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Abstract: Mechanical stacking of a thin film perovskite-based solar cell on top of crystalline Si (cSi)
solar cell has recently attracted a lot of attention as it is considered a viable route to overcome the
limitations of cSi single junction power conversion efficiency. Effective light management is however
crucial to minimize reflection or parasitic absorption losses in either the top cell or in the light
in-coupling of the transmitted light to the bottom sub-cell. The study here is focused on calculating
an optimum performance of a four-terminal mechanically stacked tandem structure by varying the
optical property and thickness of the spacer between top and bottom sub-cells. The impact of the
nature of the spacer material, with its refractive index and absorption coefficient, as well as the
thickness of that layer is used as variables in the optical simulation. The optical simulation is done by
using the transfer matrix-method (TMM) on a stack of a semi-transparent perovskite solar cell (top
cell) mounted on top of a cSi interdigitated back contact (IBC) solar cell (bottom cell). Two types of
perovskite absorber material are considered, with very similar optical properties. The total internal
and external short circuit current (Jsc) losses for the semitransparent perovskite top cell as a function
of the different optical spacers (material and thickness) are calculated. While selecting the optical
spacer materials, Jsc for both silicon (bottom cell) and perovskite (top cell) were considered with
the aim to optimize the stack for maximum overall short circuit current. From these simulations,
it was found that this optimum in our four-terminal tandem occurred at a thickness of the optical
spacer of 160 nm for a material with refractive index n = 1.25. At this optimum, with a combination
of selected semi-transparent perovskite top cell, the simulated maximum overall short circuit current
(Jsc-combined, max) equals to 34.31 mA/cm2. As a result, the four-terminal perovskite/cSi multi-junction
solar cell exhibits a power conversion efficiency (PCE) of 25.26%, as the sum of the perovskite top cell
PCE = 16.50% and the bottom IBC cSi cell PCE = 8.75%. This accounts for an improvement of more
than 2% absolute when compared to the stand-alone IBC cSi solar cell with 23.2% efficiency.

Keywords: perovskite; solar cells; four-terminal tandem; short-circuit current; light management
enhancement; quantum efficiency

1. Introduction

In the last several years, the photovoltaic industry based on silicon (Si), cadmium telluride (CdTe),
and copper indium gallium diselenide (CIGS) has grown rapidly with power conversion efficiency
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between 14–21% at a cost less than $1/W [1,2]. However, the industry still produces less than one
percent of the world electricity with the desire to boost the power conversion efficiency to above
25% and reduce the cost to below $0.5/W [3]. Recently, perovskite has emerged as a promising
absorber material for thin-film solar cell technology [4,5]. Solar cells that are based on perovskite
have reached a certified 22.1% power conversion efficiency (PCE) in 2016 [6,7]. The perovskite
material is based on a small organic cation (A), a cationic group 14 metal (B), and a halide anion (X)
to form the ABX3 crystal structure. Methylammonium-lead(II)-triiodide with the chemical formula
CH3NH3PbI3 (MAPbI3) is the most commonly used perovskite semiconductor material in solar cells
due to its excellent material properties for applications in photovoltaic. This material is compatible
with not only solution processing [8], but also evaporation techniques [9,10]. This direct bandgap
semiconductor material [11] has a bandgap of 1.55 eV, which is only ~0.5 V less than its bandgap
potential (Eg/q) [12] and it is tunable to 2.25 eV by substituting Br for I to make MAPb(I1−xBrx)3 [13].
Moreover, this intrinsic material has high carrier mobilities [14], high absorption coefficient [15,16],
shallow defect levels [17], and a long charge-carrier diffusion length [18–20]. These properties are
important for highly performing solar cells and especially attractive for tandem applications. Though,
the use of other cations like Cs and formamidinium (FA) instead of methylammonium have led to
increased stability and even higher PCE, while maintaining optical properties and bandgap tuning
potential [21]. In this study, both MAPbI3 as well as CsFAPbIBr will be considered as perovskite
absorber material.

One way to increase the efficiency of crystalline Si (cSi) cells is to make tandem solar cells in
which a top cell with a higher bandgap than silicon absorbs the higher energy photons. Calculations
show that tandem device architecture employing cSi in combination with a wide-bandgap absorber
can potentially achieve PCE above 30% [22–25]. This is due to the reduction in the thermalization
loss of charge carriers generated from the high energy photons by the wide bandgap absorber top
cell [16,26]. In general, there are two fabrication configurations in tandem solar cells: two-terminal
and four-terminal configurations. In the two-terminal configuration, the top solar cell is processed
directly on the bottom solar cell, and therefore, the top and bottom cells are electrically connected in
series [27–30]. Hence, the current within both top and bottom cells must be equal, a constraint known
as current matching [31]. This strict requirement of current matching constrains the bandgaps of both
top and bottom cells, limits the design flexibility, and makes efficiency improvement more difficult.
When compared with the two-terminal structure, the four-terminal mechanically-stacked tandem
configuration has several advantages. The four-terminal mechanically stacked architecture relaxes the
performance constraints, such as current-density matching and the need for tunnel junctions while
enabling the optimization of the top and bottom cells separately [32–35]. In this configuration, the top
and bottom cells are electrically isolated from each other, and therefore the output power is extracted
separately and enables independent optimization of the solar cell fabrication. Current matching
between the top and bottom strings of cells can be achieved at the module level by adjusting the relative
top and bottom cell sizes. However, to fully benefit from the four-terminal perovskite/Si tandem
cell configuration, choosing the optimum optical spacer and minimizing the parasitic absorption
of both the front and rear transparent conductive oxides is crucial for the viability of this tandem
configuration [31].

The purpose of the work is to identify the key optical losses in both the optical spacer and the
front/rear transparent conductive oxide and optimize the four-terminal perovskite/silicon tandem
solar cell structure for maximum overall short circuit current (Jsc-combined, max) using detailed optical
loss analysis.

2. Device Architecture and Simulation Procedure

As mentioned before, two types of perovskite absorber material are used in this study,
but incorporated in a similar overall four-terminal perovskite/silicon tandem solar cell structure [36].
In both cases, single junction interdigitated back contact crystalline Si (IBC cSi) solar cell is used
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as bottom cell. The detailed fabrication process of such cells, prepared from n-CZ (ρ = 1–4 Ω cm)
wafers, is described in O’Sullivan et al. [37]. The semi-transparent perovskite top cell has a so-called
n-i-p architecture and it consists of 150 nm thick indium–tin oxide (ITO)-coated glass substrate as
front electrode, 5 nm thick SnO2 combined with 15 nm thick Phenyl-C61-butyric acid methyl ester
(PCBM) as electron transport layer, 345 nm thick either MAPbI3 or CsFAPbIBr perovskite material as
active layers and 250 nm thick 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9′spirobifluorene
(Spiro-OMeTAD) as hole transport layer. Finally, 150 nm ITO as rear side transparent electrode
completes the planar perovskite solar cell. To conduct optical loss analysis on our four-terminal
perovskite/Si solar cell, the Transfer-Matrix-based optical simulation Method (TMM) was used.
This method allows for modeling of the optical properties of thin-film layer stacks by solving Maxwell’s
equations at each interface through using the complex refractive index and layer thicknesses of
all relevant materials as input [38–41]. More information on the calibration of our (TMM) optical
simulation can be seen in [42]. Surface roughness is considered as an effective medium according to
the Bruggeman effective medium approximation (BEMA) [43]. Therefore, in our simulations, interface
roughness is simulated using a BEMA layer consisting of a mixture of the optical constants for the
adjacent media. Schematic model of the four-terminal perovskite/silicon tandem solar cell used
in our transfer-matrix-based optical simulations can be seen in Figure 1. The optical coupling of
the top perovskite and bottom cSi cell is arranged by an optical spacer material. The four-terminal
perovskite/silicon tandem solar cell structure, as depicted here, will be optimized in the optical
simulations for maximum overall short circuit current Jsc-combined, max by varying the thickness and
material of the optical spacer. For this optimization process, both internal and external losses of the top
and bottom cell, and the average transmittance of the perovskite top cell in the 800–1200 nm wavelength
range are calculated for different materials (different n values) and thicknesses of optical spacer to
achieve the maximum overall short circuit current. In general, in a tandem solar cell, the optical
interference between transmitted light through one sub-cell with reflected light by another sub-cell
will lead to optical cavities [44–46]. Due to the creation of optical cavities, the light intensity inside the
active layer of the sub-cells can be changed. By using an optimum optical spacer (suitable material
with correct thickness), the light intensity that is absorbed by the sub-cells can be maximized, leading,
as a result, to maximum performance of the tandem device too, since the efficiency of the tandem solar
cell here is the sum of efficiencies of the two sub cells.
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The internal and external current losses are calculated using Equations (1)–(3). By integrating
the area between the external quantum efficiency (EQE) and the absorbance curves (Acell) over the
AM1.5G solar spectrum for different wavelength regions, the internal current losses are calculated.
For the external current loss calculations, however, losses in both long wavelength light by transmission
through the semitransparent ITO-rear to the IBC-Si bottom solar cell through the optical spacer material
(Jescape-back) and losses of light due to external reflection at the device front (Jreflection) were considered.
Subsequently, by using TMM method and Equation (4), Jsc (top cell) and Jsc (bottom cell) were found,
respectively. The sum (Jsc-combined) of the short circuit currents for both the perovskite (top cell) and
the IBC-Si (bottom cell) are calculated and the optimum optical spacer was chosen according to the
maximum overall short circuit current.

Jinternal-loss =
q
hc

∫ λ2

λ1

λ×Φ(λ)×
[
Atop cell(λ)− EQE(λ)

]
× dλ (1)

Jescape-back external =
q
hc

∫ 1000

500
λ×Φ(λ)× Ttop cell(λ)× dλ (2)

Jreflection =
q
hc

∫ λ2

λ1
λ×Φ(λ)× R(λ)× dλ (3)

Jsc-Si(bottom) =
q
hc

∫ 1200

300
λ×Φ(λ)× Ttop cell(λ)× EQEbottom cell(λ)× dλ (4)

where q is the elementary charge, h is Planck’s constant, c is the speed of the light, λ is the wavelength,
Φ(λ) is the AM1.5G solar spectrum, Tcell is the transmission of the cell, and R is the reflection of the cell.

3. Results and Discussions

First, in order to calibrate and underline the accuracy of our optical simulations, Reflectance (R),
Transmittance (T), and Absorptance (A) of a semi-transparent perovskite-based sub cell with MAPbI3

as absorber material in an architecture of the perovskite cell, as depicted in Figure 1, were measured
and compared with simulations. Excellent agreement with experimental data can be seen in Figure 2,
which confirms the accuracy of our simulation. However, the small offsets for long wavelengths in
our transmission and reflection plots between experimental and simulation data are due to the small
absorption or scattering effects in the substrate.
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Figure 2. Measured and simulated reflectance (R), transmittance (T), and absorptance (A) spectra
of semitransparent MAPbI3 solar cell with the architecture glass/ITO-front/ITO-front-roughness/
SnO2/PCBM/MAPbI3/MAPbI3-roughness/spiro-OMeTAD/ITO-rear/ITO-rear-roughness. The dashed
lines represent measurements on the actual device and solid lines represent transfer-matrix-
based simulations.
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With the accuracy of the optical simulation method validated, the full stack of the four-terminal
perovskite/cSi tandem is considered with MAPbI3 as an active layer for the perovskite sub-cell,
the internal and external losses are calculated such that the short circuit currents for both the top and
bottom cell can be determined. Thereby, the optical properties (n value) and thickness of the spacer
layer is varied to find the overall combined short circuit current as the sum of the photo-currents
generated in both sub-cells. In our optical simulations, the refractive index n of the spacer layer is
varied over a broad range from n = 1.25 to n = 2.5, since simulation gives us the freedom to choose any
arbitrary value for n. In order to address the real working device, as examples, the optical data from
common optical spacer materials, like Silicon Nitride (SiN; n(SiN) = 2.0458), Magnesium Floride (MgF2;
n(MgF2) = 1.3777), and polymethylmetacrylate (PMMA; n(PMMA) = 1.4906) are used as well in the
simulations. In general, optical mediums, such as SiN and MgF2, can be coated by sputtering [47,48],
thermal evaporation [49–51], and atomic layer deposition (ALD) [52] while polymer-based spacers
such as Polymethylmethacrylate (PMAA) can be coated by solutions using different methods, such as
spin, blade, slot die, and spray coating [53]. The spacer thickness is varied from 0 nm up to 320 nm,
in steps of 40 nm. The resulting overall combined short circuit current is represented in Figure 3 for
each of these combinations of n value and layer thickness.
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Figure 3. The sum of short-circuit current of sub-cells of tandem device is shown for optical spacers
with different thickness and different refractive index’s (n).

It can be observed that the variation of the n value can have a substantial effect, resulting in a
variation of the overall combined short circuit current of almost 5 mA/cm2. With a layer thickness of
the optical spacer of 80 nm, the Jsc-combined is as low as 30 mA/cm2, while it rises over 34 mA/cm2 for
n = 1.5 at the same spacer layer thickness. Furthermore, it can be observed that this variation is large
for either relatively low spacer thicknesses of 80 or 120 nm, or for higher thickness values, like 280
and 320 nm. The variation is lowest for 200 nm spacer layer thickness. Another observation is that for
thickness below 160 nm, Jsc-combined is the largest for n = 1.5 each time, while from that thickness up to
240 nm n = 1.25 results in the largest Jsc-combined.

Finally, as it is clear from Figure 3, the total photo-current will be maximum for the simulated
four-terminal tandem device, when an optical spacer is used with n = 1.25 and a thickness of 160 nm.
Further analysis of the simulation data, as depicted in Figure 4, clarifies that at these conditions the
average optical transmittance of the perovskite-based sub-cell is reaching a maximum, just below 70%.
This in turn results in a maximum value for the short-circuit current of the IBC cSi bottom sub-cell,
close to 16 mA/cm2. This is an excellent illustration of the importance of the light management
by the optical spacer layer to not only maximize the current generation in the top cell, but also in
maximizing the light in coupling into the bottom cell to simultaneously have high current generation
in that sub-cell.
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Figure 4. Optical transmission of top sub-cell based on semi-transparent perovskite solar cells (red) and
short-circuit current of interdigitated back contact crystalline Si (IBC c-Si) bottom sub-cell are shown.

This observation is further validated in Figure 5, where the PCE values of both sub-cells as well
as the full four-terminal tandem are calculated for different thickness of the optical spacer layer, with
n = 1.25. We assume open-circuit voltage (VOC) equal to 0.97 Volt and Fill Factor (FF) equal to 72%
as taken from reference [36] as an example (when MAPbI3 is used as active layer of perovskite based
sub-cell) and use our simulated short-circuit currents (JSC) to calculate the efficiencies of sub-cell and
compare them with the four-terminal tandem device. The data clearly indicate that, while there is
minor variation in PCE for the perovskite based sub-cell, the variation for the cSi sub-cell follows the
Jsc trend, as shown in Figure 4. It is this variation of Jsc that subsequently results in the maximum
overall PCE value of the four-terminal tandem device, close to 22%.

Materials 2018, 12, x FOR PEER REVIEW  6 of 11 

 

 
Figure 4. Optical transmission of top sub-cell based on semi-transparent perovskite solar cells (red) 
and short-circuit current of interdigitated back contact crystalline Si (IBC c-Si) bottom sub-cell are 
shown. 

This observation is further validated in Figure 5, where the PCE values of both sub-cells as well 
as the full four-terminal tandem are calculated for different thickness of the optical spacer layer, with 
n = 1.25. We assume open-circuit voltage (VOC) equal to 0.97 Volt and Fill Factor (FF) equal to 72% as 
taken from reference [36] as an example (when MAPbI3 is used as active layer of perovskite based 
sub-cell) and use our simulated short-circuit currents (JSC) to calculate the efficiencies of sub-cell and 
compare them with the four-terminal tandem device. The data clearly indicate that, while there is 
minor variation in PCE for the perovskite based sub-cell, the variation for the cSi sub-cell follows the 
Jsc trend, as shown in Figure 4. It is this variation of Jsc that subsequently results in the maximum 
overall PCE value of the four-terminal tandem device, close to 22%. 

 
Figure 5. The performance of sub-cells is compared with four-terminal tandem device for optical 
spacer with refractive index of n = 1.25 but different thicknesses. 

As the IBC cSi single cell shows an efficiency of 23.2%, it means that the four-terminal tandem 
device, as simulated here, is not yet outperforming this cSi single cell. To further increase the 
performance of the resulting tandem structure, we investigate the effect of replacing the perovskite 
absorber layer from MAPbI3 to an electrically better performing one, such as CsFAPbIBr type [54]. 
MAPbI3 and the CsFAPbIBr type selected have almost identical bandgaps equal to 1.55 eV and 1.56 
eV, respectively, and hence have very similar optical performance. Based on purely optical 
simulations, the simulated EQE of MAPbI3 and CsFAPbIBr solar cells are almost identical, as depicted 
in Figure 6, suggesting that both devices have almost identical JSC. However, CsFAPbIBr solar cells 
show higher VOC (1.12 V) and fill factor (78%), thus resulting in higher PCE than MAPbI3 solar cells 
with similar device structure [54]. 

Figure 5. The performance of sub-cells is compared with four-terminal tandem device for optical spacer
with refractive index of n = 1.25 but different thicknesses.

As the IBC cSi single cell shows an efficiency of 23.2%, it means that the four-terminal tandem
device, as simulated here, is not yet outperforming this cSi single cell. To further increase the
performance of the resulting tandem structure, we investigate the effect of replacing the perovskite
absorber layer from MAPbI3 to an electrically better performing one, such as CsFAPbIBr type [54].
MAPbI3 and the CsFAPbIBr type selected have almost identical bandgaps equal to 1.55 eV and 1.56 eV,
respectively, and hence have very similar optical performance. Based on purely optical simulations,
the simulated EQE of MAPbI3 and CsFAPbIBr solar cells are almost identical, as depicted in Figure 6,
suggesting that both devices have almost identical JSC. However, CsFAPbIBr solar cells show higher
VOC (1.12 V) and fill factor (78%), thus resulting in higher PCE than MAPbI3 solar cells with similar
device structure [54].
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Figure 6. Simulated external quantum efficiency (EQE) solar cells based on MAPbI3 and
CsFAPbIBr perovskites.

By replacing MAPbI3 with the CsFAPbIBr perovskite [55,56], we simulate the four-terminal
tandem stack again, with the optical spacer layer thickness at 160nm and its refractive index n = 1.25,
as determined before. With similar Jsc for the top cell but higher Voc and FF, the PCE for the CsFAPbIBr
based perovskite sub-cell is almost 4% higher than the MAPbI3 based one, up to 16.5%, from a previous
12.9%. With the optical transmittance similar as before, the cSi bottom sub-cell maintains a PCE of
8.75%, only marginally lower than the 8.91% value when using the MAPbI3 sub-cell. Replacing MAPbI3

with the CsFAPbIBr perovskite therefore results in an overall four-terminal tandem performance as
high as 25.26%, performing substantially better than the IBC cSi stand-alone cell. These values are
summarized in Table 1.

Table 1. The efficiencies of single sub-cells and four-terminal tandem device are presented based on
experimental values from literature (reference [36] and reference [54]) for Voc and Fill Factor (FF),
but simulated results for Jsc (this study).

Perovskite
PCE %

Perovskite
Top-Cell

IBC cSi
Bottom-Cell

Four-Terminal with Perovskite Top-
and IBC cSi Bottom-Cell IBC cSi (Alone)

MAPI 12.90 8.91 21.81 23.2
CsFA_1_5 16.50 8.75 25.26 23.2

Thus, this study clarifies two main pathways to identify four-terminal perovskite/cSi tandem
devices that can outperform the stand-alone cSi cell, as depicted in Figure 7. Here, in order to
determine the factor by which the Si cell PCE drops when in tandem configuration when compared to
stand-alone, the bottom cell performance coefficient (γ) is calculated. This coefficient is influenced by
the sub-bandgap transparency of the top solar cell, and it is calculated as the ratio of the PCE of the
bottom solar cell in four-terminal configuration to its stand-alone PCE, see Equation (5).

γ =
PCEbottom_cell(tan dem)

PCEstand_alone
(5)

The colored diagonal lines indicate how the four-terminal tandem PCE varies as function of
this coefficient and the top cell PCE. We have demonstrated with the simulations done at first with
the MAPbI3 based perovskite top cell, this bottom cell performance coefficient can be substantially
improved when optimizing the light in-coupling with an optical spacer layer with appropriate
refractive index value and thickness. For an almost identical top cell PCE of ~13.5%, the coefficient
shifts from ~0.36 to almost 0.39 with the optimized optical spacer, as indicated by the two MAPI-labeled
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crosses. To outperform the IBC cSi stand-alone PCE, it turns out to be crucial to maintain the bottom
cell performance coefficient while increasing the top cell PCE, here to a value of ~16% (CsFA labeled
cross), as we achieved by replacing MAPbI3 with the almost optically similar CsFAPbIBr perovskite.
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4. Conclusions

Through the use of the transfer matrix optical simulation method, we have demonstrated the
impact of the optical properties and thickness of the spacer layer in between the top and bottom
sub-cells on the overall performance of a four-terminal perovskite/cSi tandem device. At first, it is
calculated that the optical spacer layer with appropriate refractive index and thickness enhances the
light transmission from the top to bottom cell, and thereby substantially improves the bottom cell
performance coefficient. In a second step, the top cell absorber was replaced with an optically similar
but electrically higher performing perovskite material. Maintaining the optical light in-coupling, this
resulted in a four-terminal tandem structure that outperforms the IBC cSi stand-alone cell with more
than 2% absolute. Therefore, this illustrates that the optical simulation method described here can
contribute well for optimizing the whole tandem structure reducing time and cost of optimizing
methods based on pure experiments. Moreover, further simulation work will be targeted to optimize
the bandgap of the perovskite top cell to further improve the bottom cell performance coefficient.
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