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1. Used nomenclature

The signs used in the manuscript are shown below

N — the number of particles

Npys — the number of particles forming inclusion

Ny — the number of "Yukawa’ particles

n — the number of fcc cells on the edge of the system
¢ — the concentration of the nanoinclusion particles
o — the particles” diameter

k! - the Debye’s screening length

€ — the contact potential

B=1/(ksT)

kg — the Boltzmann constant

T — the temperature

rij — distance between i-th and j-th particle

Sl-]-kl — component of elastic compliance tensor

€jj —component of strain tensor

Vp — equilibrium volume of the system

P — pressure

p* = BPo® - reduced pressure

h — the box matrix

hy = (h) - the reference box matrix

I — identity matrix

d;j — the Kronecker delta

n; — the i-component of a unit vector in the direction of the applied stress
m; — the i-component of a unit vector in the direction in which the reaction of the system is
observed.

Vum — the Poisson’s ratio

o x —the degree of auxeticity

In this paper Voigt’s notation and Einstein’s summation are used.
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2. Computations of the elastic compliances

The Lagrangian strain tensor can be expressed as [1]:

gjj = (aiuj + Bju,- + ;aiukajuk> /2, 1

where u; = x; — X; is the displacement vector and X;, x; describe respectively the undeformed state
and the state under the deformation [1]. Under constant isotropic pressure (P) the expansion of the
change of free enthalpy (Gibbs free energy), AG, caused by deformation of a crystal has the form [2]:

1
AG = EVpBijleijgkl + .. 2)

where Bjjy; are the components of the elastic constants tensor at fixed temperature and pressure P
(the Einstein’s summations is used). Under the isotropic pressure conditions, vij = —P(Sij, the elastic
constans B;jy; form the relation between the components of the strain tensor ¢; and the stress tensor
0ij [3] (the Hooke’s law):

Acij = Bijkigx, 3)

where Acj; = 0;; + Pdj;. By inversion, the above reads:
&ij = Sijk1 Aok, 4

where S is the elastic compliance tensor, a fourth-rank tensor which remains unchanged when
replacing i-j, k-l and ij-kl. The elastic compliances are related to the elastic constants tensor elements
by the following equality [4]:

1
SiklmBlmpq =5 5ip§kq + 5iq5kp . &)
2

In computer simulations the strain tensor is obtained from two matrices - the h matrix describing
the system’s state (under pressure P) and reference box matrix [5,6] hy (hg = (h)):

= % (hg"hhhg! - 1), ©)

where I is the unit matrix of the dimensionality 3. Both h and hg are kept symmetric during simulations.
Considering that at equilibrium ¢;; = 0, it has been shown [5] that fluctuations of ¢;; are related to the
elastic compliance tensor S;jy;:

V,
Sij = (AejjAer) IquT’ 7)

where Ag;; is the difference between reference and instantaneous states, and the (...) denotes the
averaging in the isothermal-isobaric ensemble:

[ de® fexp(—G/kpT)

(= [ de®exp(—G/kpT)

®)

(for more details see [3,7,8]).

3. n and m directions

Based on the knowledge of the full tensor of elastic compliances one can calculate the Poisson’s
ratio for arbitrary direction [9]

MM Sk gh;
Vg = ———a————, )
npnrsprstnsnt
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In the equation (9) 1i and m are unit vectors indicating selected pair of directions (illustrated in the
Figure 1) for which the Poisson’s ratio is calculated. The i = (1, 1,,n;) vector is oriented in the
direction of the applied stress (according to the definition of the Poisson’s ratio). The m represents
the direction in which the reaction of the system on the applied stress is observed. It is located on the
plane orthogonal to 1, spanned by vectors m; and m,:

k 1
= (_ny/ nX/O) ’ (10)

X i
V&kxa)- (kxp) /md+n3
1

2 2
[ (—nxnz, —NyNz, My + ny) ,
\/ 1%+ 1}

where k is the versor of the Oz axis. The versor is the unit vector denoted by symbol ". The & angle
describes the orientation of m vector on that plane:

m; =

(11)

m = fhycosa + mysina . (12)

Figure 1. Spherical coordinates: 1i (described by polar and azimuthal angles 6, ¢) and m (described by
« angle). « is the angle between m and th; (rh; is the versor created by plane Oxy and plane orthogonal
to 1i).
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