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Abstract: The emission of CO2 has been considered a major cause of greenhouse effects and global
warming. The current CO2 capture approaches have their own advantages and weaknesses. We found
that free-flowing hydrated sodium carbonate (Na2CO3) powders with 30 wt % water can achieve a
very high CO2 sorption capacity of 282 mg/g within 60 min and fast CO2 uptake (90% saturation
uptake within 16 min). The results suggest that the alkaline solution resulting from the dissolution of
partial Na2CO3 can freely attach onto the hydrated Na2CO3 particles, which provides an excellent
gas–liquid interface for CO2 capture, leading to significantly enhanced CO2 sorption capacity
and kinetics.
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1. Introduction

Emission of CO2 is identified as the main contributor to global climate change. Reducing the levels
of CO2 in the atmosphere has become a pressing issue worldwide, and capturing and sequestrating
CO2 as an option to decrease levels of CO2 has been widely explored [1–4].

A number of promising materials for CO2 capture were reported [5–10]. The best developed are
probably aqueous amines [11,12], including monoethanolamine (MEA) [13,14] and diethanolamine
(DEA) [15,16]. However, liquid amines have some serious disadvantages, including amine
evaporation [17,18], corrosion to equipment [19], and high energy cost for regeneration [20,21].
A feasible way to reduce the corrosivity and the regeneration energy is to use supported amine
adsorbents [22–26], but the raw materials are currently too expensive to be applied in large-scale
industrial settings [27].

As an alternative to supported amine sorbents, alkali metal carbonates such as K2CO3 and
Na2CO3 as solid sorbents have received wide attention with both high sorption capacity and low
cost [28–32]. However, the main problem of using carbonates is their slow reaction kinetics [33–35].
Cooper and co-workers reported that dry K2CO3 solution (K2CO3 aqueous solution coated with
hydrophobic silica powders) exhibited significantly increased CO2 uptakes [36], but the recyclability
of this sorbent was poor. It has been generally accepted that K2CO3 is superior to Na2CO3 in terms of
both CO2 uptake capacity and kinetics [37–39]. However, using Na2CO3 will be more competitive for
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large-scale industrial applications because of its lower cost, especially if one can dramatically promote
the rate of the key reaction:

Na2CO3 + H2O + CO2 
 2NaHCO3 (1)

One of the most common approaches to tackle this problem is to disperse Na2CO3 powders on
solid supports [40,41], but such a strategy also reduces CO2 sorption capacity because the inclusion of
the supports greatly decreases the amount of active components per unit mass [42].

In this report, we demonstrate that support-free hydrated sodium carbonate powders (HSCPs)
prepared by simply mixing a certain amount of water and Na2CO3 powders exhibit effective CO2

capture. The alkaline solution resulting from the dissolution of partial Na2CO3 can freely attach into
hydrated Na2CO3 particles, which provides an excellent gas–liquid interface for CO2 capture, leading
to significantly enhanced CO2 sorption capacity and kinetics. The elimination of supports not only
reduces the overall cost of raw materials, but also increases the CO2 sorption capacity, both of which
are critical for large-scale applications.

2. Experimental

2.1. Preparation of HSCPs

Na2CO3 (99.8%) was purchased from Tianjin Qilun Chemical Technology Co. Ltd., Tianjin,
China. Na2CO3·H2O (99%) was purchased from Aladdin Co. Ltd., Shanghai, China. MEA (99%) was
purchased from Jiangsu Yonghua Chemical Technology Co. Ltd., Changshu, China. CO2 (99.9%) was
supplied by Zhuozheng Gas Co. Ltd., Guangzhou, China. All the chemicals were used as received
without further purification. A series of HSCPs with different Na2CO3 contents were prepared by
thoroughly mixing an appropriate amount of Na2CO3 and deionized water at room temperature.

2.2. Characterization

X-ray diffraction (XRD) patterns of the samples were recorded using a Bruker D8 diffractometer
(Bruker, Karlsruhe, Germany) with Bragg–Brentano θ−2θ geometry (20 kV and 5 mA), using a graphite
monochromator with Cu Kα radiation.

To measure the CO2 capture capacity of the HSCP samples, 5.0 g HSCP was charged into a 50 mL
container, which was exposed to CO2 using a balloon containing a sufficient amount of CO2 gas (ca. 5 L
with a pressure of ca. 1.05 bar). The amount of CO2 captured by each HSCP sample was measured
using a balance. A muffle furnace (Luoyang BSK Electronic Materials Co. Ltd., Luoyang, China) was
used to regenerate the sorbents at 250 ◦C for 1 h, which was mixed with water to reform HSCPs.

3. Results and Discussion

Figure 1a shows the CO2 uptake kinetic curves using various HSCPs (labelled as HSCP-X, where X
is the mass percentage of Na2CO3 in the mixture) as a sorbent at 30 ◦C. It was found that HSCP-10 to
HSCP-60 had a very low CO2 sorption capacity (<32 mg/g of HSCP). The CO2 uptake capacity rapidly
rose to 156 mg/g when the mass fraction of Na2CO3 was increased to 65 wt %, i.e., HSCP-65, but it
still suffered from low sorption kinetics. Further increasing mass fraction of Na2CO3 led to another
significant increase in term of both sorption capacity and kinetics. At the optimum concentration of
70 wt % (i.e., HSCP-70), the CO2 uptake capacity reached 282 mg/g within 60 min, and the t90 (the time
to achieve 90% of this capacity) was only 16 min. This capacity is much higher than that of other
Na2CO3-based CO2 sorbents reported in the literature, which varies between 32 and 140 mg/g [43,44].
Although HSCP-75 achieved the highest capacity (286 mg/g), its CO2 sorption rate was relatively slow
and t90 was about 45 min.
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Figure 1. (a) CO2 sorption kinetics of various HSCPs at 30 °C; (b) conversion ratio of Na2CO3 in 
various HSCPs and different reaction time. 
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is directly related to the amount of Na2CO3 in HSCPs when the content of water is more than 14.5 wt 
% according to Equation (1). Thus, the conversion ratio of Na2CO3 is a good indicator of the CO2 
sorption behaviour. As shown in Figure 1b, with an increasing mass fraction of Na2CO3, the 
conversion ratio of Na2CO3 decreased initially, then dramatically increased to a maximum value 
close to 100% before declining again. After 60 min of reaction, HSCP-70 exhibited the highest 
conversion rate (97.1%), which suggested that most of Na2CO3 was consumed. The HSCPs with a 
low mass fraction of Na2CO3, such as HSCP-10, also showed a high conversion ratio, in which 
Na2CO3 dissolved in water to form a solution, due to its high degree of hydrolysis [45]. However, 
their corresponding CO2 uptake capacity is low because of the limited amount of Na2CO3 presented 
(Figure 1a). The other two sets of data in Figure 1b represent the conversion ratios of Na2CO3 after 
five and 15 min of reaction. For HSCP-70, its conversion ratio increased rapidly from 5 to 15 min, but 
changed little from 15 to 60 min, which suggested that most of Na2CO3 was consumed within 15 
min, thus showing a high reaction rate. 

Figure 1. (a) CO2 sorption kinetics of various HSCPs at 30 ◦C; (b) conversion ratio of Na2CO3 in
various HSCPs and different reaction time.

It was found that too high a concentration of Na2CO3 in HSCP would actually lower the CO2

uptake capacity. When the concentration of Na2CO3 in HSCP reached 80 and 85 wt %, the CO2

uptake capacity decreased to 124 and 46 mg/g, respectively. Theoretically, the CO2 sorption capacity is
directly related to the amount of Na2CO3 in HSCPs when the content of water is more than 14.5 wt %
according to Equation (1). Thus, the conversion ratio of Na2CO3 is a good indicator of the CO2 sorption
behaviour. As shown in Figure 1b, with an increasing mass fraction of Na2CO3, the conversion
ratio of Na2CO3 decreased initially, then dramatically increased to a maximum value close to 100%
before declining again. After 60 min of reaction, HSCP-70 exhibited the highest conversion rate
(97.1%), which suggested that most of Na2CO3 was consumed. The HSCPs with a low mass fraction
of Na2CO3, such as HSCP-10, also showed a high conversion ratio, in which Na2CO3 dissolved in
water to form a solution, due to its high degree of hydrolysis [45]. However, their corresponding CO2

uptake capacity is low because of the limited amount of Na2CO3 presented (Figure 1a). The other two
sets of data in Figure 1b represent the conversion ratios of Na2CO3 after five and 15 min of reaction.
For HSCP-70, its conversion ratio increased rapidly from 5 to 15 min, but changed little from 15 to
60 min, which suggested that most of Na2CO3 was consumed within 15 min, thus showing a high
reaction rate.
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Overall, the above results show that the concentration of Na2CO3 in HSCPs has a great influence
on CO2 capture, which can be explained by the fact that the morphology of HSCPs varies from
aqueous solution and slurry, to powders with an increasing Na2CO3 concentration. At low Na2CO3

concentrations, the HSCPs exist as an aqueous solution or slurry as shown in Figure 1b (inset), which is
not ideal for CO2 capture because of the low gas–liquid contact surface area. However, HSCP-70 is a
sample of free-flowing powders (Figure 2) with a much higher gas–liquid contact surface area. This is
why it has a rapid reaction rate and a high CO2 uptake capacity.
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Figure 2. Free-flowing HSCP-70 from a glass funnel.

In order to better understand the mechanism of CO2 sorption by HSCPs, the XRD patterns
(Figure 3) of various Na2CO3-based compounds were collected, including the reaction products
of HSCP-70 after 0, 5, 15, and 60 min of sorption reaction at 30 ◦C. The XRD pattern of HSCP-70
was very close to the standard pattern of Na2CO3·H2O, which contains only 14.5 wt % water.
This indicates that HSCP-70 contains extra water. As such, we also studied the CO2 sorption by
pure Na2CO3·H2O, but it exhibited a low CO2 sorption capacity and rate (Figure 4). This suggests
that the extra water contained in the sorbent plays a significant role in CO2 sorption. It indicates
that the reaction proceeds most rapidly and effectively when Na2CO3, H2O, and CO2 are present
simultaneously. Based on the above results, we propose that the extra water on the surface of HSCPs
helps to form a basic alkaline aqueous environment. When CO2 diffuses to the surface of HSCPs,
it reacts with the basic aqueous media. Since the reaction is exothermic, the generated heat triggers
the decomposition of sodium carbonate hydrates, meanwhile releasing water to drive the reaction
to proceed continuously. In addition, along the reaction of HSCP-70 and CO2, we also found that
the characteristic peaks of Na2CO3 disappeared gradually, then intermediate structures, such as
Na3H(CO3)2·2H2O (i.e., Na2CO3·NaHCO3·2H2O) and Na2CO3·3NaHCO3, appeared after reacting
for five and 15 min, respectively. Eventually, virtually pure NaHCO3 formed after 60 min of reaction,
which is expected.
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Figure 3. XRD patterns of various Na2CO3 based compounds and the reaction products of HSCP-70
after 0, 5, 15, and 60 min of CO2 sorption reaction at 30 ◦C.

The amine-based CO2 capture system is a proven technology that is already commercialized.
To prevent excessive corrosion, typically 30 wt % MEA aqueous solution is used [11]. As shown in
Figure 4, a 30 wt % MEA aqueous solution showed similar CO2 uptake kinetics initially, but its overall
sorption capacity was relatively low (111 mg/g versus 282 mg/g for HSCP-70). We also studied
the CO2 sorption capacity of pure water as a control, whose CO2 uptake capacity was ca. 0.7 mg/g
(Figure 4).
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Figure 5. CO2 sorption kinetics of HSCP-70 at different temperatures. 

Figure 4. CO2 sorption kinetics of HSCP-70, pure water, 30 wt % MEA aqueous solution,
and Na2CO3·H2O at 30 ◦C.

We also studied the CO2 uptake kinetics at different temperatures and the recyclability of HSCP-70.
The suitable temperature range for CO2 capture was determined to be 30–50 ◦C (Figure 5). A higher
temperature will cause excessive evaporation of water in HSCP-70, and a lower temperature will cause
the formation of Na2CO3·7H2O (as shown in Figure 6), both of which lead to a lower CO2 uptake
of HSCP-70. HSCP-70 also exhibited excellent recyclability with little deterioration in CO2 sorption
capacity and reaction rate after recycling (Figure 7).
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