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1. Used nomenclature

The signs used in the manuscript are shown below

• N – the number of particles
• NHS – the number of particles forming inclusion
• NY – the number of ’Yukawa’ particles
• n – the number of fcc cells on the edge of the system
• c – the concentration of the nanoinclusion particles
• σ – the particles’ diameter
• κ−1 – the Debye’s screening length
• ε – the contact potential
• β = 1/(kBT)
• kB – the Boltzmann constant
• T – the temperature
• rij – distance between i-th and j-th particle
• Sijkl – component of elastic compliance tensor
• εij – component of strain tensor
• Vp – equilibrium volume of the system
• P – pressure
• p∗ ≡ βPσ3 – reduced pressure
• h – the box matrix
• h0 ≡ 〈h〉 – the reference box matrix
• I – identity matrix
• δij – the Kronecker delta
• ni – the i-component of a unit vector in the direction of the applied stress
• mi – the i-component of a unit vector in the direction in which the reaction of the system is

observed.
• νnm – the Poisson’s ratio
• χ – the degree of auxeticity

In this paper Voigt’s notation and Einstein’s summation are used.
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2. Computations of the elastic compliances

The Lagrangian strain tensor can be expressed as [1]:

εij ≡
(

∂iuj + ∂jui + ∑
k

∂iuk∂juk

)
/2 , (1)

where ui ≡ xi − Xi is the displacement vector and Xi, xi describe respectively the undeformed state
and the state under the deformation [1]. Under constant isotropic pressure (P) the expansion of the
change of free enthalpy (Gibbs free energy), ∆G, caused by deformation of a crystal has the form [2]:

∆G =
1
2

VpBijklεijεkl + ... (2)

where Bijkl are the components of the elastic constants tensor at fixed temperature and pressure P
(the Einstein’s summations is used). Under the isotropic pressure conditions, σij ≡ −Pδij, the elastic
constans Bijkl form the relation between the components of the strain tensor εkl and the stress tensor
σij [3] (the Hooke’s law):

∆σij = Bijklεkl , (3)

where ∆σij ≡ σij + Pδij. By inversion, the above reads:

εij = Sijkl∆σkl , (4)

where Sijkl is the elastic compliance tensor, a fourth-rank tensor which remains unchanged when
replacing i-j, k-l and ij-kl. The elastic compliances are related to the elastic constants tensor elements
by the following equality [4]:

SiklmBlmpq =
1
2

(
δipδkq + δiqδkp

)
. (5)

In computer simulations the strain tensor is obtained from two matrices - the h matrix describing
the system’s state (under pressure P) and reference box matrix [5,6] h0 (h0 ≡ 〈h〉):

” =
1
2

(
h−1

0 .h.h.h−1
0 − I

)
, (6)

where I is the unit matrix of the dimensionality 3. Both h and h0 are kept symmetric during simulations.
Considering that at equilibrium εij = 0, it has been shown [5] that fluctuations of εij are related to the
elastic compliance tensor Sijkl :

Sijkl =
〈
∆εij∆εkl

〉 Vp

kBT
, (7)

where ∆εij is the difference between reference and instantaneous states, and the 〈...〉 denotes the
averaging in the isothermal–isobaric ensemble:

〈 f 〉 =
∫

dε(6) f exp(−G/kBT)∫
dε(6)exp(−G/kBT)

(8)

(for more details see [3,7,8]).

3. ~n and ~m directions

Based on the knowledge of the full tensor of elastic compliances one can calculate the Poisson’s
ratio for arbitrary direction [9]

νnm = −
mimjSijklnknl

npnrSprstnsnt
, (9)
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In the equation (9) ~n and ~m are unit vectors indicating selected pair of directions (illustrated in the
Figure 1) for which the Poisson’s ratio is calculated. The ~n =

(
nx, ny, nz

)
vector is oriented in the

direction of the applied stress (according to the definition of the Poisson’s ratio). The ~m represents
the direction in which the reaction of the system on the applied stress is observed. It is located on the
plane orthogonal to~n, spanned by vectors ~m1 and ~m2:

m̂1 =
k̂× n̂√

(k̂× n̂) · (k̂× n̂)
=

1√
n2

x + n2
y

(
−ny, nx, 0

)
, (10)

m̂2 = n̂× m̂1 =
1√

n2
x + n2

y

(
−nxnz,−nynz, n2

x + n2
y

)
, (11)

where k̂ is the versor of the Oz axis. The versor is the unit vector denoted by symbol ˆ . The α angle
describes the orientation of ~m vector on that plane:

~m = m̂1 cos α + m̂2 sin α . (12)

Figure 1. Spherical coordinates: ~n (described by polar and azimuthal angles θ, φ) and ~m (described by
α angle). α is the angle between ~m and m̂1 (m̂1 is the versor created by plane Oxy and plane orthogonal
to~n).
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