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Abstract: In the study we experimentally examine the influence of elastic properties and
surface morphology on the inter-particle friction of natural soil grains. The experiments are
conducted with a custom-built micromechanical apparatus and the database is enhanced by testing
engineered-reference grains. Naturally-occurring geological materials are characterized by a wide
spectrum of mechanical properties (e.g., Young’s modulus) and surface morphology (e.g., roughness),
whereas engineered grains have much more consistent characteristics. Comparing to engineered
materials, geological materials are found to display more pronounced initial plastic behavior during
compression. Under the low normal load range applied in the study, between 1 and 5 N, we found
that the frictional force is linearly correlated with the applied normal load, but we acknowledge that
the data are found more scattered for natural soil grains, especially for rough and weathered materials
which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely
correlated with the Young’s modulus and the surface roughness. These findings are important in
geophysical and petroleum engineering contents, since a number of applications, such as landslides
and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among
others, can be simulated using discrete numerical methods. These methods employ contact mechanics
properties at the grain scale and the inter-particle friction is one of these critical components. It is
stressed in our study that friction is well correlated with the elastic and morphological characteristics
of the grains.
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1. Introduction

Understanding of the mechanical behavior at the micro-scale is needed to comprehend the
complex macro-scale behavior of geological materials. Normal and tangential loading behavior,
inter-particle friction and stiffness are some of the key parameters needed as input in numerical
modeling of various applications within geotechnical-geological engineering contents. In recent years,
advancements in the discrete element modeling (DEM) [1] have provided useful insights into the
understanding of the physics and mechanics of granular materials. Applications to geophysical,
geological, petroleum, and geotechnical engineering, as well as other applications related to granular
flows and powders, have further stressed the necessity to explore the contact mechanics properties of
naturally-occurring materials in the laboratory. For engineered materials, several researchers have
found that the inter-particle (or inter-face) friction is mainly influenced by the surface roughness
and the Young’s modulus of the contacting surfaces [2–6]. Nonetheless, compared to engineered
materials, a limited number of experimental studies have been carried out on the contact mechanics
and frictional behavior of geological materials in the last few decades, especially for the grain-grain
type of contact [7–18].
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Unlike artificial materials, the roughness and overall morphology of soil particles are characterized
by relatively high discrepancies and they depend on the type of the parent rock and the various
environmental conditions (e.g., weathering, transportation, and depositional processes) they are
subjected to. For rocks, researchers have found a strong effect of surface roughness on the friction
at low confining pressures [19]. Some of the recent studies of geological materials [14,18,20–23] have
shown significant different frictional characteristics between variable types of soil grains. This has been
attributed, partly, to variabilities in surface roughness characteristics, but more thorough discussions
into the coupled effect of surface geometrical features and material elastic properties have not been
considered. It has been highlighted, through DEM simulations, that the inter-particle friction may have
a critical role on the mechanical behavior of granular assemblies [24–26]. Tangential contact models,
typically employed in DEM analysis, for example the widely-known models proposed by Mindlin
and Deresiewicz [27] or Thornton and Yin [28] use, as input, the inter-particle coefficient of friction in
their expressions correlating tangential (or frictional) force to sliding displacement. Thus, it is stressed
that proper understanding of the factors controlling friction must be obtained and incorporated in the
numerical simulation of variable problems involving granular matter.

In the broader fields of tribology and materials engineering, there has been significant progress
over the previous years on the frictional behavior of interfaces. Researchers such as Kogut and
Etsion [29], Bhushan et al. [30] and Greenwood and Williamson [31] have found that the frictional
force (FF) depends on the applied normal force (FN) and the area of contact (A). For multi-asperity
contact surfaces, Greenwood [32] mentioned that the inter-particle friction (µ) is a function of material
Young’s modulus (E) and surface roughness. Chang et al. [33] have shown that, for machine surfaces,
µ depends on the material properties, the surface topography and the normal load magnitude. Bowden
and Tabor [34] proposed that FF is dependent on A via two basic mechanisms, shearing and ploughing,
and that for softer materials in contact it is expected that A will be greater. Hence, the value of A
is a function of the applied normal force, the Young’s modulus, and the surface roughness of the
materials in contact. The value of A can be obtained by using various models [35]. The models
proposed by Hertz [36] and Greenwood [32] are the most commonly used to back-calculate the area of
contact. In contrast to manufactured (or engineered) materials, natural soil grains are characterized by
a wide spectrum of surface geometrical features, i.e., a great variability in surface roughness and shape
outlines, as well as a broad range of elastic properties dependent upon the mineral composition and
geological-environmental processes they have been subjected to.

In this paper, we have studied the combined effect of surface roughness and Young’s modulus
on the inter-particle friction for geological materials along with engineered materials to obtain some
general trends of behavior. We found that all the materials showed some initial soft behavior during
normal loading which was more pronounced for natural soil grains, especially those being subjected to
weathering or having higher roughness. We present herein that, for all the materials used in this study,
the frictional force, defined after a first hardening regime, varies linearly with the applied normal force.
Furthermore, we show that the inter-particle friction for both engineered materials and natural soil
grains is a function of material Young’s modulus and surface roughness.

2. Materials

The micro-mechanical behavior of a variety of grains was examined in the laboratory using a
new-generation custom-built inter-particle loading apparatus developed at the City University of Hong
Kong. These materials included chrome steel balls (CSB) and glass balls (GB) as engineered grains,
Leighton Buzzard sand (LBS), which is a silica-rich sand of relatively smooth and hard surface grains,
limestone (LS), which is a sand of biogenic origin with softer and rougher surface, and completely
decomposed granite (CDG). The latter material, which is abundant in tropical/sub-tropical regions,
consists of heavily decomposed grains, due to, majorly, chemical weathering, which has altered
some of its major minerals such as feldspars and mica to a heavy coating of clayey-platy grains
resulting in highly rough, but relatively soft, surfaces. These broad range of materials are commonly
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encountered in geotechnical-geological engineering practice and they comprise representative types
of grains to obtain insights into the frictional behavior of granular materials (covering a broad range
of surface roughness and Young’s modulus). Quartz type grains, such as LBS, may find critical
applications as proppant in hydraulic fracturing, with significant interest in petroleum engineering [20].
In geophysical-geological research and practice, soil and rock mass movements (e.g., landslides) are
commonly studied numerically within the content of granular flows. Such problems may involve a
broad range of materials, thus this work gives some upper and lower bounds of behavior examining
a wide range of grains of variable elastic and morphological characteristics. Some of these materials
were studied individually in previous works [13,17,23], but an overall view of the significant factors
affecting the friction was not attempted in a systematic manner before.

The material properties are reported in Table 1. The commercially-available CSB and GB
grains which are 2 mm in diameter are tested along with geological materials, with the latter
being mechanically sieved, and sizes ranging from 1.18 to 3.00 mm are chosen for this study. This
size range was chosen because of limitations of the apparatus and testing techniques in sample
preparation [37], even though, this size range is representative of geological materials (e.g., sand-sized
grains) encountered in many applications. In Table 1, S and R correspond to the grain shape
descriptors of sphericity and roundness, respectively, which are obtained from visual observation
of a representative set of grains by using an empirical chart proposed by Krumbein and Sloss [38].
The surface roughness of the materials is obtained by using the optical surface profiler of the City
University of Hong Kong. An area of 20 × 20 µm is taken at a magnification of 100×, while the effect
of the curvature is removed (i.e., the grain surface is flattened via an option of the software of the
profiler), and the computed surface roughness is presented in terms of the root mean square, RMS,
roughness (denoted as α). The values of the Poisson’s ratio (υ) for the different material types are taken
from the literature. All these values are summarized in Table 1.

Table 1. Characterization of materials along with results from the inter-particle tests.

Materials CSB GB LBS LS CDG

Diameter (mm) 2.00 2.00 1.18–2.36 1.18–3.00 1.18–2.36
Sphericity (S) 1 1 0.8 0.7 0.8

Roundness (R) 1 1 0.7 0.4 0.6
α (nm) 62 ± 19 145 ± 28 223 ± 61 670 ± 221 1341 ± 390

Poisson’s ratio (υ) 0.30 0.30 0.25 0.30 0.25
Inter-particle friction (µ) 0.09 ± 0.02 0.12 ± 0.02 0.19 ± 0.04 0.28 ± 0.08 0.37 ± 0.11

R2 0.94 0.94 0.95 0.77 0.81
Young’s modulus E (GPa) 173 ± 11 58 ± 7 52 ± 12 16 ± 6 7 ± 3

Poisson’s ratio values based on [39–42], R2: Coefficient of determination of FF-FN envelopes

3. Experimental Equipment and Methods

The schematic view of the inter-particle loading apparatus used in the study is shown in
Figure 1 [17,37]. It consists of a stiff frame attached to the base and it is capable of applying/measuring
forces and displacements at the contacts of sand-sized grains in the vertical and two orthogonal
horizontal directions. Each arm consists of a micro-stepping motor, a load cell of resolution of 0.02 N,
and various other mechanical parts. The displacements are measured by using non-contact eddy
sensors with a high resolution of 10−5 mm and the quality of the signal output is improved by using
high-performance data logging and filter systems. The particles are glued to mounts and left to
dry for 24 h before being placed into the wells. The bottom well is placed on the sled and the top
well is attached to the vertical arm. The naturally-occurring soil grains used in this study are not
generally spherical. Thus, the particles are aligned in an apex to apex configuration by using two
digital micro-cameras which are placed in two orthogonal directions. The methodology used to derive
the inter-particle friction from the present experiments is shown in Figure 2.
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Figure 1. Schematic diagram of the inter-particle loading apparatus of the City University of
Hong Kong.
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Figure 2. Flowchart showing the methodology used to derive inter-particle friction from
present experiments.

The micro-mechanical testing program was conducted at a temperature of 22–25 ◦C and a relative
humidity of 60%. The normal force (FN) is applied by moving the top particle towards the bottom
one by using the vertical arm at a displacement rate of 0.1–0.3 mm/h. In this testing program,
the application of FN is limited to up to 5 N. It has been shown from numerical simulations [43]
that the normal force magnitude developed at the soil grain contacts within the content of typical
geotechnical-geological engineering examples may range up to 4–5 N. Previous works by the
authors [22,23] showed that a plastic deformation might occur during shearing if the normal loads
exceed 5 N for typical quartz sand grains. Thus, an intention of this work was to study the frictional
behavior of soil and engineered grains within this typical normal force range (1–5 N) avoiding excessive
surface damage of natural soil grains in shearing mode.
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4. Results

Figure 3a reveals the normal force-displacement behavior of representative tests covering the
broader range of the examined materials. It can be observed that during the compression of the
grains, an initial soft response is occurred, wherein this soft behavior is more evident for geological
materials compared to engineered materials, particularly for those having higher roughness and/or
being subjected to weathering (e.g., LS and CDG). These variabilities in grains, apart from the influence
of the surface geometrical features, might be advanced by the variabilities in material Young’s modulus
and the subsequent plastic deformation of asperities, as also pointed out by Sandeep and Senetakis [23].
The Hertzian expression [36] is fitted to the normal force-displacement curve using Equation (1):

FN =
4
3
(R∗)

1
2 (E∗)(ND)

3
2 (1)

where ND is the normal displacement, FN is the normal force corresponding to ND, R* is the equivalent
particle radius of both top and bottom grains calculated from Equation (2), and E* is the equivalent
Young’s modulus which is obtained from Equation (3):

1
R∗ =

1
R1

+
1

R2
(2)

1
E∗ = 2

(
1 − υ2)

E
(3)
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In Equation (2) R1 and R2 correspond to the average radius in three dimensions of the top and
bottom grains in contact, which is measured by a Vernier caliper. Note that the geological particles
used in this study are not perfectly spherical and they are rough, so obtaining the average radius using
this method might introduce some error in the calculation of R* and E. In Equation (3), E corresponds
to the apparent Young’s modulus of the grain pair in contact. The apparent Young’s modulus is found
using the best fit (Hertzian) curve to the experimental data, which is applicable beyond the first regime
of the soft response (in general beyond about 0.5µm for engineered grains, 1 to 2 µm for LBS, and
beyond 3 µm for the softer grains of LS and CDG). For representative grains, the average values of the
apparent Young’s modulus along with their standard deviation of the materials tested are presented
in Table 1. Note that for each pair of grains, for simplicity, the apparent Young’s moduli of top and
bottom grains in contact are assumed to be the same. Even though the Hertzian curves reasonably fit
the experimental curves, it should be noted that these values of Young’s modulus are apparent only.
However, this theoretical fitting, based on Equations (1)–(3), gives a general idea of the materials elastic
properties, which can be used for comparison purposes as it is difficult to obtain the accurate elastic
properties of naturally-occurring geological materials with variable mineralogy and irregularities.

After reaching the required FN, the shearing force (FF) is applied to the grain contacts by
moving the lower grain at a displacement rate of 0.06–0.10 mm/h, while maintaining the constant
FN. Representative curves which demonstrate the highly non-linear increase in FF with tangential
displacement (TD) at FN equal to 1 N are shown in Figure 3b,c. The mobilized inter-particle coefficient
of friction (µ) is computed based on the relationship between FF and FN from Equation (4). For further
interpretations and correlations herein, the mobilized friction after the occurrence of the hardening
regime is used (i.e., reaching the first plateau of the shearing force-displacement curve):

µ =
FF
FN

(4)

An average of ten tangential shearing tests are conducted at values of FN ranging from 1 to 5 N
for each material type to obtain values of µ.

Throughout the total set of ten experiments for each material type, the average values of µ and
their standard deviations are given in Table 1. It is noticed that the standard deviations of µ for
geological materials are higher compared to the engineered materials CSB and GB, which might be
attributed to the discrepancies in the mechanical properties and morphology between the grain pairs
tested (e.g., less consistent surface characteristics and elastic properties for the natural sand grains,
especially those from LS and CDG). It is noticed that within the relatively narrow range of sliding
velocities applied during the shearing tests, the magnitude of sliding velocity did not produce any
notable effect on the resultant inter-particle friction.

The envelopes of the different materials, expressed with the values of FF (vertical axis) against
FN (horizontal axis) are presented in Figure 4. It was found that for the low normal force range in
the study, up to 5 N, FF varies linearly with FN for all the materials tested. The strongest correlations,
expressed with the coefficient of determination (R2), were found for the engineered materials GB and
CSB, as well as for LBS quartz grains (R2 ≈ 0.94–0.95 as shown in Table 1). For CDG and LS, R2 was
found equal to 0.81 and 0.77, respectively, which resulted, primarily, from the higher inconsistency
of the surface characteristics and back-calculated Young’s modulus (apparent) for these two natural
sands. Nevertheless, these observations show that, even for geological materials, the inter-particle
friction depends on the contact area, which, in turn, depends on the normal force magnitude.
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Based on Hertz [36], the contact area between the two bodies is given by Equation (5):

A = π

[
3R FN

4E∗

] 2
3

(5)

We can obtain the value of FF from Equation (5), as FF is the product of A and the critical
shear strength (τ). However, Equation (5) is theoretically valid only for single asperity contact. For
multi-asperity contact, assuming plastic deformations are absent for loads less than 5 N, Equation (6)
presents the correlation between the inter-particle coefficient of friction, surface roughness, and the
elastic properties of the surfaces in contact [32]:

µ =
3
2

τ

[
πR∗

2α

] 1
2
[(

1 − υ2)
E

]
(6)

The materials are taken nearly of similar size and the υ values for different grain types are also
nearly the same. Therefore, from Equation (6), the inter-particle friction can be linked to the surface
roughness and the Young’s modulus. It can be observed from Table 1, that the inter-particle friction
increases with the increase in roughness. However, the wide range of the apparent Young’s moduli
of the studied materials can also affect the contact area and the inter-particle friction. Thus, both
surface roughness and apparent Young’s modulus play key roles in the frictional behavior of the tested
materials. This gives a nice approximation between the combined effect of surface roughness (taken as
the square root of α) and the apparent Young’s modulus to the inter-particle friction of the materials
tested, as shown in Figure 5.
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5. Discussion and Conclusions

To obtain a general idea on the effect of the mechanical and surface properties of geological
materials on their frictional behavior, we conducted a micromechanical experimental study examining
the frictional and normal contact responses of natural soil grains, and we also included engineered
materials in our study. The tested materials exhibit a wide range of surface roughness and apparent
Young’s modulus and their combined effect on the inter-particle friction can be rationalized as follows.
Within the scatter of the data from Figure 5, like engineered materials, the frictional response of
geological materials is also sensitive to changes in Young’s modulus and surface roughness. With
the increase in the value of the product between E (apparent Young’s modulus) and α (surface
roughness), the value of A is decreased, thereby decreasing the inter-particle friction. This linear fit
might pass through µ ∼= 0, when the product of E and α reaches infinite value, which is not possible for
naturally-occurring geological materials with a finite range of Young’s modulus (speaking in terms of
non-conforming grain-type contacts). If it reaches an infinite value under any condition, Equation (6) is
no longer valid. From the materials tested in this program, the CDG (completely decomposed granite)
shows the highest values of µ compared to the other materials, which is controlled by the coupled effect
of rough surfaces and reduced Young’s modulus, probably related, primarily, with the weathering
process the grains have been subjected to. In modeling variable geophysical-geological problems via
DEM, a modeler needs to account for the important role of the contact area on the inter-particle friction.
The results of Figure 5 can draw some upper-lower bounds of behavior within the broad range of
applications in geo-science and engineering of granular materials, primarily those involved in natural
processes and problems.
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