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Abstract: This study explores the effects of metakaolin (MK) and silica fume (SF) on rheological
behaviors and microstructure of self-compacting concrete (SCC). The rheology, slump flow, V-funnel,
segregation degree (SA), and compressive strength of SCC are investigated. Microstructure
characteristics, including hydration product and pore structure, are also studied. The results show
that adding MK and SF instead of 4%, 6% and 8% fly ash (FA) reduces flowability of SCC; this is
due to the fact that the specific surface area of MK and SF is larger than FA, and the total water
demand increases as a result. However, the flowability increases when replacement ratio is 2%, as the
small MK and SF particles will fill in the interstitial space of mixture and more free water is released.
The fluidity, slump flow, and SA decrease linearly with the increase of yield stress. The total amount
of SF and MK should be no more than 6% to meet the requirement of self-compacting. Adding MK or
SF to SCC results in more hydration products, less Ca(OH)2 and refinement of pore structure, leading
to obvious strength and durability improvements. When the total dosage of MK and SF admixture is
6%, these beneficial effects on workability, mechanical performance, and microstructure are more
significant when SF and MK are applied together.

Keywords: self-compacting concrete (SCC); rheology; workability; pozzolanic reaction; microstructure

1. Introduction

Self-compacting concrete (SCC) is usually characterized as a high-performance concrete that can
pass through the gaps between steel bars and fill the formwork completely, only relying on its own
gravity during pouring process [1–3]. It is distinguished by excellent workability; thus, no vibration
is required during casting, which can significantly reduce the cost, simplify the protocol, shorten
the construction time, and guarantee the homogeneity of concrete, especially when applied to the
complex cross-section structures [4,5]. Owing to those advantages, increasing attention has been
paid to SCC since it was first prepared in 1988 [6]. The workability of self-compacting concrete is
assessed by both fluidity and homogeneity. However, a high fluidity is usually accompanied with
poor homogeneity, and SCC is sensitive to its manufacturing parameters. Therefore, balancing the
fluidity and homogeneity is crucial in the design of SCC [7,8].
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The rheological properties of paste have significant influence on the workability of SCC [9–13].
Many studies have been carried out to study the rheological properties of SCC on levels of concrete,
mortar, and paste. It is generally accepted that the rheology of SCC conforms to the Bingham model,
and governed by two fundamental parameters: the yield stress and viscosity [14–16]. Yield stress is
the minimum force to initiate the flow of SCC, a series of experiments on the relationship between
slump and yield stress were conducted, and the results showed that there was an inverse proportional
function between yield stress and fluidity [17,18]. A previous study on the influence of mortar rheology
on homogeneity showed that yield stress is the key factor to prevent the segregation of aggregate, and
the yield stress should be higher than the lowest critical value to ensure the suspension stability [19].
It was also reported that the flow rate of paste is determined by viscosity. The workability of SCC
can be partly predicted by analyzing the rheological properties of paste and mortar [20]. For instance,
the Krieger–Dougherty (K–D) formula is proven to be able to simulate the correlation of viscosity and
yield stress between the mortar and paste [21], the relationship between rheological properties of SCC
and paste was established based on the K–D formula and mortar layer model, and a new method for
design of SCC based on net paste rheology is provided [22]. Therefore, studying the rheology is of
great significance during the design of SCC.

On the other hand, supplementary cementitious material (SCM) has become an important
component in the design of modern SCC [23]. Fly ash (FA) is one of the most widely used SCMs
in SCC for its beneficial effect on workability. It is found that SCCs that contain 30%–60% FA
have good mechanical properties and durability [24]. Moreover, the addition of fly ash to recycled
aggregates concrete will improve its workability, compressive/tensile strengths, and resistance to
chloride [25,26]. Nevertheless, high-volume FA content also increases the risk of segregation and
reduces early strength [27]. Silica fume (SF) is commonly used in concrete to improve the stability
and mechanical properties [28,29]. Adding 20% silica fume to SCC was reported to increase the
compressive strength by 27% at 28 days [30]. Meanwhile, metakaolin (MK) is a binding material
with similar particle size and pozzolanic activity to SF, and has been widely used in concrete [31–35].
Performances, such as mechanical properties and durability, can be remarkably improved after MK is
included [36,37]. SF and MK addition in SCC will increase the stability on the one hand, but negatively
affect the fluidity on the other hand; the water demand of concrete is significantly increased with SF
and MK addition. The poor fluidity will inhibit the discharging of bubbles and damage the filling
performance during construction, which is harmful to the general performance of SCC [38,39]. Based
on the problems above, it indicates that the use of appropriate compounded MK and SF is a novel
approach to develop ultra-high-performance concrete (UHPC) with advanced properties, and the
optimum dosage is 3% MK + 5% SF. The reason is that the utilized MK is more active than SF, but
an excess amount of MK can increase the viscosity and shrinkage, leading to trapped bubbles and
microcracks [40]. Hence, it is logical to study the feasibility of producing SCC by composite use of
MK and SF.

The preparation of high-performance SCC usually requires the addition of SF and MK admixtures,
but the negative influence on the workability is also a deterrent. Hence, it is of great significance to
propose a design criterion of high-performance SCC with consideration of SF and MK. In this study,
the effect of SF and MK on the rheology and workability of high-performance SCC is investigated,
and importance of the rheology on the workability of SCC is discussed. Then, the enhanced
mechanical properties and microstructure of high-performance SCC containing SF and MK admixtures
are evaluated.

2. Materials and Methods

2.1. Materials

In this study, P·II 42.5 cement is used as binding material; fly ash (FA), silica fume (SF), and
metakaolin (MK) are used as SCMs, their particle size distributions and chemical constituents
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are measured by laser particle size analyzer and X-ray fluorescence spectrometer, respectively, as
shown in Figure 1 and Table 1, respectively. Natural river sand with fineness modulus of 2.9 is
used as fine aggregate. Continuous graded gravels with a size of 5–20 mm are used as coarse
aggregate. A polycarboxylate superplasticizer (SP) with a solid content of 20% is employed to adjust
the flowability of SCC.

Table 1. Chemical composition of powders in this study (wt %).

Compositions SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI Specific Surface Area (m2/kg)

Cement 21.86 4.45 2.35 63.51 1.67 0.55 0.26 2.91 1.89 353
Fly Ash 46.43 38.02 3.11 7.51 0.23 0.89 0.34 0.68 2.78 372

Metakaolin 52.27 44.58 0.70 0.02 0.13 0.34 0.53 0.22 1.02 14,600
Silica Fume 94.65 0.15 0.25 0.33 0.49 0.85 0.16 0.66 2.21 46,100
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2.2. Mix Design

The mix composition of paste and concrete mixtures are shown in Tables 2 and 3, respectively.
Cement accounts for 55% of the total cementitious material and the rest are SCMs. FA is partially
replaced by SF and MK to improve the performance of SCC. The water/binder (w/b) ratio is fixed at
0.33 for all mixes. Paste specimens are prepared according to ASTM C 305-2006 and concrete specimens
are prepared in accordance with ASTM C192 [41]. Cubic specimens of 100 × 100 × 100 mm3 are
prepared, and demoulded after 24 h, then they are cured under standard conditions (25 ± 2 ◦C and
relative humidity of 98%) until testing.

Table 2. Mix design of paste (kg/m3).

NO. Water Cement Fly Ash Metakaolin Silica Fume Superplasticizer

P0 552 920 753 0 0 10
PMK2 552 920 720 33 0 10
PMK4 552 920 687 66 0 10
PMK6 552 920 654 99 0 10
PMK8 552 920 621 132 0 10
PSF2 552 920 720 0 33 10
PSF4 552 920 687 0 66 10
PSF6 552 920 654 0 99 10
PSF8 552 920 621 0 132 10

PMK2SF4 552 920 654 66 33 10
PMK4SF2 552 920 654 33 66 10
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Table 3. Mix design of self-compacting concrete (SCC) (kg/m3).

NO. Water Cement Fly Ash Metakaolin Silica Fume Sand Gravel Superplasticizer

C0 165 275 255 0 0 859 762 5
CMK2 165 275 215 10 0 859 762 5
CMK4 165 275 205 20 0 859 762 5
CMK6 165 275 195 30 0 859 762 5
CMK8 165 275 185 40 0 859 762 5
CSF2 165 275 215 0 10 859 762 5
CSF4 165 275 205 0 20 859 762 5
CSF6 165 275 195 0 30 859 762 5
CSF8 165 275 185 0 40 859 762 5

CMK2SF4 165 275 195 10 20 859 762 5
CMK4SF2 165 275 195 20 10 859 762 5

2.3. Testing Methods

2.3.1. Rheology Behavior

The rheological property of paste is measured by a rotor viscometer. The testing instrument is
R/S-SST soft-solid rheometer produced by Brookfield Company (Toronto, Canada). The range of
shear stress is 6–200 Pa and the shear rate is 0–1000 rpm. The data obtained by the rheometer can be
transmitted to the master computer in real time and analyzed by Rheo V2.8 software. The rheological
test procedure of rheometer is shown in Figure 2.
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2.3.2. Workability

In order to evaluate the workability of SCC, slump flow test and V-funnel test were carried out.
Segregation degree of coarse aggregate (SA) was also measured to evaluate the homogeneity of SCC.
The tests process was referred to BS EN 12350:2010 [42]. SA was defined as the difference of coarse
aggregate weight in different layers: Firstly, the three-layer segregation barrel containing SCC is placed
on the jumping table, then the jumping table is started and vibrated 25 times. The concretes in each
layer are put into the 5 mm sieves. After washing and drying, the quality of aggregates in different
layers is weighed. The SA can be calculated as shown in Equation (1).

SA =
m1 − m2

m0
, (1)
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where m0 is the average weight of dried aggregate in concrete, and m1 and m2 are the weight of dried
aggregates in the bottom and top layer of the segregation barrel, respectively.

2.3.3. Compressive Strength

A 3000 kN capacity machine was employed to measure the compressive strength of cube
specimens according to ASTM C39 [43]. The test was conducted at the ages of 3 days and 28 days.
Three specimens for each batch were measured and the average value was employed to evaluate the
compressive strength.

2.3.4. Hydration Products

The samples of paste were crushed into small grains after curing for 28 days, and soaked in
alcohol to stop hydration. Then, the samples were dried at 60 ◦C for 24 h in an oven. Afterwards, the
samples were grounded into powder and examined by XRD and thermal analysis.

XRD analysis is carried out by D/max-RB type X-ray diffractometer (Japanese RIGAKU,
Tokyo, Japan) with scanning step of 0.02, the speed of 10 ◦/min, the current of 30 mA, and the voltage
of 35 kV. Thermal analysis is carried out by Simultaneous Thermal Analyzer (Netzsch STA449F3,
Shanghai, China) under nitrogen atmosphere with gas flow of 30 mL/min, heating rate of 10 ◦C/min,
and temperature range of 0~1000 ◦C.

2.3.5. Pore Size Distribution

The small grains with several micrometers in diameter, crushed from 28-day concrete samples,
were dried in an oven at 60 ◦C for 24 h before pore structure examination. The Micromeritics
AutoPore-9500 (Micromeritice, Norcross, GA, USA) was used for mercury intrusion porosimetry
test (MIP) test, with the generating pressures of mercury intrusion porosimeter ranging from
3 Pa to 379 MPa.

3. Results and Discussions

3.1. Rheology Behavior

The effect of MK and SF on the fluidity of pastes is shown in Table 4, and it can be seen that
fluidity of the paste decreases gradually with the increase of metakaolin and silica fume content. This
is due to that the specific surface area of MK and SF is obviously larger than that of fly ash (as shown
in Table 1); and the total water demand increases as a result. The free water content in paste is reduced,
and the fluidity declined. Compared with P0, the fluidity of paste decreases by 30.9% for 8% MK
addition, and 40% for 8% SF addition, respectively, which indicates that SF has greater influence than
MK on fluidity. This is because the particle size of SF is smaller as shown in Figure 1, therefore, more
water is adsorbed by the powder itself.

Table 4. Effect of Silica Fume (SF) and Metakaolin (MK) on the rheology of paste.

No. Metakaolin
(%)

Silica
Fume (%)

Slump
(mm) Bingham Equation Viscosity

(Pa·s)
Yield Stress

(Pa)

P0 0 0 275 τ = 1.140γ + 2.804 1.140 2.804
PMK2 2 0 280 τ = 0.704γ + 0.385 0.704 0.385
PMK4 4 0 250 τ = 1.341γ + 2.858 1.341 2.858
PMK6 6 0 200 τ = 1.387γ + 13.913 1.387 13.913
PMK8 8 0 190 τ = 1.582γ + 18.266 1.582 18.266
PSF2 0 2 275 τ = 1.130γ + 0.823 1.130 0.823
PSF4 0 4 260 τ = 1.416γ + 3.061 1.416 3.061
PSF6 0 6 210 τ = 1.611γ + 17.939 1.611 17.939
PSF8 0 8 165 τ = 1.988γ + 28.711 1.988 28.711

PMK4SF2 4 2 220 τ = 1.379γ + 5.568 1.379 5.568
PMK2SF4 2 4 225 τ = 1.318γ + 13.411 1.318 13.411
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Figure 3 shows the rheological curve of PMK6. It can be seen that the rheological curve is
mainly divided into two parts, corresponding to the second and third parts of the rheological program
(as shown in Figure 2). The curve of the up part is irregular, and this phenomenon can be attributed
to the reason that the paste is solid-like, and contains the local “weak” regions at the beginning of
shearing [44], and pre-shearing will liquefy the paste, but not completely. The down part shows a
regular linear relationship, indicating that the paste has been completely liquefied, which is mainly
due to the thixotropy of the paste. The analysis of rheological test is mainly focused on the down
part, as shown in Figure 3. The Origin Pro 2015 is employed to perform the procedure of linear
fitting. The fitting curve of PMK6 is y = 1.384x + 13.913, R2 is 0.99939. It shows that the mathematic
relationships between shear stress (τ) with shear rate (γ) of pastes can be determined from being fitted
by Bingham model (τ = τ0 + η·γ), where slope of the curve, η, represents the viscosity and the vertical
intercept; τ0, represents the yield stress of the paste [45].
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The viscosity and yield stress of different pastes are shown in Table 4 and Figure 4. It can be seen
from the Table 4 and Figure 4 that the plastic viscosity and yield stress of the paste increase gradually
with increasing contents of MK and SF, which can explain the decrease of paste fluidity. When the
content of MK and SF is 2%, the viscosity and yield stress of PMK2 is 38.2% and 86.3% lower than P0,
respectively. The reduction of viscosity and yield stress is 8.7% and 70.6% for PSF2, respectively. This
is due to the small particle size of MK and SF, which can be filled in the interstitial space between the
particles of paste, thus, more free water is released. Comparing PMK8 with P0, it can be found that
the viscosity of the paste is increased by 38.4% and the yield stress is increased by 5.5 times when 8%
MK is added. This indicates that MK addition can be more significantly affected by the yield stress
rather than viscosity. The same observation can be found when SF is added. The phenomenon could
be attributed to the following reasons: on the one hand, the particle size of MK and SF are smaller
than FA, and the addition of MK and SF will reduce the content of free water in the mixture; on the
other hand, MK and SF are more active and will promote the hydration process, and the flocculated
hydration products will wrap in the surface of the particles and prevent the relative movement of the
particles, resulting in a significant increase of yield stress [46]. When the content of MK and SF is 8%,
the yield stress and viscosity of PSF8 are 57.2% and 25.6% higher than that of PMK8, respectively. This
indicates that SF has a larger effect on rheological properties than MK, and it is in keeping with the
result of fluidity test. When the total content of MK and SF is 6%, the viscosity and yield stress of
PMK2SF4 and PMK4SF2 are slightly lower than that of PMK6 and PSF6, indicating that the negative
effect of MK or SF on the fluidity can be minimized by the binary use of MK and SF. This is because SF
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is finer than MK, when they are used in combination, and the accumulation of the powder becomes
more compact and more free water is released, resulting in increased fluidity of paste.
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Overall, it can be found that there is an obvious linear relationship between fluidity and yield
stress, as shown in the Figure 5, and the fitting curve is y = 272 − 4.02x, and the square difference, R2,
is 0.913. This demonstrates that the fluidity of paste is mainly affected by yield stress, which is consist
with [17]. Hence, the yield stress of paste needs to be controlled within the appropriate range to obtain
excellent fluidity.
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3.2. Workability

The slump flow, V-flow, and SA values of SCC are shown in Figure 6. It can be seen that the slump
flow and SA of SCC decrease with the increase of MK and SF content (Shown as the red arrows in
Figure 6). The slump flow and SA of C0 (without MK and SF) are 650 mm and 23.4%, respectively, while
the slump flow of SCC with 2% MK (CMK2) and 2% SF (CSF2) is 720 mm and 700 mm, respectively.
Similarly, the SA of SCC with 2% MK (CMK2) and 2% SF (CSF2) is 25.1% and 24.1%, respectively.
Hence, both MK and SF will increase the fluidity and segregation of SCC when their content is 2%.
The slump flow and SA of SCC that contain SF are lower than MK, showing that SF has greater impact
on the workability of SCC than MK, which follows a similar tendency as the rheological results, and it
is indicated that the rheology of paste is very important to the performance of SCC. When the total
dosage of SF and MK admixture is 6%, the slump flow of CMK6 (6% MK) and CSF6 (6% SF) is 630 mm
and 620 mm, separately. While the slump flow of CMK2SF4 (2% MK + 4% SF) and CMK4SF2 (4% MK
+ 2% SF) is 635 mm and 680 mm, separately. It can be seen that the compound use of MK and SF can
obtain higher fluidity with the same dosage. This is attributed to difference of particle sizes between
MK and SF, then the grain composition and accumulation of powders is optimized by the combination
of MK and SF. As a consequence, more free water is released, and the fluidity increased. V-flow is the
result of the combined effect of fluidity and stability. Low fluidity will lead to slow flow rate, and the
V-flow value will increase. However, excessive fluidity leads to the segregation of aggregate, and the
aggregate will concentrate at the outlet, resulting in increased V-flow value. With the incorporation
of SF and MK over 6%, the slump flow and V-flow of CMK8 (8% MK) is 580 mm and 20.2 s, and it is
520 mm and 32.2 s for CSF8 (8% SF). The results show that the workability of CMK8 and CSF8 does not
meet the requirements of self-compacting concrete (slump flow 600~700 mm, V-flow 5~15 s), therefore,
it is suggested that the mixture of SF and MK be controlled to within 6% without increasing the SP
dosage in this study.
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Figure 7 shows the effect of yield stress of paste on the slump flow of SCC. The fitting curve
of yield stress and slump flow is y = 711 − 6.18x, the square difference R2 is 0.948, and it shows a
significant linear relationship between yield stress and slump flow, and the slump flow decreases with
the increase of yield stress. This phenomenon illustrates that the yield stress of paste is the key factor
to determining the slump of SCC. The reason is that when the driving force is greater than the yield
stress of SCC, the flow continues; conversely, it stops [22].
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Figure 8 shows the relationship between yield stress and SA of SCC. The fitting curve is
y = 20.09 − 0.581x, and R2 = 0.864. A linear relationship can also be seen between yield stress and
SA of SCC. The fitting curve indicates that the SA decreases with the increase of yield stress, and the
segregation of aggregate will not occur (SA = 0) when the yield stress is greater than 34.6 Pa. This
phenomenon is attributed to by the fact that yield stress is the precondition for the stability of aggregate
in concrete, and segregation of aggregate happens only when the difference between gravity and
buoyancy of the aggregate is greater than the yield stress [47]. Nevertheless, there is some fluctuation
for linear relationship between the yield stress and SA of SCC, and it indicates that SA is also affected
by viscosity of concrete. During the SA test, the segregation bucket containing concrete should be
placed on the jumping table and vibrated 25 times, and the yield stress will be significantly reduced
under these vibration conditions and, as a result, the aggregate will fail to remain suspended and
sink [19]. At this point, the sedimentation rate of aggregate is affected by the viscosity based on the
Stokes formula. In summary, the rheology of paste is an important factor affecting the workability of
SCC, and the performance of SCC can be predicted, to a certain extent, by evaluating the rheology
property of the paste [48].
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3.3. Compressive Strength

The compressive strength of 3 and 28 days of SCC that contain different amounts of MK and
SF are shown in the Figure 9. In general, it can be seen that the addition of MK and SF can increase
the compressive strength of SCC. For example, comparing with C0, the addition of 6% MK (CMK6)
increases the strength of SCC by 22.3% and 15.1% at 3 and 28 days, respectively, and it is 16.0% and
17.0% for CSF6. Moreover, when the dosage of MK and SF in SCC are relatively close (e.g., CMK2SF4
and CMK4SF2), the compressive strengths are higher than that of CMK6 and CSF6. The compressive
strength is 64.3MPa for CMK4SF2 at 28 days, which is the highest value in all specimens. This
phenomenon can be explained by the following reasons: On the one hand, the particle size of MK and
SF are smaller than FA (as shown in Figure 1) and can fill the voids between powers and, moreover,
the activity of MK and SF are higher than FA. Thus, more free water in the interspace is released, and
the hydration reaction is further facilitated. On the other hand, MK and SF are more active, more
hydration products are generated by pozzolanic reaction and fill the voids in hardened concrete. All of
these effects will lead to a denser structure and a higher strength [40]. In addition, SF is finer than SF
and, when MK and SF are composited, the small MK particle can be the kernel of the early pozzolanic
reaction and the formation of C-S-H (calcium silicate hydrate) gels, which can further accelerate the
cement hydration and fill the pores. It should be noticed that the differences of the compressive
strengths for the samples with same content of MK and SF are relatively small. The enhancement
effect is more increased when MK and SF are binary applied. As the addition of MK and SF is 8%
(e.g., CMK8 and CSF8), the compressive strength is lower than that of CMK6 and CSF6. It is shown in
Figure 6 that the fluidity of CMK8 and CSF8 is too low, and the bubbles in the concrete are difficult
to release. Thus, the compactness of hardened concrete structure will be reduced. This illustrates the
importance of workability on the mechanical properties of SCC. In order to clearly clarify expound the
effect of MK and SF on the mechanical properties of SCC, their microstructures are explored in the
sections below.
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3.4. Hydration Products

The XRD patterns of different mixtures after curing for 28 days are presented in Figure 10.
It can be seen that the main hydration products are AFt (ettringite), Ca(OH)2 (marked as CH), and
CaCO3 (marked as C). The diffraction peak of AFt in PSF6 is lower than P0, which indicates that the
employment of SF decreases the formation of AFt. This should be attributed to reduction in active
aluminum phases and more significant absorption of aluminum by C-S-H gels in SF system. This is in
accordance with a previous study [49]. It can be clearly observed that the diffraction peak of Ca(OH)2
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in PMK6 and PSF6 is inferior to P0, that is, the employment of MK and SF will reduce the content of
Ca(OH)2. This is because MK and SF are more active than FA, and doping MK and SF can increase the
content of high activity SiO2 and Al2O3 in SCC. Thus, more Ca(OH)2 produced by cement hydration is
consumed by pozzolanic reaction and better performances, such as with mechanical properties, can
result (as shown in Figure 9) [50–52].
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DTG (derivative thermogravimetry) curves of specimens after curing for 28 days are presented in
Figure 11. As TG-DSC test is conducted on samples after completely dried at 40 ◦C, and the state that
adsorbed water is completely removed, while bound water is not separated has been achieved [53].
Therefore, the weight loss caused by water under this condition is induced by bound water.
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It can be clearly found from Figure 11 that the curve peak of hydration products (including C-S-H gels,
Aft, and CaCO3) in PMK6 and PSF6 is more remarkable than P0, which means that the addition of MK and
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SF induces much more abundant hydration products [54,55]. This is attributed to the accelerated hydration
process caused by MK and SF incorporation [56]. The addition of MK and SF reduced the mass loss peak
of Ca(OH)2, indicating that the content of Ca(OH)2 in hydration products decreases, and is accordant with
the XRD results (as shown in Figure 10). The mass loss peak of AFm (hydrated calcium aluminate sulfate)
can be expressly discovered for the samples of PMK6 and PMK2SF4 in Figure 11. This is deducted from
formation and transformation of SO4-AFm. According to formation of AFt, gypsum dissolves completely
in the cement-based system after 2 days. The excess aluminum phases will react with AFt to generate
AFm [57]. The content of aluminum phase in MK is relatively high, so the incorporation of MK will lead to
more aluminum phases. More remarkable formation of AFm means additional of aluminum phases. As a
result, it can be predicted that the mixtures have a better ability to adsorb and solidify chloride, which will
lead to preferable durability in chloride-eroded environments (e.g., marine environment).

3.5. Pore Structure

The pore structure of concrete specimens after curing for 28 days is presented in Figure 12 and
Table 5. In general, the employment of MK and SF optimizes the pores structures of SCC by reducing
the total porosity and the volume of coarse pores [35]. For instance, the pore distribution of C0 is mainly
in the range of 10–70 nm, but it is 10–50 nm for CMK6 and CSF6. In addition, incorporating 6% MK
and SF can reduce the content of coarse pores (>50 nm) by 18.2% and 13.6%, respectively. Furthermore,
both the average diameter and most probate pore diameter are reduced. Hence, the addition of MK
and SF is beneficial for refining the pore structure of SCC. Due to the fact that MK and SF are finer and
more active, the small MK and SF particles will fill the gaps in the powders, they can also promote the
cement hydration and fill the pores, resulting in denser microstructure.

Table 5. Pore structure of SCC after curing for 28 days.

Sample Code C0 MK6 SF6 MK2SF4

Coarse pores (mL/g) 0.022 0.018 0.019 0.010
Capillary pores (mL/g) 0.044 0.038 0.038 0.044

Total porosity (%) 11.66 10.49 10.58 9.92
Average diameter (nm) 24.4 18.0 20.0 15.4

Most probate pore diameter (nm) 40.3 32.4 32.4 26.3
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Compared with CSF6, samples that contain 6% MK (CMK6) have a relatively lower coarse pore
volume and smaller average diameter, which means that MK has better capacity to refine pores, and a
similar phenomenon has been observed in previous research [35]. However, it is worth noting that
the mixture of CMK2SF4 has smaller pore volume than CMK6 and CSF6. Meanwhile, the mixture
with compounded MK and SF (CMK2SF4) reduces the coarse pores by 50%. In addition, its average
diameter and most probate pore diameter are15.4 nm and 26.3 nm, respectively, which are the lowest
value of the all samples. This means that the pore structure is further optimized when MK and SF
are used together. Consequently, applying a SF–MK mixture with proper ratios and contents can
be a better method to develop high-performance SCC. These results are consistent with analysis of
compressive strength tests [58–60].

4. Conclusions

High performance SCC with MK and SF addition are designed and characterized. The effect of
MK and SF on the rheology, workability, compressive strength, and microstructure is investigated.
The following conclusions can be drawn based on the results:

The employment of MK and SF, instead of FA, increases the yield stress and viscosity of SCC,
resulting in the reduction of fluidity, slump flow, and SA of SCC, which is due to that the utilized
MK and SF in this study are finer and more active than FA, so more water is adsorbed by the powder
itself and more flocculating products are produced. When the dosage of MK and SF is 2%, the small
particles will fill in the interstitial space of mixtures, and more free water is released, leading to an
increasement of fluidity. The total amount of SF and MK should be no more than 6% to meet the
requirement of self-compacting.

The fluidity, slump flow and SA decreases linearly with the increase of yield stress, based on
rheology and workability results. This is owing to that yield stress is the key factor determining flow
and aggregate settlement of concrete.

The addition of 6% MK and 6% SF instead of FA increases the compressive strength of SCC
by 15.1% and 17.0% at 28 days, respectively. On the one hand, the particle size of MK and SF are
smaller than FA and can fill the voids between powers. On the other hand, MK and SF are more
active, and more hydration products are generated by pozzolanic reaction and fill the voids in the
hardened concrete. All of these effects will lead to an optimized pore structure and higher strength.
The compressive strength decreases when the contents exceed 8%, and this is due to the excessive
yield stress and viscosity, which make it difficult to discharge bubbles and form a compact structure.

The property of SCC, including workability, mechanical performance, and microstructure, could
be further improved when SF and MK are applied together. As the particle size of SF is smaller than
MK, the accumulation of the powder becomes more compact by compounding MK and SF and, as a
result, more free water is released and fluidity is increased. Moreover, the small MK particle can be the
kernel of the early pozzolanic reaction and the formation of C-S-H gels, which can further accelerate
the cement hydration and fill the pores. Hence, the mechanical performance and microstructure of
SCC are improved.
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