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Abstract: In this work, a mixing-calcination method was developed to facilely construct MXene/CuO
nanocomposite. CuO and MXene were first dispersed in ethanol with sufficient mixing. After
solvent evaporation, the dried mixture was calcinated under argon to produce a MXene/CuO
nanocomposite. As characterized by X-ray diffraction (XRD), field-emission scanning electron
microscopy (FESEM), and X-ray photoelectron spectra (XPS), CuO nanoparticles (60–100 nm) were
uniformly distributed on the surface and edge of MXene nanosheets. Furthermore, as evaluated by
differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the high-temperature
decomposition (HTD) temperature decrease of ammonium perchlorate (AP) upon addition of 1 wt%
CuO (hybridized with 1 wt% MXene) was comparable with that of 2 wt% CuO alone, suggesting an
enhanced catalytic activity of CuO on thermal decomposition of AP upon hybridization with MXene
nanosheets. This strategy could be further applied to construct other MXene/transition metal oxide
(MXene/TMO) composites with improved performance for various applications.

Keywords: carbides; MXene; layered compounds; transition metal oxide; composite; thermal
decomposition; ammonium perchlorate

1. Introduction

Since the first report of Ti3C2 in 2011, MXenes have gained significant attention as a new family
of 2D transition metal carbides or nitrides. The production of MXenes (Mn+1XnTx, M for transition
metal element, X for carbon or nitrogen, T for -OH, -O and -F) can be achieved through selective
etching of A (group IIIA or IVA elements) layers from ternary metal carbides or nitrides (MAX
phase) [1–3]. Considerable properties have since been reported, such as graphene-like layered structure,
electrical conductivity, hydrophilicity, and flexibility [4]. MXenes have been widely studied for their
applications in many fields; for instance, MXenes have been investigated as electrode materials in
Li-ion batteries [5,6] as well as supercapacitors [7–9], adsorption materials [10,11], hydrogen storage
materials [12], and catalysts [13–15].

Various methods have been adopted to hybridize transition metal oxide (TMO) with MXene to
prepare MXene/TMO composites, inherent of each material’s unique properties, for multifaceted
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applications. However, most commonly adopted methods, such as hydrothermal [16,17] and
precipitation methods [10,18], need precise control of reaction conditions and sometimes a long
reaction time and a large amount of solvent are necessary. Such methods are unfavorable for the
efficient production and environment protection. Liu et al. since reported the self-assembly of
TiO2 nanorods and SnO2 nanowires with MXene nanosheets under ambient conditions by utilizing
their well-developed “surface energy compensation strategy” [14]. Upon transferring the MXene
well-dispersed solution to its poor solvent, in which TMO nanoparticles were well dispersed,
TMO nanoparticles tend to deposit on the naked surface of MXene nanosheets to minimize surface
energy stabilized through van der Walls interactions [19,20]. It should be noted that the premodification
of an organic layer on TMO nanostructures is often necessary for this method, for the purpose of
improving the organic dispersibility of TMO.

In this work, a mixing-calcination method to simply construct a MXene/CuO nanocomposite was
developed. The catalytic effect of the MXene/CuO nanocomposite on the thermal decomposition of
ammonium perchlorate (AP), the most common oxidant in composite solid propellants, was examined
to demonstrate the enhanced catalytic activity of CuO upon hybridization with MXene nanosheets.

2. Materials and Methods

All the reagents were purchased from commercial sources and were utilized as received without
further purification. The crystalline phases, morphology, and surface chemical composition of the
samples were studied by employing X-ray diffraction (XRD) (D8 ADVANCE, Bruker AXS GmbH,
Karlsruhe, Germany, Cu Kα irradiation, λ = 0.15406 nm, 2θ = 5~80◦), field-emission scanning electron
microscopy (FESEM) (Zeiss MERLIN Compact, Jena, Germany), and X-ray photoelectron spectra (XPS)
(ESCALAB250Xi, Thermo Fisher Scientific., Rockford, Tempe, AZ, USA, C1s line 284.8 eV as a reference
for calibration), respectively.

Ti3C2Tx MXene preparation. Ti3AlC2 (2 g) was slowly added to 40 mL of 40% HF solutions
and the reaction mixture was stirred at 60 ◦C for 18 h. The solids in the solution were collected by
centrifuge, washed with deionized water, and lyophilized. During the preparation, the following
reaction equation was followed: Ti3AlC2 + 3HF→ AlF3 + 3/2H2 + Ti3C2 [2].

MXene/CuO composite preparation. MXene/CuO nanocomposites containing different amounts
of CuO (5, 10, 30, and 50 wt%) were prepared and labeled as MXene/x% CuO (x = 5, 10, 30, and 50).
Typical preparation of MXene/10% CuO catalyst was as follows: 0.2 g of Ti3C2Tx MXene power was
completely dispersed in ethanol by sonication for 10 min, followed by the addition of 0.022 g of CuO
into the above solution. After a further 10 min of sonication and ethanol evaporation at 60 ◦C for 1 h,
MXene/CuO was collected and calcined in a tube furnace under argon at 300 ◦C for 1 h.

AP thermal decomposition. The experiments were conducted according to our previously
published procedure [21].

3. Results and Discussions

The developed mixing-calcination method for the facile construction of MXene/CuO
nanocomposite is presented in Figure 1. Ti3C2Tx (MXene) was first prepared by using HF as an
etchant to remove Al layers from Ti3AlC2. After achieving suitable dispersion with long-term stability
in ethanol with the help of sonication [22], CuO was added to the above solution with sufficient
sonication. Following solvent evaporation of ethanol, the obtained mixture was calcinated under argon
to produce MXene/CuO nanocomposite.

The crystal structures of MXene, CuO, and MXene/CuO nanocomposites with various CuO
contents were studied by using XRD. As shown in Figure 2, the diffraction peaks with 2θ values at 9.0◦

and 18.32◦ could be attributed to (002) and (004) planes of MXene, suggesting successful synthesis of
MXene [2,23]. The peaks at 35.54◦, 38.71◦, 48.72◦, 58.26◦, 61.52◦, 66.22◦, and 68.12◦ in the CuO pattern
could be indexed to (11-1), (111), (20-2), (202), (11-3), (31-1), and (220) planes of monoclinic CuO (JCPDS
48-1548) [24], respectively. Diffraction peaks corresponding to both MXene and CuO were observed
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in the pattern of MXene/CuO nanocomposite, and the peak intensity increased with the increased
content of CuO, demonstrating the successful fabrication of the MXene/CuO nanocomposite.Materials 2018, 11, x FOR PEER REVIEW  3 of 8 
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Figure 2. (a) X-ray diffraction (XRD) diffraction pattern of MXene, CuO, and MXene/x% CuO (x = 5,
10, 30, and 50); (b) Enlarged profiles of the selected area in Figure 2a.

FESEM was employed to observe the morphology and structure of MXene/CuO nanocomposite
by taking MXene/50% CuO as a representative. As shown in Figure 3a, a typical exfoliated morphology
of separated Ti3C2Tx layers was observed, indicating the successful exfoliation of Ti3AlC2 [25].
The FESEM images of MXene/50% CuO exhibited CuO nanoparticles with 60–100 nm diameters,
were randomly deposited on the surface and edge of the MXene nanosheets (Figure 3b,c), and were
stabilized through van der Walls interactions [20]. Elemental distributions of C, Ti, Cu, and O in the
MXene/CuO nanocomposite were determined by means of energy dispersive spectroscopy (EDS) area
scanning (Figure 3d). The observed maps of C, Ti, Cu, and O demonstrated successful hybridization of
CuO nanoparticles on MXene nanosheets. Furthermore, the similar profile of Cu and O also suggested
a homogeneous distribution of CuO nanoparticles on MXene nanosheets.
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Figure 3. Field-emission scanning electron microscopy (FESEM) images of MXene (a), MXene/50%
CuO nanocomposite (b,c), and elemental mapping results (d).

Figure 4a demonstrates the XPS spectra of the MXene and MXene/50% CuO nanocomposite.
In the spectrum of MXene, the peaks representative of C, Ti, O, and F could be clearly observed. As for
the MXene/50% CuO nanocomposite, apart from the peaks corresponding to C, Ti, O, and F, peaks
corresponding to Cu were also found in the spectrum, demonstrating the successful hybridization
of CuO with MXene. The presence of C–Ti bonds at 282.2 eV in the high-resolution spectra of C
1s (Figure 4b) demonstrated the retained structure of MXene after hybridization with CuO [26].
The two main binding energy peaks at 932.7 and 952.6 eV with a peak splitting of 19.9 eV in the
high-resolution spectrum of Cu 2p (Figure 4c) could be ascribed to Cu 2p3/2 and Cu 2p1/2 [27,28],
respectively. Moreover, the satellite peaks at 944.2 and 962.6 eV further confirmed the existence of
CuO [29]. The coexistence of the peaks corresponding to Ti–O, C–Ti–(OH)x, and Cu–O bonds in the
high-resolution spectra of O 1s of MXene/50% CuO composites further demonstrated the successful
construction of MXene/CuO through the developed mixing-calcination strategy (Figure 4d,e) [14,30].Materials 2018, 11, x FOR PEER REVIEW  5 of 8 
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of MXene (d), and MXene/50% CuO (e).
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We further evaluated the catalytic effect of the MXene/CuO nanocomposite on thermal
decomposition of AP by referring to our reported method [21]. Differential scanning calorimetry (DSC)
and thermal gravimetric analysis (TGA) were employed to determine the decomposition behavior of
AP in the absence and in the presence of 2 wt% CuO, 2 wt% MXene, and 2 wt% MXene/x% CuO (x = 5,
10, 30, and 50), respectively. One possibility considered was that the distribution of CuO nanoparticles
could be improved on the surface of MXene, resulting in an increase of active sites of CuO during the
catalytic process. Alternatively, with good thermal conductivity and lamella structure of MXene, the
heat transfer and the gas phase absorption of NH3 and HClO4 could possibly be promoted. As shown
in Figure 5a,b, upon addition of 2 wt% MXene and 2 wt% CuO, the high-temperature decomposition
(HTD) temperatures of AP were decreased by 34.5 and 79.7 ◦C, respectively. The exhibited decrease
suggests a good catalytic activity of the two materials alone. When treated with 2 wt% MXene/x%
CuO (x = 5, 10, 30, and 50), the HTD temperature decrease of AP exhibited a CuO-content-dependent
manner, and the highest HTD temperature decrease (81.0 ◦C for 1 wt% CuO hybridized with 1 wt%
MXene) was observed when the content of CuO was 50%, which was comparable with that of 2 wt%
CuO alone, indicating that the catalytic activity of CuO was enhanced upon its hybridization with
MXene nanosheets. The TGA and differential TGA (DTGA) curves in Figure 5c,d show that upon
addition of the 2 wt% MXene/50% CuO nanocomposite, the final weight-loss temperature of AP was
reduced by 78.8 ◦C. In contrast, the addition of 2 wt% CuO and 2 wt% MXene alone reduced the
final weight-loss temperature of AP by 78.2 and 29 ◦C, respectively. The observation is consistent
with those from DSC analysis, further demonstrating an enhanced catalytic activity of CuO following
hybridization with MXene nanosheets.Materials 2018, 11, x FOR PEER REVIEW  6 of 8 

 

 
Figure 5. Differential scanning calorimetry (DSC) curves of ammonium perchlorate (AP) in the 
absence and presence of 2 wt% catalysts (a), histogram of the corresponding high-temperature 
decomposition (HTD) of AP from DSC results (b), thermal gravimetric analysis (TGA) and differential 
TGA (DTGA) curves of AP in the absence and presence of 2 wt% catalysts (c,d). 

4. Conclusions 

In conclusion, a MXene/CuO nanocomposite was constructed through a facile mixing-
calcination method. CuO nanoparticles were uniformly loaded on the surface and edge of MXene 
nanosheets, evidenced by means of XRD, FESEM, and XPS. The catalytic activity of CuO on thermal 
decomposition of AP was enhanced upon hybridization with MXene nanosheets, as concluded from 
the comparable HTD temperature decrease of AP upon addition of 1 wt% CuO (hybridized with 
MXene) to that of 2 wt% CuO alone. Our strategy could be applied to fabricate further MXene/TMO 
composites with improved performance of TMO for various applications. 

Author Contributions: Conceptualization, Software, Methodology, L.T., H.Z., and J.L.; Data curation, L.Z.; 
validation, P.Z.; Supervision, J.S. and L.T.; Writing—original draft, H.Z. and J.L.; Writing—review & editing, 
J.S., G.L.A., and L.T.; Funding acquisition L.T. 

Funding: This research was funded by National Natural Science Foundation of China (NSFC 51802156), natural 
science foundation of Jiangsu Province (BK20181302), Extra-curricular Academic Scientific Research Fund of 
Nanjing University of Science and Technology and Undergraduate Research Training Millions Talents’ Plan 
(2018) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
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and presence of 2 wt% catalysts (a), histogram of the corresponding high-temperature decomposition
(HTD) of AP from DSC results (b), thermal gravimetric analysis (TGA) and differential TGA (DTGA)
curves of AP in the absence and presence of 2 wt% catalysts (c,d).
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4. Conclusions

In conclusion, a MXene/CuO nanocomposite was constructed through a facile mixing-calcination
method. CuO nanoparticles were uniformly loaded on the surface and edge of MXene nanosheets,
evidenced by means of XRD, FESEM, and XPS. The catalytic activity of CuO on thermal decomposition
of AP was enhanced upon hybridization with MXene nanosheets, as concluded from the comparable
HTD temperature decrease of AP upon addition of 1 wt% CuO (hybridized with MXene) to that of
2 wt% CuO alone. Our strategy could be applied to fabricate further MXene/TMO composites with
improved performance of TMO for various applications.
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