plane constant heat flux. Tornabene et al. [25] used FSDT and the generalised
differential quadrature method to analyse the free vibration behaviour of laminated nano-composite
plate and shell. They modelled each layer of the laminate as a three-phase composite. Size-dependent
analysis of functionally graded microplate by using isogeometric analysis is studied by Liu et al. [26,27].

The static and free vibration analysis of an FG-CNT-reinforced plate will be complex using elastic
solution or analytical method [15,28–31]. Apart from this, the elastic and analytical solutions are
more difficult to obtain for complex boundary conditions. Therefore, in this paper, an effort has
been made for the behavioural study of the CNT-reinforced functionally graded plate for various
combinations of end support using third order shear deformation theory (TSDT), which omit the
necessity of the shear correction factor. To the best of authors knowledge, no work has been done
on flexural and free vibration analysis of FG-CNT-reinforced plate using 2D C0 finite element (FE)
model using TSDT. In present analysis 2D C0 model is adopted along with finite element method
which are more convenient due to the low computational effort requirement. The effective material
properties of FG-CNT-reinforced plates are estimated using the extended rule of mixture. Three FE
coding (static analysis, free vibration analysis and free vibration analysis with concentrated mass) were
developed by the authors for the current model. Since there are no available results in the literature for
the bending of FG-CNT-reinforced composite plates subjected to trigonometrical loading, and free
vibration analysis of FG-CNT-reinforced composite plate with concentrated mass, hence the present
analyses results may be useful for scholars working in this field. The mode shapes of CNT-reinforced
plates are also plotted using MATLAB coding (MathWorks, Natick, MA, USA).
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2. Effective Material of CNT-reinforced Functionally Graded Plates

In the present analysis, the geometry of CNT-reinforced plates is depicted in Figure 1 and is
referred to the (φ1, φ2, ϕ) co-ordinates system. The FG-CNT-reinforced plate has a constant thickness h,
with the length of the plate a, and width b. In this work, three types of functionally graded distribution
(FG-O, FG-X and FG-V) and uniformly distributed (UD) of SWCNTs in polymer matrix across the
thickness direction is considered. The extended rule of mixture [32,33], which contains the efficiency
parameters, is incorporated for the calculation of effective material properties of the FG-CNT-reinforced
composite plate.
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E11 = η1VCNTECNT
11 + VmEm (1)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em (2)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm (3)

ν12 = V∗CNTνCNT
12 + Vmνm (4)

ρ12 = V∗CNTρCNT + Vmρm (5)

where
(
ECNT

11 , ECNT
22 , GCNT

12
)

are Young’s modulus and shear modulus of SWCNTs, respectively.
The notations (Em, Gm) are known as Young’s modulus and shear modulus of the polymer matrix.
The CNT efficiency parameter (η1, η2, η3) are the scale-dependent material properties. (νm, ρm) and(

νCNT
12 , ρCNT) represents the Poisson’s ratio and mass density of matrix and SWCNT, respectively.

The volume fractions of the SWCNT and matrix are denoted by VCNT and Vm, respectively, and their
additions are equal to unity.

The volume fraction of CNTs as a function of the thickness co-ordinate can be expressed as [32,33]:

VCNT(ϕ) =



V∗CNT (UD)

2
(

1− 2|ϕ|
h

)
V∗CNT (FG-O)

2
(

2|ϕ|
h

)
V∗CNT (FG-X)(

1 + 2ϕ
h

)
V∗CNT (FG-V)

(6)

where V∗CNT = wCNT
wCNT+(ρCNT/ρm)−(ρCNT/ρm)wCNT

, wCNT denoted the mass fraction of the CNTs inside a

CNT-reinforced plate. ρCNT and ρm are densities of the carbon nanotubes and matrix, respectively.

3. Theoretical Formulation

3.1. Displacement Fields and Strains

Based on the third-order shear deformation theory, the displacement field (u,v,w) can be determined
as follows [34]:

u(φ1, φ2, ϕ) = u0(φ1, φ2) + ϕθ1(φ1, φ2) + ϕ2ξ1(φ1, φ2) + ϕ3ζ1(φ1, φ2)

v(φ1, φ2, ϕ) = v0(φ1, φ2) + ϕθ2(φ1, φ2) + ϕ2ξ2(φ1, φ2) + ϕ3ζ2(φ1, φ2)

w(φ1, φ2, ϕ) = w0(φ1, φ2)

(7)

where (u0, v0, w0) are the displacements along the (φ1, φ2, ϕ) directions, respectively, at the mid-plane
(ϕ = 0). (θ1, θ2) are the bending rotations about the φ2 and φ1 axes, respectively. (ξ1, ξ2, ζ1, ζ2) are
known as the higher order terms of Taylor’s series expansion. The unknown terms (ξ1, ξ2, ζ1, ζ2) are
computed by applying zero shear stress at the lower and upper surfaces of a CNT-reinforced plate.
Utilising the boundary conditions γφ1φ2(φ1, φ2, ±h/2) = γφ1φ2(φ1, φ2, ±h/2) = 0 at the top and
bottom surfaces of the plate in Equation (7), we obtained Taylor’s series expansion terms as

ξ1 = ξ2 = 0 (8)

ζ1 = − 4
3h2

(
θ1 +

∂w
∂φ1

)
, ζ2 = − 4

3h2

(
θ2 +

∂w
∂φ2

)
(9)
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Substituting Equation (8) into Equation (7), we obtain

u(φ1, φ2, ϕ) = u0 +
(

ϕ− 4ϕ3

3h2

)
θ1 − 4ϕ3

3h2

(
∂w
∂φ1

)
v(φ1, φ2, ϕ) = v0 +

(
ϕ− 4ϕ3

3h2

)
θ2 − 4ϕ3

3h2

(
∂w
∂φ2

)
w(φ1, φ2, ϕ) = w0

(10)

During the implementation of the displacement field represented in Equation (10), the problem of
C1 continuity is encountered due to the presence of first order derivatives of the transverse displacement
component in the expression of in-plane fields. For applying efficient C0 FE formulation, the derivatives
are replaced by the appropriate substitution of an independent nodal unknowns as

ψ1 =
∂w
∂φ1

, ψ2 =
∂w
∂φ2

(11)

The higher order displacement field owning C0 continuity can express as:

u(φ1, φ2, ϕ) = u0 +
(

ϕ− 4ϕ3

3h2

)
θ1 − 4ϕ3

3h2 ψ1

v(φ1, φ2, ϕ) = v0 +
(

ϕ− 4ϕ3

3h2

)
θ2 − 4ϕ3

3h2 ψ2

w(φ1, φ2, ϕ) = w0

(12)

Hence, the degree of freedom (basic field variables) according to present mathematical formulation
for each node is

{δ} = [u0, v0, w0, θ1, θ2, ψ1, ψ2]
T (13)

where {δ} is named as the displacement vector.
The strain vector from the above displacement field can be written as

{ε} = {ε1, ε2, ε6, ε4, ε5}T (14)

Further, the relations between the strain vector {ε} and the displacement vector {δ} can be
expressed as

{ε} = [B]{δ} (15)

where the strain-displacement matrix [B] contains the derivatives of shape function.
The in-plane and transverse shear strains are

ε1 = εφ1φ1 = ∂u
∂φ1

ε2 = εφ2φ2 = ∂v
∂φ2

ε6 = γφ1φ2 = ∂u
∂φ2

+ ∂v
∂φ1

ε4 = γφ1 ϕ = ∂u
∂ϕ + ∂w

∂φ1

ε5 = γφ2 ϕ = ∂v
∂ϕ + ∂w

∂φ2

(16)

The strain relationships can be written as

ε1 = ε0
1 + ϕk1

1 + ϕ3k3
1

ε2 = ε0
2 + ϕk1

2 + ϕ3k3
2

ε6 = ε0
6 + ϕk1

6 + ϕ3k3
6

ε4 = ε0
4 + ϕ2k2

4
ε5 = ε0

5 + ϕ2k2
5

(17)
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where, ε0
1 = ∂u0

∂φ1
, ε0

2 = ∂v0
∂φ2

, ε0
6 = ∂u0

∂φ2
+ ∂v0

∂φ1
, ε0

4 = ∂w0
∂φ2

, ε0
5 = ∂w0

∂φ1
, k1

1 = ∂θ1
∂φ1

, k1
2 = ∂θ2

∂φ2
, k1

6 = ∂θ1
∂φ2

+

∂θ2
∂φ1

, k3
6 = − 4

3h2

((
∂θ1
∂φ2

+ ∂ψ1
∂φ2

)
+
(

∂θ2
∂φ1

+ ∂ψ2
∂φ1

))
, k3

1 = − 4
3h2

(
∂θ1
∂φ1

+ ∂ψ1
∂φ1

)
, k3

2 = − 4
3h2

(
∂θ2
∂φ2

+ ∂ψ2
∂φ2

)
, k2

4 =((
1− 4

h2

)
θ1 − 4

h2 ψ1

)
, k2

5 =
((

1− 4
h2

)
θ2 − 4

h2 ψ2

)
.

3.2. Constitutive Relations

The linear stress-strain constitutive relationships for the CNT-reinforced plate are

{σ} = [Q]{ε} (18)

where the constitutive matrix

[Q] =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q33 0 0
0 0 0 Q44 0
0 0 0 0 Q55

 (19)

The term Qij can be obtained from the material properties which are the function of the depth of
the plate.

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q12 =

ν21E11

1− ν12ν21
, Q33 = Q44 = Q55 = G12 (20)

4. Finite Element Method

4.1. Element Description

For the present C0 finite element (FE) model, nine-node isoparametric Lagrangian elements with
node-wise seven degrees of freedom are employed. The shape function (interpolation function) is used
to express the generalised displacement vector and element geometry at any point within an element
as:

{δ} =
9
∑

i=1
Ni(ξ, η){δ}i

{φ1} =
9
∑

i=1
Ni(ξ, η){φ1}i

{φ2} =
9
∑

i=1
Ni(ξ, η){φ2}i

(21)

where Ni is the shape function of nine-node isoparametric Lagrangian elements [35].

4.2. Flexural Analysis

The strain energy may be expressed as

U =
1
2

y
{ε}T{σ}dφ1dφ2dϕ (22)

By using the Equation (18), the above expression can be represented as

U =
1
2

x
{ε}T [D]{ε}dφ1dφ2 (23)

where [D] =
∫
[H]

T
[Q][H]dϕ in which [H] matrix contains ϕ and h.
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The global stiffness matrix is derived by minimising the total energy of the CNT-reinforced
plate as

[K] =
x

[B]
T
[D][B]dφ1dφ2 (24)

By using the standard procedure, the FE equations of CNT-reinforced plates subjected to
transverse load can be expressed as

[K]{δ} = {F} (25)

where {F} and [K] are load vector and global stiffness matrix.

4.3. Free Vibration Analysis

The governing equation of free vibration analysis of CNT-reinforced plates is expressed as(
[K]−ω2[M]

)
{X} = {0} (26)

where [K] and [M] are the global stiffness matrix and global mass matrix, respectively. The global
stiffness matrix [K] is the same as expressed in Equation (24).

The element mass matrix shown below is derived by applying Hamilton’s principle.

[m] =
x

A

[C]T [L][C]dφ1φ2 (27)

where matrix [C] matrix contains shape function (Ni).
The [L] matrix can be stated as:

[L] =
∫
ϕ

ρ[F]
T
[F]dϕ (28)

where the matrix [F] of order 3 × 7 contains ϕ and some constant quantities like that of [H] and ρ is
known as the density which will be calculated from Equation (5).

5. Numerical Result and Discussion

In this section, many numerical examples were studied for the flexural and free vibration behaviour
of CNT-reinforced functionally grade plates. PmPV [36] was for the matrix and for reinforcing the
material armchair (10,10) SWCNTs were chosen. The material properties of SWCNT and the matrix at
room temperature (300 K) are given as

ECNT
11 = 5.6466 TPa, ECNT

22 = 7.08 TPa, GCNT
12 = 1.9445 TPa, νCNT

12 = 0.175, ρCNT = 1400 kg/m3

Em = 2.1 GPa, νm = 0.34, ρm = 1150 kg/m3

The CNT efficiency parameters for considered three types of volume fraction are given as:

For V∗CNT = 0.11; η1 = 0.149, η2 = 0.934, η3 = 0.934
For V∗CNT = 0.11; η1 = 0.150, η2 = 0.941, η3 = 0.941
For V∗CNT = 0.11; η1 = 0.149, η2 = 1.381, η3 = 1.381

The quantities used in the present study are:
For the flexural analysis

w =
wEmh3

q0a4 , σφ1φ1 = σφ1φ1

(
a
2

,
b
2

, ϕ

)
h2

q0a2

For the free vibration analysis
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ω = ω
(

a2/h
)√

ρm/Em

Concentrated mass
M = M/ρma2h

The loading patterns are used as:

q = q0, q = q0 sin
(

πφ1
a

)
sin
(

πφ2
b

)
q = q0 cos

(
πφ1

a

)
sin
(

πφ2
b

)
, q = q0 cos

(
πφ1

a

)
cos
(

πφ2
b

)
The details of end support conditions used in the present study are:
1. Clamped (CCCC):

At φ1 = 0, a and φ2 = 0, b u = v = w = θφ1 = θφ2 = ψφ1 = ψφ2 = 0

2. Simply supported (SSSS):

At φ1 = 0, a v = w = θφ2 = ψφ2 = 0
At φ2 = 0, b u = w = θφ1 = ψφ1 = 0

3. Clamped and simply supported (CCSS):

At φ1 = 0, a u = v = w = θφ1 = θφ2 = ψφ1 = ψφ2 = 0
At φ2 = 0, b u = w = θφ1 = ψφ1 = 0

Convergence and Validation Study

To check the suitable number of mesh sizes to attain precise results, a convergence study was
performed for both flexural and free vibration analyses of CNT-reinforced functionally graded plates.
Tables 1 and 2 show the convergence study for the fundamental frequency and deflection of a clamped
FG-CNT-reinforced plate. The results are computed for V∗CNT = 0.11 and a/h = 10 for different mesh
sizes. These convergence studies highlighted that for free vibration analysis and bending analysis of
FG-CNT-reinforced plates, a 16 × 16 mesh size is satisfactory. Table 3 shows the results of the free
vibration analyses for an isotropic square plate (ν = 0.3). The dimensionless frequency parameter of
the isotropic plate was compared with HSDT results for a moderately thick plate [37] and an exact
solution [38]. For more investigation, a detailed comparison has been done for free vibration and
bending analyses considering three thickness ratios (a/h = 10, 20 and 50) and three volume fractions(
V∗CNT = 0.11, 0.14 and 0.17

)
. The calculated frequency parameter shown in Tables 4 and 5 for simply

supported boundary conditions are in line with previous result provided by Zhu et al. [3]. Table 6
shows the central deflection of the UD reinforced composite plate for CCCC, SSSS, SCSC and SFSF
boundary conditions. Our numerical results confirm with previous result given by Zhu et al. [3].

Table 1. Convergence study of the present results for the dimensionless frequency parameter of a
CNT-reinforced plate for clamped boundary conditions.

Mesh Size UD FG-V FG-O FG-X

8 × 8 18.2872 17.7565 16.0741 18.9550
10 × 10 18.2860 17.7554 16.0728 18.9538
12 × 12 18.2848 17.7542 16.0719 18.9531
14 × 14 18.2843 17.7536 16.0714 18.9526
16 × 16 18.2842 17.7534 16.0716 18.9525
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Table 2. Convergence study of the present results for the deflection of a CNT-reinforced plate for
clamped boundary conditions.

Mesh Size UD FG-V FG-O FG-X

8 × 8 0.00904 0.00926 0.01061 0.00867
10 × 10 0.00892 0.00918 0.01049 0.00856
12 × 12 0.00884 0.00914 0.01044 0.00851
14 × 14 0.00881 0.00912 0.01041 0.00848
16 × 16 0.00880 0.00912 0.01040 0.00848

Table 3. Dimensional frequency parameter of the simply supported square isotropic plate.

Reference
Mode

(1,1) (1,2) (1,3)

Present 0.093 0.221 0.415
Mantari et al. [37] 0.093 0.222 0.415
Srinivas et al. [38] 0.093 0.223 0.417

Table 4. Dimensionless first six natural frequencies ω for a UD CNT-reinforced square plate with
a/h ratios.

V*
CNT Mode

a/h = 10 a/h = 20 a/h = 50

Ref. [3] Present Ref. [3] Present Ref. [3] Present

0.11

1 17.625 18.284 28.400 29.232 39.730 41.246
2 23.041 23.793 33.114 34.108 43.876 45.501
3 33.592 34.188 44.559 45.456 54.768 56.313
4 33.729 35.188 59.198 60.708 74.488 75.080
5 37.011 38.536 61.851 63.003 98.291 100.577
6 37.317 38.738 63.043 63.553 100.537 101.437

0.14

1 18.127 18.854 29.911 30.795 43.583 45.216
2 23.572 24.374 34.516 35.558 47.479 49.218
3 34.252 34.874 45.898 46.830 57.968 59.617
4 34.650 36.267 61.628 63.337 77.395 78.064
5 37.921 39.384 64.199 64.457 106.371 104.359
6 37.972 39.592 64.496 66.100 106.487 108.807

0.17

1 22.011 22.795 35.316 36.286 49.074 50.802
2 28.801 29.679 41.253 42.400 54.324 56.170
3 42.015 42.666 55.267 56.600 68.069 69.766
4 42.132 43.878 73.769 75.518 92.868 93.286
5 46.250 48.066 77.109 78.531 121.669 124.191
6 46.694 48.343 78.801 79.084 124.518 126.244

Afterwards, the parametric studies have been conducted to examine the effect of boundary
conditions (SSSS, CCCC, CCSS, CSCS, CCFF and CFCF), thickness ratios (a/h), concentrated mass,
as well as, the volume fraction of CNT

(
V∗CNT

)
on the flexural and free vibration behaviour

of CNT-reinforced functionally graded plate. The non-dimensional frequency of the first six
modes for FG-CNT-reinforced plate is presented in Tables 7–9 for the three-different types of
V∗CNT = 0.11, 0.14 and 0.17, respectively. The results are computed for a/b = 1 and a/h = 10. For the all
considered boundary conditions, minimum and maximum non-dimensional frequency parameters
were noted for FG-O and FG-X distribution among the other considered distribution. Rather than
mid-section, the top and bottom section of the plate was chosen for the distribution of additional
CNT to achieve maximum stiffness. Thus, the FG-O and FG-X distributions produce minimum and
maximum stiffness, respectively. Further, it was also noticed that CFCF yields minimum frequency
parameters while the all side-clamped plate yields the maximum frequency parameter. This is because
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the higher constraints at the boundary give a higher stiffness to the CNT-reinforced functionally graded
plate. Here, approximately, a 6% increase in non-dimensional fundamental frequency was noticed
when the volume fraction of CNT increases from 0.11 to 0.14, around a 25% increase was noticed when
V∗CNT changes from 0.11 to 0.17.

Table 5. Dimensionless first six natural frequencies ω for an FG-V CNT-reinforced square plate with
a/h ratios.

V*
CNT Mode

a/h = 10 a/h = 20 a/h = 50

Ref. [3] Present Ref. [3] Present Ref. [3] Present

0.11

1 17.211 17.753 26.304 26.693 34.165 34.480
2 22.812 23.462 31.496 32.099 39.043 39.584
3 33.070 34.035 43.589 44.133 51.204 51.815
4 33.552 34.355 56.249 57.061 72.202 71.954
5 36.528 37.889 59.249 60.253 86.291 86.133
6 37.437 38.841 62.608 62.218 89.054 89.105

0.14

1 17.791 18.405 27.926 28.371 37.568 37.909
2 23.413 24.113 32.976 33.629 42.175 42.733
3 34.101 34.792 44.989 45.573 53.963 54.590
4 34.275 35.553 58.951 59.968 74.785 74.546
5 37.538 39.053 61.816 63.051 94.022 93.911
6 38.159 39.574 64.135 63.758 96.573 96.680

0.17

1 21.544 22.152 32.686 33.050 42.078 42.292
2 28.613 29.332 39.279 39.895 48.309 48.796
3 41.431 42.605 54.560 55.058 63.755 64.286
4 42.119 42.912 70.149 70.903 90.293 89.657
5 45.796 47.364 73.926 74.948 106.513 105.881
6 47.055 48.721 78.522 77.777 110.055 109.679

Table 6. Maximum transverse deflection w for a UD CNT-reinforced square plate with a/h ratios.

BC V*
CNT

a/h = 10 a/h = 20 a/h = 50

Ref. [3] Present Ref. [3] Present Ref. [3] Present

CCCC
0.11 0.00222 0.00207 0.01339 0.01257 0.2618 0.24056
0.14 0.00208 0.00192 0.01188 0.01115 0.2131 0.19644
0.17 0.00141 0.00131 0.00856 0.00806 0.1698 0.15695

SSSS
0.11 0.00373 0.00354 0.03628 0.03352 1.1550 1.04729
0.14 0.00330 0.00314 0.03001 0.02779 0.9175 0.83205
0.17 0.00239 0.00227 0.02348 0.02180 0.7515 0.68655

SCSC
0.11 0.00332 0.00313 0.03393 0.03127 1.0990 0.99624
0.14 0.00297 0.00281 0.02852 0.02634 0.8890 0.80555
0.17 0.00212 0.00201 0.02190 0.02028 0.7135 0.65105

SFSF
0.11 0.00344 0.00339 0.03341 0.03223 1.0680 1.01428
0.14 0.00302 0.00297 0.02760 0.02654 0.8505 0.80295
0.17 0.00207 0.00218 0.02162 0.02096 0.6950 0.66441

Figure 2 shows the effect of side-to-thickness ratio on the non-dimensional fundamental frequency
of FG-CNT-reinforced plates. The results are calculated for V∗CNT = 0.17 for CCSS, CSCS, CCFF and
CFCF boundary conditions. Here it can be seen that the dimensionless frequency parameters increase
along with the a/h ratio and it became insensitive from a/h = 60 onwards for all used boundary
conditions. The effect of the concentrated mass on the free vibrations of FG-CNT-reinforced plates,
having simply supported boundary conditions, is presented in Table 10. It can be noticed that increases
in concentrated mass at the centre decreases the fundamental frequency parameter while no significant
reduction is seen for any other mode of frequencies. Here, an approximate 28% decrease in the
fundamental frequency is noticed when the value of the concentrated mass is increased by 0.5–1
and 1–2.
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Table 7. Dimensionless first six natural frequencies ω for FG-CNT-reinforced plate with several types
of boundary conditions

(
V∗CNT = 0.11, a/h = 10

)
.

CNT Distribution Mode SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

1 13.8852 18.2842 17.3753 15.8868 17.0425 5.8250
2 18.1994 23.7934 19.4223 20.8718 17.1008 8.9023
3 19.4225 34.1882 20.6985 25.6174 18.5180 18.0312
4 19.4275 35.1886 29.5574 31.1128 19.2125 19.2182
5 28.1212 38.5362 34.7213 34.2514 24.5644 20.8003
6 33.2913 38.7388 36.7252 36.978 34.4553 22.4299

FG-V CNT

1 12.6013 17.7534 16.8089 15.0616 16.4289 5.0825
2 17.4092 23.4625 19.4794 20.3638 16.5145 8.5314
3 19.4794 34.0359 20.3062 25.6864 18.0592 17.9081
4 19.4848 34.3556 29.3712 30.8794 19.2392 19.1983
5 27.7626 37.8893 33.8705 33.1631 24.3163 19.4767
6 31.9032 38.8412 36.0454 36.1119 33.5464 21.3183

FG-O CNT

1 10.9949 16.0716 15.0774 13.4469 14.6154 4.3402
2 16.1348 22.0695 18.8182 19.0449 14.7550 7.9636
3 19.3738 31.0727 19.3738 25.5485 16.5016 17.0273
4 19.3788 32.8351 28.0759 29.7007 19.1524 17.3247
5 26.6463 34.9777 30.5620 29.7414 22.9926 19.1600
6 28.2949 38.6394 33.0506 33.0550 30.1205 19.2511

FG-X CNT

1 15.1552 18.9525 18.0228 16.7777 17.7014 6.6028
2 19.3040 24.5186 19.5714 21.7384 17.7463 9.5252
3 19.5714 35.0117 21.3967 25.8180 19.1656 18.7035
4 19.5764 36.3490 30.4141 32.0371 19.3693 19.3737
5 29.1832 39.0379 35.8724 35.5379 25.3411 22.2820
6 34.7403 39.6836 37.8550 38.2271 35.6335 23.7887

Table 8. The dimensionless first six natural frequencies ω for FG-CNT-reinforced plate with several
types of boundary conditions

(
V∗CNT = 0.14, a/h = 10

)
.

CNT Distribution Mode SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

1 14.6682 18.8542 17.9441 16.5233 17.6226 6.2616
2 18.8705 24.3743 19.7690 21.4698 17.6727 9.2459
3 19.7693 34.8746 21.2538 26.0654 19.0664 18.4145
4 19.7746 36.2671 30.1760 31.7742 19.5794 19.5556
5 28.7844 39.3845 35.8002 35.3843 25.1267 21.7948
6 34.4929 39.5926 37.7684 38.0703 35.5519 23.3518

FG-V CNT

1 13.4159 18.4059 17.4633 15.7609 17.1005 5.4974
2 18.0906 24.1135 19.8706 21.0094 17.1744 8.8533
3 19.8712 34.7921 20.9318 26.1926 18.6808 18.3042
4 19.8761 35.5532 30.0544 31.5929 19.6521 19.6276
5 28.4493 39.0533 35.0697 34.4452 24.9393 20.4615
6 33.2846 39.5746 37.1960 37.3341 34.7677 22.2670

FG-O CNT

1 11.7336 16.7149 15.7447 14.1157 15.3166 4.7012
2 16.6636 22.6163 19.3724 19.5683 15.4370 8.1901
3 19.7233 32.2978 19.7233 26.0009 17.0947 17.4986
4 19.7283 33.3984 28.5693 30.2258 19.5228 18.0877
5 27.0960 36.0888 31.7979 31.0146 23.4731 19.5010
6 29.6777 39.2902 34.1720 34.2161 31.3969 20.1111

FG-X CNT

1 15.8603 19.4936 18.5402 17.3716 18.2150 7.0295
2 19.9936 25.1816 19.9936 22.4091 18.2580 9.9358
3 19.9987 35.8970 21.9948 26.3643 19.7081 19.2714
4 20.0198 37.3880 31.2273 32.9064 19.8096 19.7841
5 30.0505 39.8323 36.8998 36.5737 26.0403 23.2464
6 35.7881 40.7784 38.9121 39.3039 36.6646 24.7286
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Table 9. The dimensionless first six natural frequencies ω for FG-CNT-reinforced plate with several
types of boundary conditions

(
V∗CNT = 0.17, a/h = 10

)
.

CNT Distribution Mode SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

1 17.2282 22.7953 21.6602 19.7729 21.2427 7.2029
2 22.6414 29.6791 24.3013 26.0099 21.3182 11.0742
3 24.3016 42.6665 25.8122 32.0048 23.0929 22.4866
4 24.3082 43.8786 36.8752 38.8103 24.0325 23.9779
5 35.0543 48.0664 43.2954 42.6982 30.6427 25.8591
6 41.4851 48.3439 45.8044 46.1123 42.9599 27.9148

FG-V CNT

1 15.5951 22.1523 20.9643 18.7382 20.4814 6.2639
2 21.6792 29.3329 24.5003 25.4208 20.5947 10.6346
3 24.5009 42.6051 25.3672 32.2575 22.5474 22.4044
4 24.5077 42.9122 36.7474 38.6306 24.1940 24.0052
5 34.7015 47.3646 42.3047 41.3726 30.4090 24.2769
6 39.7413 48.7211 45.0484 45.0965 41.8897 26.5494

FG-O CNT

1 13.5986 20.0823 18.8814 16.7451 18.3266 5.3426
2 19.8862 27.4023 23.4006 23.5759 18.4958 9.7936
3 24.2623 38.9769 24.2623 31.9471 20.5956 21.1536
4 24.2685 40.6865 34.7258 36.7391 23.9782 21.4110
5 32.8334 43.7158 38.3598 37.2540 28.4740 23.9263
6 35.4341 48.2629 41.3522 41.2969 37.8326 23.9562

FG-X CNT

1 18.7939 23.6698 22.4562 20.8923 22.0245 8.1719
2 24.2372 30.8645 24.6906 27.3472 22.0930 12.0063
3 24.6906 44.2396 26.8771 32.5214 23.9830 23.7798
4 24.6969 45.3645 38.4825 40.5259 24.4268 24.3702
5 36.9439 49.1202 44.7435 44.2607 32.0150 27.6660
6 43.1742 49.7057 47.3649 47.7933 44.4161 29.6741

Materials 2018, 11, x FOR PEER REVIEW  15 of 25 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. The variation of dimensionless frequency parameter vs. a/h ratio for an FG-CNT-reinforced 

plate with different types of boundary conditions. (a) CCSS; (b) CSCS; (c) CCFF and (d) CFCF. 

  

Figure 2. The variation of dimensionless frequency parameter vs. a/h ratio for an FG-CNT-reinforced
plate with different types of boundary conditions. (a) CCSS; (b) CSCS; (c) CCFF and (d) CFCF.



Materials 2018, 11, 2387 13 of 19

Table 10. Dimensionless first six natural frequencies ω for an FG-CNT-reinforced plate with simply
supported boundary conditions and concentrated mass at the centre

(
V∗CNT = 0.11, a/h = 10

)
.

CNT Distribution M̄
First Six Minimum Frequencies

1 2 3 4 5 6

UD CNT

0 13.8852 18.1994 19.4225 19.4275 28.1212 33.2913
0.5 6.3132 18.1999 18.8956 19.4223 19.4272 32.0719
1 4.5988 18.1999 18.4937 19.4223 19.4272 31.8782
2 3.2991 18.1999 18.3010 19.4223 19.4272 31.7861
0 12.6013 17.4092 19.4794 19.4848 27.7626 31.9032

FG-V CNT

0.5 5.9584 17.4093 18.1022 19.4794 19.4844 31.7275
1 4.3636 17.4093 17.6274 19.4794 19.4844 31.5303
2 3.1390 17.3983 17.4093 19.4794 19.4844 31.4366
0 10.9949 16.1348 19.3738 19.3788 26.6463 28.2949

FG-O CNT

0.5 5.3902 16.1348 16.8670 19.3738 19.3788 28.2949
1 3.9718 16.1348 16.3302 19.3738 19.3788 28.2949
2 2.8665 16.0686 16.1348 19.3738 19.3788 28.2949
0 15.1552 19.304 19.5714 19.5764 29.1832 34.7403

FG-X CNT
0.5 6.6718 19.3040 19.5714 19.5764 19.8985 33.0660
1 4.8415 19.3040 19.5383 19.5714 19.5764 32.8820
2 3.4667 19.3040 19.3664 19.5714 19.5764 32.7943

Figure 3 shows the effect of concentrated mass on the vibration behaviour of an FG-CNTRC
plate having various types of boundary conditions. For all considered boundary conditions, the
dimensionless frequency parameter decreases, with an increase in the concentrated mass; and the CFCF
boundary conditions have the least effect of concentration among considered boundary conditions.
The first mode shape of a UD-CNT-reinforced plate, with concentrated mass at the centre, is presented
in Figure 4.
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The maximum deflection of an FG-CNT-reinforced plate having various side-to-thickness ratios
for V∗CNT = 0.11, 0.14 and 0.17 subjected to sin-sin loading are presented in Tables 11–13, respectively.
The results are calculated for UD, FG-V, FG-O and FG-X distribution of CNT across the transverse
direction, having an aspect ratio a/b = 1. A decrease in deflection is noted when the V∗CNT increases
because of the higher value of V∗CNT, imparts a higher stiffness in CNT-reinforced plate, thus the
deflection is reduced. The maximum deflection decreases with an increase in the a/h ratio irrespective
of boundary conditions and types of distribution. Our finding confirms that there is approximately a
7% reduction in the maximum deflection for all considered end support as the value of V∗CNT increased
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from 0.11 to 0.14 and approximately a 36% decrease is found when V∗CNT increases from 0.11 to 0.17.
FG-X and FG-O distribution yields minimum and maximum deflection, respectively.

Table 11. Central transverse deflection of an FG-CNT-reinforced square plate subjected to sin-sin
loading V∗CNT = 0.11.

CNT Distribution a/h SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

5 0.01216 0.00880 0.01008 0.01040 0.01008 0.03264
10 0.00502 0.00315 0.00328 0.00397 0.00323 0.01749
20 0.00300 0.00126 0.00125 0.00182 0.00124 0.01361
50 0.00241 0.00064 0.00064 0.00115 0.00064 0.01245
100 0.00232 0.00055 0.00055 0.00105 0.00055 0.01228

FG-V CNT

5 0.01216 0.00912 0.01040 0.01072 0.01008 0.03872
10 0.00525 0.00336 0.00353 0.00426 0.00349 0.02270
20 0.00326 0.00153 0.00153 0.00223 0.00152 0.01887
50 0.00267 0.00094 0.00093 0.00159 0.00093 0.01776
100 0.00259 0.00085 0.00084 0.00150 0.00084 0.01759

FG-O CNT

5 0.01584 0.01040 0.01216 0.01280 0.01216 0.05216
10 0.00800 0.00416 0.00443 0.00559 0.00435 0.03142
20 0.00584 0.00204 0.00207 0.00320 0.00204 0.02670
50 0.00520 0.00136 0.00135 0.00245 0.00135 0.02536
100 0.00511 0.00125 0.00125 0.00234 0.00124 0.02516

FG-X CNT

5 0.01104 0.00848 0.00976 0.00976 0.00976 0.02816
10 0.00420 0.00292 0.00302 0.00353 0.00298 0.01373
20 0.00219 0.00105 0.00105 0.00145 0.00105 0.00981
50 0.00160 0.00045 0.00045 0.00078 0.00045 0.00860
100 0.00151 0.00036 0.00036 0.00068 0.00036 0.00842

Table 12. Central transverse deflection of an FG-CNT-reinforced square plate subjected to sin-sin
loading V∗CNT = 0.14.

CNT Distribution a/h SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

5 0.01136 0.00848 0.00976 0.01008 0.00944 0.02960
10 0.00447 0.00294 0.00305 0.00363 0.00300 0.01518
20 0.00251 0.00112 0.00111 0.00159 0.00111 0.01140
50 0.00194 0.00053 0.00053 0.00093 0.00052 0.01026
100 0.00186 0.00044 0.00044 0.00084 0.00044 0.01009

FG-V CNT

5 0.01136 0.00848 0.00976 0.01008 0.00976 0.03392
10 0.00464 0.00311 0.00326 0.00386 0.00319 0.01936
20 0.00272 0.00134 0.00134 0.00191 0.00133 0.01570
50 0.00216 0.00076 0.00076 0.00129 0.00076 0.01463
100 0.00207 0.00068 0.00067 0.00120 0.00067 0.01447

FG-O CNT

5 0.01440 0.00976 0.01136 0.01216 0.01136 0.04544
10 0.00699 0.00380 0.00403 0.00502 0.00395 0.02640
20 0.00487 0.00177 0.00178 0.00273 0.00176 0.02208
50 0.00071 0.00111 0.00110 0.00200 0.00110 0.02084
100 0.00417 0.00101 0.00100 0.00190 0.00100 0.02065

FG-X CNT

5 0.01040 0.00800 0.00944 0.00944 0.00912 0.02592
10 0.00382 0.00273 0.00284 0.00328 0.00279 0.01210
20 0.00186 0.00096 0.00095 0.00129 0.00095 0.00824
50 0.00128 0.00038 0.00037 0.00064 0.00037 0.00705
100 0.00120 0.00029 0.00029 0.00054 0.00029 0.00686
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Table 13. Central transverse deflection of an FG-CNT-reinforced square plate subjected to sin-sin
loading V∗CNT = 0.17.

CNT Distribution a/h SSSS CCCC CCSS CSCS CCFF CFCF

UD CNT

5 0.00768 0.00576 0.00640 0.00672 0.00640 0.02080
10 0.00321 0.00200 0.00208 0.00252 0.00206 0.01130
20 0.00195 0.00080 0.00080 0.00118 0.00080 0.00884
50 0.00158 0.00042 0.00042 0.00075 0.00042 0.00811

100 0.00152 0.00036 0.00036 0.00069 0.00036 0.00800

FG-V CNT

5 0.00768 0.00576 0.00640 0.00672 0.00640 0.02480
10 0.00336 0.00214 0.00225 0.00271 0.00221 0.01476
20 0.00212 0.00098 0.00099 0.00144 0.00098 0.01235
50 0.00175 0.00061 0.00061 0.00105 0.00061 0.01165

100 0.00170 0.00056 0.00056 0.00099 0.00055 0.01154

FG-O CNT

5 0.01008 0.00672 0.00768 0.00800 0.00768 0.03328
10 0.00517 0.00263 0.00279 0.00355 0.00275 0.02054
20 0.00384 0.00132 0.00133 0.00208 0.00132 0.01763
50 0.00345 0.00089 0.00089 0.00162 0.00089 0.01681

100 0.00339 0.00083 0.00083 0.00155 0.00082 0.01669

FG-X CNT

5 0.00704 0.00544 0.00608 0.00640 0.00608 0.01808
10 0.00269 0.00185 0.00193 0.00225 0.00191 0.00876
20 0.00142 0.00068 0.00067 0.00094 0.00067 0.00628
50 0.00104 0.00029 0.00029 0.00051 0.00029 0.00553

100 0.00098 0.00024 0.00023 0.00045 0.00023 0.00541
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Figure 5 shows the variation of deflection of UD, FG-V, FG-O and FG-X type CNT-reinforced
plates along the centre line subject to the various types of mechanical load. The results are obtained for
V∗CNT = 0.11. It can be seen that, for all types of CNT distribution in the thickness direction, the graph
of deflection along the length is of the same nature.Materials 2018, 11, x FOR PEER REVIEW  21 of 25 
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Figure 5. The variation of transverse deflection vs. the length φ1/a for an FG-CNT-reinforced plate, for
(a) UD; (b) FG-V; (c) FG-O and (d) FG-X distribution subjected to sin-sin loading.

The minimum and maximum deflections were noticed for cos-cos type of loading and uniform
loading, respectively. The axial stress developed in a CNT-reinforced functionally graded plate under
sin-sin loading is plotted in Figure 6 against the thickness co-ordinate for CCSS, CSCS, CCFF and
CFCF support conditions. The non-dimensional axial stress decreases with an increase in constraints at
end support. It is interesting to note that for all types of boundary conditions, except CFCF, the nature
of the graph along thickness co-ordinate is the same, for CFCF type boundary conditions, the nature of
the graph is opposite to other taken boundary conditions.
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6. Conclusions

In the present work, a C0 FE model based on Reddy’s TSDT was developed to investigate the flexural
and free vibration behaviour of CNT-reinforced functionally graded plates. The CNT distribution
through the thickness of plate is assumed to be uniform or functionally graded. The properties of
CNT-reinforced plates at any point are calculated using the modified rule of mixture in which efficiency
parameters are introduced into the rule of mixtures approach. The influence of the concentrated
mass, volume fraction, side-to-thickness ratios, loading pattern and end support condition on the
dimensionless bending and frequency parameter were also studied. Based on the present results, it
can be concluded that:

• Among the considered distribution pattern of CNT, FG-X pattern results in higher dimensionless
frequency parameter and lower deflection, while FG-O pattern yields lower dimensionless
frequency parameters and higher dimensionless deflections.

• An increase in the dimensionless frequency parameters and decrease in the deflection of
FG-CNT-reinforced plate is found when the volume fraction of CNT is increased.

• With the increase in side-to-thickness ratio, an increase in dimensionless frequency and a decrease
in deflection is noticed.

• The greater constraints on boundaries results in lower values of deflection and higher values of
dimensionless frequency parameters.

• The concentrated mass at the centre decreases the fundamental frequency parameter.
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