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Abstract: Silica aerogels are highly porous 3D nanostructures and have exhibited excellent
physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor
mechanical properties greatly limit further applications. In this study, we have applied the finite
volume method (FVM) method to calculate the mechanical properties of silica aerogels with different
geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation
results show that a power law correlation existing between relative density and mechanical properties
(elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and
literature studies. In addition, depending on the relative densities, different strategies are proposed in
order to synthesize silica aerogels with better mechanical performance by adjusting the distribution
of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to
synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the
textural features are well controlled. It is believed that the FVM simulation methodology could be a
valuable tool to study mechanical performance of silica aerogel based materials in the future.
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1. Introduction

Silica aerogels have attracted considerable attention due to the high porosity, low thermal
conductivity, high surface area, and good chemical stability, etc. [1–4]. Because of these unique
physio-chemical properties, silica aerogels have promising applications in many areas such as building
insulation, structural materials, automotive and aerospace [5–7]. Despite this great potential, poor
mechanical performance still limits its large-scale and commercial applications. Experimental studies
have recently shown that the mechanical reliability of silica aerogels can be greatly reinforced by
adding other coexisting materials into the aerogel such as polymer, carbon nanotubes, titanium,
ceramic fiber, etc. [8–10]. However, the structure–property relationships of silica aerogels are still
unclear due to its complex disorderly structures and limited experimental tools [11]. It is believed that
computer simulation may be a feasible approach to investigate the relationships between mechanical
performance and microstructures of silica aerogels.

The molecular dynamic (MD) method has been utilized to model the nanoporous structure and
mechanical behavior of silica aerogels [12–15]. Although the MD method can reasonably predict the
density-elastic modulus relationship of silica aerogels, it fails to simulate the compressive strength of
the materials [5]. In addition, the length and time scale are much shorter in MD simulations, which also
limits the application of MD method to investigate mechanical properties of silica aerogels on a large
scale [16]. The finite element method (FEM) is a common numerical method that has been employed
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to model the mechanical behavior of aerogels at the microscopic scale [11,17–19]. Ma et al. [11] have
generated a computational model of aerogels based on DLCA (diffusion-limited cluster aggregation)
algorithm, and they use the FEM method and beam theory to successfully predict the power-law
relationship between the elastic modulus and relative density of silica aerogels. However, in the FEM
models, the material parameters do not represent the true ones of the silica aerogel such that it still
remains challenging to directly apply FEM to evaluate the mechanical properties of silica aerogels.
In this study, the simulation of mechanical performance of silica aerogels is carried out by the finite
volume method (FVM), which is another numerical method to solve the complex engineering problems
by discretizing the computational domains into finite volumes and the governing equations for each
volume are then solved [20,21]. Compared to the molecular dynamic simulation and finite element
method, FVM does not require a large number of computational resources and the implementation
of FVM is rather convenient. In addition, the FVM method can represent the actual sample size,
morphology and other sample states. Therefore, FVM has been demonstrated as a powerful technique
to simulate the mechanical structures both in microscopic and macroscopic scales [20–23].

Figure 1 presents the detailed experimental, modeling and simulation procedures in this
study. Firstly, the silica aerogels with different geometric properties are fabricated by the sol-gel
method. Based on the characterization results from the scanning electron microscope (SEM)
and Brunauer–Emmett-Teller (BET) analysis, the geometrical properties of silica aerogel such as
pore size, ligament diameter, and particle size can be obtained. According to these geometric
parameters, an approximate structure of silica aerogel with the density of 0.098 (ρ = 0.098) is
modeled, whose mechanical properties are subsequently simulated by the finite volume method
(FVM). The deformation mechanism and several pure materials parameters can be extracted from the
uniaxial compression results, which are used to model the aerogel structure with different geometric
properties. In this study, two aerogel models are examined and tuned: one represented with ‘SA-I’
has a Gaussian distribution of pore sizes and ligament diameters; the other represented with ‘SA-II’
has a constant pore size and ligament diameter. In addition, the FVM method is used to simulate and
calculate other mechanical properties of these two different models, in which the compression behavior,
elastic modulus, and yield stress can be accessed. The computational data are finally compared with
experimental results to verify the feasibility of the FVM simulation method developed in this work.

Figure 1. Flow chart for the experiment, modeling and simulation in this study.
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2. Experimental Procedure

2.1. Preparation

Silica aerogels are prepared using the procedure described by Yang et al. [24], which generally
includes two steps: sol-gel synthesis and subsequent supercritical drying process. It is notable that the
densities of the silica aerogels can be controlled by adjusting the volume ratio of the starting materials
(see Ref. [24] for more details).

2.2. Characterization

A JEOL 7000F scanning electron microscope (SEM, JEOL Ltd., Tokyo, Japan) was used to
investigate the morphology and microstructure of silica aerogels. The aerogel samples were immersed
in liquid N2 and then fractured to probe their inner structure. A platinum coating with 5 nm thick was
applied before SEM measurements. The relative density of silica aerogels, ρ, was determined using the
following equation:

ρ = 1 −
mGel
VGel

ρ0
. (1)

mGel and VGel is the mass and the volume of the aerogel, respectively; ρ0, the pore volume per unit
mass, can be determined by nitrogen adsorption/desorption isotherm data at 77 K (Autosorb-iQASIQ,
Quantachrome Instruments, Boynton Beach, FL, USA) using the multi-point Brunauer-Emmett-Teller
(BET) method. Mechanical properties of silica aerogel samples were studied using the dynamic
mechanical analyzer (DMA, Q800, TA Instruments, New Castle, DE, USA) for compression test at
25 ◦C. For the compression test, the sample is a cylinder with the height of 1 cm and diameter of 1 cm
as well.

3. Simulation Method

In the simulation process, a represented volume element with 5 × 5 × 5 unit cells is created and
each unit cell size is specifically set without generality restriction. It is notable that this size is selected
in order to reduce possible loading introductions along the z-axis in the subsequent simulations. As for
the modeling of the silica aerogel nanostructures, the SEM and BET method are used to characterize
the geometrical properties of the aerogel sample such as pore size, ligament diameter, and particle
size. Once these geometric parameters are obtained, the approximate nanostructure of silica aerogel
can be reconstructed. Then, the compressive experiment is performed in order to acquire several
pure material parameters of the silica aerogel such as elastic modulus, compressive yield stress,
etc. Next, these material parameters and the modeled aerogel structure are transferred into the
GeoDict software (Ver. 2017, Math2Market GmbH, Kaiserslautern, Rheinland-Pfalz, Germany) [25]
in which the mechanical behavior of silica aerogels is simulated by the finite volume method (FVM).
The stiffness properties such as Poisson's ratio and elastic modulus can be obtained by calculating
linear elastic properties while the strength properties could be studied by computing the nonlinear
deformations of lattice structures. As a result, the ElastoDict-VOL module is used to compute stiffness
and ElastoDict-LD module is used to calculate strength. It is notable that the periodic boundary
conditions are applied to both linear elastic and nonlinear uniaxial compression simulations. In this
study, the overall elastic modulus and Poisson’s ratio are obtained under an overall linear compression
strain of 5 × 10−3. The yield strength is defined as 1% offset stress from the stress–strain curve.

4. Results and Discussion

4.1. Characterization and Modeling

Figure 2a presents the SEM image of a silica aerogel sample with a relative density of 0.098. It is
observed that a porous, interconnected 3D network structure is obtained by the sol-gel process.
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Figure 2. SEM image of the silica aerogel sample with a relative density of 0.098 (a), the pore size,
ligament diameter and particle size is labelled with φ, s and d, respectively; the histogram of distribution
of pore size (b); ligament diameter (c); and particle size (d) of the silica aerogel sample. The red dashed
line in each panel represents the fitted Gaussian distribution.

The 3D network frame consists of large number of nanoparticles, which are three dimensionally
connected to form a skeletal network and appear as chains. It has been reported that silica aerogels
consist of a “pearl-necklace” framework, which is formed by the porous secondary particles [26].
Different geometric parameters of the silica aerogels are also indicated with red rectangular in Figure 2a,
such as pore size labeled with φ, ligament diameter labeled with s and particle size labeled with d.
Specifically, the ligament diameter is defined as the diameter value at the middle of the ligament.
As shown in Figure 2a, the ligaments make up the main architecture of the aerogel structure by
connecting nodes to other nodes. The ImageJ software (Bethesda, MD, USA) [27] is used to process the
SEM images and obtain the statistical results on the geometric properties of the silica aerogel sample.
Figure 2b–d show the histogram of the distribution of pore size, ligament parameter, and particle
size of the silica aerogel determined by the SEM images. The red dashed line in each panel shows
the Gaussian distribution fitting and the fitting function is also indicated in each panel. For example,
the mean pore size, ligament diameter and particle size for the aerogel with the relative density of
0.098 is 152.1, 51.87 and 21.74 nm, respectively.

Figure 3a presents the reconstructed ligament-channel structure based on the geometric
parameters of the silica aerogel such as pore size and ligament diameter distribution function in
Figure 2b,c, according to the Voronoi tessellation. The ligament is filled up by silica particles with a
Gaussian distribution (Figure 2d) to constitute the aerogel structure. The overlap between two adjacent
particles is set to 4 nm based on the SEM analysis. Figure 3b demonstrates the overall aerogel structure
and its local structure with a size of 250 × 250 × 50.
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Figure 3. (a) the ligament-channel structure reconstructed with the geometric parameters obtained
from SEM; (b) the overall aerogel structure and its local structure with a size of 250 × 250 × 50.

4.2. Compression Behavior

In order to gain intrinsic information regarding the mechanical parameters of pure silica materials,
such as elastic modulus, yield strength and Poisson’s ratio, the silica aerogel with relative density
of 0.098 is firstly examined with uniaxial compression experiment. The compressive experiment
shows that the elastic modulus E0 is 0.042 GPa and the compressive yield stress σ0 is 0.023 GPa,
which is defined as 1% offset stress. The above reconstructed aerogel structure along with the material
parameters are imported into the commercial software GeoDict to simulate the compression behavior.
Figure 4 shows the stress–strain curve of the silica aerogel sample under compressive deformation
conditions from both experiment and simulation, which indicates three deformation stages depending
on the compression strain, ε. The first stage corresponds to the stage where the compression strain ε is
less than 0.1. It shows a linear elastic region, which is determined by the blending of the structural
elements due to the ligaments present in the sample. The elastic modulus, yield strength and Poisson’s
ratio can be determined from this stage. In the second stage (0.1 < ε < 0.5) labeled with ‘plastic
yielding region, an evident plateau feature can be observed, which is possibly due to the collapse of
the open structures in the sample. The last stage (ε > 0.5) is called ‘densification’ stage, where the
stress is abruptly increased, which is thought to be the impingement of structural elements against
each other and leads to the foam densification. The three inset images correspond to the aerogel with
the tensile strain of 5%, 35% and 65% and is used to represent the linear elastic, plastic yielding and
densification, respectively. As shown in Figure 4, the silica aerogel sample exhibits similar global
compressive deformation behavior as other porous materials [28–30]. The FVM method is further used
to investigate the microscopic deformation behavior of silica aerogels.

Figure 5 presents the von Mises stress for the aerogel structure under 0.1 uniaxial compressive
deformation. The structure with 5 × 5 × 5 unit cells (Figure 5a) and its translucent perspective
(Figure 5b) indicate that not all ligaments exhibit strain concentration. It can be observed that the main
strain distributes in the surface at the junction of node and ligament, which seems to form a train of
discontinuous curved surfaces.



Materials 2018, 11, 214 6 of 12

Figure 4. The stress–strain curve of a silica aerogel with relative density of 0.098 under compressive
deformation conditions.

Figure 5. The von Mises stress for the aerogel structure under 0.1 uniaxial compressive deformation.
Structural views for the 5 × 5 × 5 (a) and its translucent perspectives (b) under 0.1 compressive
deformation along z-axis. The color map indicates the von Mises strain.

4.3. Scaling Laws of Elastic Modulus and Yield Stress

The mechanical properties of silica aerogels, particularly the elastic modulus and yield stress,
are also of great interest because they provide access to design and develop these aerogels with
excellent high strength and stiffness. In this study, two different models are used to simulate the
mechanical behavior of silica aerogels: one has a Gaussian distribution of pore sizes and ligament
diameters and is represented as ‘SA-I’; the other has a constant pore size and ligament diameter and is
represented as ‘SA-II’. However, in both two models, the particle size is assumed to have a Gaussian
distribution. Table 1 summarizes the geometric properties of the two kinds of silica aerogels with
different relative densities.
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Table 1. Parameters used in the finite volume method simulation.

PLIG
1 PAS

1
Pore Size (nm) Ligament Diameter (nm) Particle Size (nm)

Mean
Value

Standard
Deviation

Distribution
Bound

Mean
Value

Standard
Deviation

Distribution
Bound

Mean
Value

Standard
Deviation

Distribution
Bound

SA-I

0.1 0.04 250 50 100 50 10 20 21.72 2.87 5.74
0.2 0.08 170 34 68 50 10 20 21.72 2.87 5.74
0.3 0.12 132 26.4 52.8 50 10 20 21.72 2.87 5.74
0.4 0.16 112 22.4 44.8 50 10 20 21.72 2.87 5.74
0.5 0.20 95 19 38 50 10 20 21.72 2.87 5.74

SA-II

0.1 0.04 250 0 0 50 0 0 21.72 2.87 5.74
0.2 0.08 170 0 0 50 0 0 21.72 2.87 5.74
0.3 0.12 132 0 0 50 0 0 21.72 2.87 5.74
0.4 0.16 112 0 0 50 0 0 21.72 2.87 5.74
0.5 0.20 95 0 0 50 0 0 21.72 2.87 5.74

1 Note: PAS indicates the density of the aerogel and PLIG is the density of the ligament. PAS is equal to 0.04 PLIG in the simulation.
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Previous studies have shown that the elastic modulus E and yield stress σ have a power–law
dependence on the relative density ρ [31,32]:

E ∝ ρm (2)

σ ∝ ρn (3)

where m and n both represent constant. Figure 6a,b plots elastic modulus and yield stress for the SA-I
and SA-II model with different relative densities, respectively. It can be seen that the experimental
data matches well with the simulation curves in both cases. The power law of elastic modulus and
yield stress for SA-I and SA-II structures can all be estimated by fitting the data as follows:

E∗
I = 1193ρ2.363 + 41.84, (4)

E∗
II = 2723ρ2.801 + 43.01, (5)

σ∗I = 342.4ρ2.391 + 1.307, (6)

σ∗II = 933.9ρ2.932 + 1.551. (7)

Figure 6. Power law of elastic modulus (a) and yield stress (b) for the SA-I and SA-II structures. SA-I
has a Gaussian distribution of pore sizes and ligament diameters; SA-II has a constant pore size and
ligament diameter.

The power–law index, m, for structure SA-I and SA-II in Equations (4) and (5), is around 2.3 and
2.8, respectively, which is very close to the power–law index in the modulus-density correlation of
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other silica aerogels [15,33–36]. As for the power-law index, n, in the strength-density relationship
for the SA-I and SA-II structure, it is 2.4 and 2.9 in Equations (6) and (7), respectively, which is also
consistent with the literature values.

Table 2 summarizes some of the published data on the power-law exponent in the strength-density
correlation. Woingnier et al. [34] have reported that the power-law exponent is 2.6 ± 0.2 when
the density is 0.055–0.5 g cm−3 while it is 2.3 ± 0.2 when the density is 0.42–2.2 g cm−3. Hence,
the simulation results obtained from the FVM method are in very good agreement with experimental
and literature results.

Table 2. Exponent for the power law relation between yield strength and density of porous silica.

Reference Power-Law Exponent Density (g/cm3) Observations

Woignier et al. [34] 2.6 ± 0.2 0.055–0.5 Experiment
Woignier et al. [34] 2.3 ± 0.2 0.42–2.2 Experiment
Murillo et al. [15] 2.25–3.14 0.05–0.5 Atomistic model

As shown in Figure 6, when the relative density is less than 0.08, the values of the elastic modulus
and yield strength with SA-II model are larger than SA-I. However, when the relative density is about
0.08–0.12, the elastic modulus and yield strength with model SA-I are very close to or even larger than
SA-II. If the relative density is greater than 0.12, the SA-II model again has better stiffness and strength
than SA-I. In addition, if the relative density is further increased (i.e., >0.16), the mechanical behavior
of SA-II model is even much better than the SA-I one. These results suggest that, when the relative
density of silica aerogel is fixed, we can change the pore size and ligament diameter to acquire larger
elastic modulus and yield strength. As a result, different strategies can be proposed to optimize the
mechanical behavior of silica aerogels. If the relative density is rather too large or too small, the aerogel
that has Gaussian distribution of pore size and ligament diameter can be preferentially synthesized in
order to acquire structures with higher stiffness and strength. Conversely, if the relative density of
the silica aerogel is moderate, such as 0.08–0.12 in this study, the silica aerogel that has fixed ligament
diameter and pore size can be preferentially fabricated to achieve better mechanical behavior.

In addition, it should be notable that all the power law relationships in Equations (4)–(7) have
intercepts with certain values, which, however, are not predicted in the literature (i.e., Equations (2)
and (3)). From Equation (4) to Equation (7), it can be seen that Young’s modulus and yield strength
have a certain intercept value even the relative density, ρ, takes a small value. This might suggest that
the excellent mechanical performance of silica aerogels can still be maintained even with extremely low
densities. Comparing our study with literature results, the most evident difference is that the ligament
diameter in our study is constant during the modeling of silica aerogels (see Table 1 for more details).
It is known that the tensile properties of porous silica aerogels are largely dependent on the particular
orientations among ligaments and the length scale of ligaments, which determine the interconnectivity
orders, and thus affect the overall modulus and strength of silica aerogels. For example, Liu et al. [37]
once reported that the neck radius in the silica network as well as the strength and stiffness of the
particle chains inversely decreases with the increase of the ligament size. Therefore, one possible
reason for different fitting curves in our study compared with literature results [31,32] could be due
to that the ligament diameter in our case is fixed. As a result, the change of the relative density can
only be realized by changing the pore size distribution. This also means that we can control the feature
structure of silica aerogels to obtain good mechanical properties (higher stiffness and strength) but
maintain a relatively low relative density.

5. Conclusions

In this study, the finite volume method (FVM) is used to simulate and calculate the mechanical
properties of silica aerogels, which are fabricated with different particle sizes, pore sizes and ligament
diameters by the sol-gel method. Two topological aerogel models are first reconstructed based on
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the geometric parameters of the silica aerogel: one has a Gaussian distribution of pore sizes and
ligament diameters; the other has a constant pore size and ligament diameter. Then, the compression
behavior of the silica aerogel is simulated using the FVM method, which exhibits a good agreement
with the experimental results. The stress–strain curve of the silica aerogel shows the three deformation
stages as observed for other porous materials. Through the analysis of the stress–strain curve,
the elastic modulus and yield strength of the silica aerogel have been determined to be 0.042 and
0.023 GPa. The mechanical properties of these two models shows a power–law correlation existing
between mechanical properties (elastic modulus and yield stress) and relative densities. Furthermore,
the power-law indices are consistent with previous studies. These results verify the feasibility of FVM
methodology developed in this study. Furthermore, the relationship between relative density and
mechanical behavior of two models indicates the influence of pore size and ligament diameter on the
elastic modulus and yield stress. These results not only point out future directions of how to optimize
the mechanical properties of silica aerogels at a certain relative density, but also indicate that aerogels
with ultra-low relative density can also perform high stiffness and strength by controlling the feature
structure. Hence, we believe that the FVM simulation methodology developed in this study can be a
valuable tool to reinforce and tailor mechanical and even other performance of aerogel and aerogel
composites in the future.
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