## Supporting Information

# Synthesis and Characterization of "Ravinelike" BCN Compounds with High Capacitance

Dongping Chen, Yanzhen Huang, Xinling Hu, Rongkai Li, Yingjiang Qian and Dongxu

Li\*

College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R.

China

E-mail: lidongxu@hqu.edu.cn

## Contents

| Figure S1  | TEM images and the corresponding HRTEM                     |    |  |  |
|------------|------------------------------------------------------------|----|--|--|
|            | images of BCN-1000                                         |    |  |  |
| Figure S1A | TEM images and the corresponding HRTEM                     |    |  |  |
|            | images of BCN-1100                                         |    |  |  |
| Figure S1B | TEM images and the corresponding HRTEM                     |    |  |  |
|            | images of BN-1200                                          |    |  |  |
| Figure S2  | EDS and Elemental Mapping of BCN-800                       | S3 |  |  |
| Figure S2A | EDS and Elemental Mapping of BCN-1000                      |    |  |  |
| Figure S2B | EDS and Elemental Mapping of BN-1200                       |    |  |  |
| Figure S3  | Adsorption and desorption curve of samples;                |    |  |  |
|            | (a) BCN-800; (b) BCN-900; (c) BCN-1000;                    |    |  |  |
|            | (d) BCN-1100; (e) BN-1200                                  |    |  |  |
| Table S1   | Specific surface area of samples                           | S6 |  |  |
| Figure S4  | (a) The survey scan of XPS on BCN-700; (b) B 1s XPS peak;  |    |  |  |
|            | (c) C 1s XPS peak and (d) N 1s XPS peak                    |    |  |  |
| Figure S5  | (a) The survey scan of XPS on BCN-900; (b) B 1s XPS peak;  |    |  |  |
|            | (c) C 1s XPS peak and (d) N 1s XPS peak                    |    |  |  |
| Figure S6  | (a) The survey scan of XPS on BCN-1000; (b) B 1s XPS peak; | S9 |  |  |
|            | (c) C 1s XPS peak and (d) N 1s XPS peak                    |    |  |  |
| Figure S7  | (a) The survey scan of XPS on BCN-1100; (b) B 1s XPS peak; |    |  |  |
|            | (c) C 1s XPS peak and (d) N 1s XPS peak                    |    |  |  |

| Figure S8  | (a) The survey scan of XPS on BN-1200; (b) B 1s XPS peak; |  |  |
|------------|-----------------------------------------------------------|--|--|
|            | (c) C 1s XPS peak and (d) N 1s XPS peak                   |  |  |
| Figure S9  | (a) CV curves of BCN-800, BCN-900, BCN-1000,              |  |  |
|            | BCN-1100, BN-1200 at a scan rate of 50 mV/s;              |  |  |
|            | (b) discharge curves of samples obtained at different     |  |  |
|            | pyrolysis temperatures                                    |  |  |
| Figure S10 | CV curves of BCN-700 at various scan rates in 6.0 M       |  |  |
|            | KOH electrolyte solution                                  |  |  |

Figure S1. TEM images and the corresponding HRTEM images of BCN-1000



Figure S1A. TEM images and the corresponding HRTEM images of BCN-1100



**Figure S1B.** TEM images and the corresponding HRTEM images of BN-1200



Figure S2. EDS and Elemental Mapping of BCN-800





### Figure S2A. EDS and Elemental Mapping of BCN-1000



### Figure S2B. EDS and Elemental Mapping of BN-1200

**Figure S3.** Adsorption and desorption curve of samples; (a) BCN-800; (b) BCN-900; (c) BCN-1000; (d) BCN-1100; (e) BN-1200



Table S1. Specific surface area of samples

| Sample                   | BCN-800    | BCN-900    | BCN-1000   | BCN-1100   | BN-1200   |
|--------------------------|------------|------------|------------|------------|-----------|
| specific<br>surface area | 198.0 m²/g | 193.4 m²/g | 174.9 m²/g | 175.9 m²/g | 92.9 m²/g |



**Figure S4.** (a) The survey scan of XPS on BCN-700; (b) B 1s XPS peak; (c) C 1s XPS peak and (d) N 1s XPS peak.



**Figure S5.** (a) The survey scan of XPS on BCN-900; (b) B 1s XPS peak; (c) C 1s XPS peak and (d) N 1s XPS peak



**Figure S6.** (a) The survey scan of XPS on BCN-1000; (b) B 1s XPS peak; (c) C 1s XPS peak and (d) N 1s XPS peak



**Figure S7.** (a) The survey scan of XPS on BCN-1100; (b) B 1s XPS peak; (c) C 1s XPS peak and (d) N 1s XPS peak



**Figure S8.** (a) The survey scan of XPS on BN-1200; (b) B 1s XPS peak; (c) C 1s XPS peak and (d) N 1s XPS peak

#### Preparation of electrode.

The active materials (i.e., BCN-700, BCN-800, BCN-900, BCN-1000, BCN-1100, and BN-1200), acetylene black and poly tetra fluoro ethylene (PTFE) binder are mixed in mass ratio of 8: 1: 1. The mixture was dissolved in absolute ethyl alcohol and ultrasound to form homogenous slurries. The homogenous slurries were coated onto cleaned nickel mesh (1 cm<sup>2</sup> area, 5% hydrochloric acid, ethanol and deionized water each ultrasonic cleaning 20 min) and further dried at 60 °C for 12 h under vacuum. As-formed electrodes were then pressed at a pressure of 4 MPa and the loading in final electrodes is 2.8 mg.

**Figure S9.** (a) CV curves of BCN-800, BCN-900, BCN-1000, BCN-1100 and BN-1200 at a scan rate of 50 mV/s; (b) discharge curves of samples obtained at different pyrolysis temperatures



Figure S10. CV curves of BCN-700 at various scan rates in 6.0 M KOH electrolyte solution

