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Figure S1. EDX analysis of FeMNPC embedded in the CMS.




Figure S2. SEM images of (A) hydrothermally treated apricot sap resin and cobalt acetate (HT-APG-
Co), (B) pyrolysed HT-APG-Co at 950°C with the presence of nitrogen precursor melamine (N-APG-
Co), and (C) pyrolysed HT-APG-Co at 950°C without melamine (APG-Co)

Figure S3. SEM images of (A) hydrothermally treated apricot sap resin (HT-APG), (B) pyrolysed HT-
APG at 950°C with the presence of nitrogen precursor melamine (N-APG), and (C) pyrolysed HT-APG
at 950°C without melamine (APG)
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Figure S4. Pore size distribution of (A) APG-Fe and (B) APG-Co.
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Figure S5. XPS core level spectra of N-APG-Fe for (A) Cls and (B) N1s.
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Figure S6. XPS core level spectra of N-APG-Co for (A) Cls and (B) N1s.
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Figure S7. Cyclic Voltammetry of (A) N-APG, (B) N-APG-Fe and (C) N-APG-Co at a scan rate of
100 mVS-1 in oxygen saturated 0.1M KOH solution.
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Figure S8. (A) Comparison of number of electrons and (B) % HO:- of N-APG, N-APG-Co, N-APG-Fe,
N-GAL-Fe and Pt/C catalysts electrodes at 0.4V applied potential in oxygen saturated 0.10 M KOH
electrolyte at 2000 rpm at a scan rate of 10 mV/s.
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Figure S9. Rotating ring disc voltammograms of (A) ring current and (B) disc current of catalysts
electrodes APG, APG-Co, APG-Fe, GAL-Fe and Pt/C, pyrolysed without the presence of melamine in
oxygen saturated 0.1M KOH at 2000 rpm at a scan rate of 10mV/s. (C) Percentage peroxide, and (D)
number of electrons of APG, APG-Fe, APG-Co and Pt/C electrodes at various potential calculated
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Table S1. Electro chemical properties of non-doped apricot sap and galactose catalysts.

N f elect
Product Current density | Onset potential (V) umber :)n)e ectrons % HO>
2 -
(mA/cm?) at 0V (RHE) (0.1-0.7 V) (0.1-0.7V)
APG 498 0.78 3.02-2.95 48.70-52.41
APG-Fe 5.33 0.80 3.78-2.79 10.90-60.21
APG-Co 4.05 0.80 2.92-3.38 53.81-30.91
GAL-Fe 4.72 0.82 3.66-2.75 16.60-62.10
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Figure S10. RDE polarisation curves of (A) N-APG-Co and (B) N-APG-Fe with a scan rate of 100 mVS

! before and after 6000 potential cycles in an oxygen saturated KOH solution.
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Figure S11. Rate constants of (A) N-APG, (B) N-APG-Co, (C) N-APG-Fe, and (D) N-GAL-Fe.



Table S2. comparison of k1/k2 of N-doped apricot and galactose catalysts

ki/ka
Potential 0.1V Potential 0.65V
(RHE) (RHE)
N-APG 1.32 2.18
N-APG-Co 4.90 6.97
N-APG-Fe 3.40 14.14
N-GAL-Fe 4.30 6.40

Table S3. comparison of performance of N-APG-Fe, N-APG-Co and N-GAL-Fe with other similar
carbon-based catalysts.

Material Onset potential Number of electrons (n) / Reference
W) Potential (V) (RHE)

Soya -derived heteroatom 0.96 3.70/0.625V [1]
doped carbon
N-doped mesoporous carbon 0.86 3.40/0.575V [2]
spheres
N-doped hollow carbon 0.80 3.82/0575V [3]
spheres
Co-N-C hybrid using soya 0.80 3.70/0.675V [4]
milk

3D-Integrated

0.96 3.55/0.600 V 8
N-doped carbon sphere with / 8]
N-CNT (N-GAL-Fe)
3D-Integrated , 0.86 3.63/0.600 V This study
N-doped carbon sphere with
N-CF (N-APG-Co)
3D-Integrated N-doped 0.8 3.73/0.600 V This study

carbon sphere with N-CF (N-
APG-Fe)




Electron transfer kinetics

The electron transfer kinetic of the ORR was identified using RRDE voltametry (Scheme S1) [5, 6].
According to Damjanovic et al. [5] the electron transfer mechanism follows a direct four-electron
pathway via ki kinetics (Scheme S1), in which oxygen is diectly reduced to hydroxide anion (OH) or
could be driven through a two-electron pathway via kz kinetics producing peroxide intermediates (HO=
), followed by reduction to hydroxide anion (OH-) through another two electron pathway through Ks

kinetics.

Diffusion ) +4e, K,
0, (bulk) ——— O, (disc surface)

+2e, K,

HO, (bulk)

Scheme S1. Proposed model for electrochemical reduction of oxygen proposed by Damjanovic et al.
and Hsueh et al.

Hsueh et al.[6] suggested a series of equations (3, 4 and 5) to calculate the rate constants Ki, Kz and Ks,
where Id, Ir, IdL and w are the disc current, ring current, limiting disc current and the rotation speed,
respectively.

L N-1

ky = 812, LN+1 3)
25,7y

27 IN+1 4)
_ NS$1Zp

ks = LN+1 ®)

Where Siand I1 are the slope and intercept correspond to the I:/ Ir vs w /2 plots and S:and is the slope
of la / Is = Ia vs w 2 plot. Z1=0.62D,?? V16, Z2=0.62Dy,0,2° V%, Dy, 0,is 6.8 x 10 cm? st and N is the

collection efficiency [7].
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