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Abstract: Self-assembled submicron nickel particles were successfully synthesized via the one-step
surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry
is investigated in this manuscript. Different morphologies and structures of Ni particles, including
flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow
structures were prepared through different processing conditions with two parameters such as
temperature and time. Based on scanning electron microscopy (SEM), X-ray diffraction (XRD),
thermal gravimetric analysis (TGA) and vibrating sample magnetometry (VSM), the submicron
nickel particles show good saturation magnetization and excellent thermal stabilities with a possible
growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave
absorption properties of the submicron nickel particles were studied. The lowest reflection loss of
Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.
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1. Introduction

Over the past few decades, the development of nanostructured materials has attracted substantial
attention for many technological applications on account of their unique magnetic, optical, electrical, and
catalytic properties [1–3]. Among them, metal nanomaterials are extremely attractive due to the possibility
of controlling their multifunctionality and novel properties during synthesis [4]. Specifically, many
research hotspots have been focused on the morphology-controlled synthesis of nickel (Ni) nanomaterials,
since it is a necessary condition for achieving the objectives of nanoscience and nanotechnology [5]. As one
of the nanostructured magnetic materials, Ni nanomaterials have been the focus of significant interests for
researchers and display many characteristics such as chemical stability, large surface energy, and high
surface area [6–8]. They are widely applied in a great many technological fields such as super capacitors,
information storage, biotechnology and environmental protection [9–11]. Furthermore, Ni nanoparticles
have attracted wide interests for their intriguing magnetic, catalytic, and microwave-absorbing properties
under magnetic fields because of the abundance of Ni compared to other metals, which inspires researches
on size and shape control of tunable nanostructures for many applications.

It is well known that the properties of nanoparticles are affected by their surface morphologies,
crystal structures and dimensions. Different applications require different performances. Thus, it is

Materials 2018, 11, 222; doi:10.3390/ma11020222 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma11020222
http://www.mdpi.com/journal/materials


Materials 2018, 11, 222 2 of 12

important to study the properties of Ni nanoparticles using different process routes [12,13]. However,
numerous successful chemical and physical methods have been used to fabricate the desired Ni
architectures such as sonochemical synthesis, electrodeposition, electrochemical corrosion, and thermal
decomposition [14–17]. These techniques usually involve the addition of various reducing agents,
solvents, surfactants under complicated reaction conditions [18]. Therefore, many efforts have been
directed toward using a facile and well-reproducible route to synthesize size- and shape-controlled
Ni nanoparticles.

In previous work [19], we have reported a simple but effective one-step solvothermal method
for the synthesis of pure nickel with different structures, such as flower-like Ni nanoflakes, hollow
micrometer-sized Ni spheres/tubes. In this work, in order to further investigate the influence of poly
(ethylene glycol) (PEG) stoichiometry on structure-tuned formation of Ni hierarchical architectures,
we investigate the activity and selectivity of single PEG agent in the same one-step solvothermal
method. At the same time, the structures and morphologies of the resultant Ni nanoparticles were
characterized. We also find that their thermal and magnetic properties could be tuned by adjusting
the main reaction parameters. The possible formation mechanism of Ni hierarchical architectures was
also discussed. More importantly, we synthesized Ni metal nanoparticles with excellent microwave
absorption properties in a simple, green and low-cost way, which performed superior microwave
absorption with the lowest reflection loss of −42.6 dB at 17.3 GHz.

2. Experiment

2.1. Materials

Nickel chloride hexahydrate (NiCl2·6H2O, 99%), poly (ethylene glycol) (PEG, Mn = 600, 99%),
ethylene glycol (HOCH2CH2OH, EG, 99%), and anhydrous sodium acetate (CH3COONa, 99%) were
supplied by Chengdu Kelong Chemicals Co. Ltd., Chengdu, China. All the chemicals were analytical
purity and used without any further purification.

2.2. Synthesis of Nickel Submicron Particles

A series of nickel nanoparticles were synthesized via a solvothermal method according to the
previous work with slightly modification [19]. Typically, NiCl2·6H2O (2.97 g) and NaAc (9.0 g) were
placed into 80 mL of EG solution in a three-neck flask, then adding a designed stoichiometry of PEG
(e.g., 1.5 g). The mixtures were then stirred vigorously in an ultrasonic bath for 1 h at 60 ◦C that formed
a light green solution. Then, the 80 mL above-mentioned solutions were sealed in a 100 mL Teflon-lined
stainless-steel high-pressure autoclave, and maintained at 200 ◦C for 15 h. After natural cooling to room
temperature, the products were washed several times with deionized water and alcohol, successively,
and finally dried in a vacuum at 60 ◦C for 24 h. At last, the prepared Ni nanoparticles was termed as
Ni-P1.5/T200/H15. Meanwhile, other Ni nanoparticles were prepared by adjusting the stoichiometry of
PEG, solvothermal reaction temperatures and reaction times, which mark Ni-Px/Ty/Hz (x means the
weight of PEG, y is the reaction temperature and z represents reaction time). The detailed reaction
parameters of the nickel nanoparticles are described in Table 1.

Table 1. The detailed reaction parameters of the nickel nanoparticles.

Samples Mass of PEG (g) Temperature (◦C) Time (h) Crystal Size (nm)

Ni-P1.5/T200/H15 1.5 200 15 730
Ni-P4.5/T200/H15 4.5 200 15 640
Ni-P7.5/T200/H15 7.5 200 15 -
Ni-P9/T200/H15 9.0 200 15 670

Ni-P1.5/T200/H10 1.5 200 10 440
Ni-P1.5/T200/H20 1.5 200 20 770
Ni-P1.5/T160/H15 1.5 160 15 470
Ni-P1.5/T220/H15 1.5 220 15 660



Materials 2018, 11, 222 3 of 12

2.3. Characterization

The sizes and morphologies of the samples were observed by a JSM-6490LV scanning electron
microscopy (SEM, JEOL, Tokyo, Japan). A Rigaku RINT2400 X-ray diffractometer used to analyze the
phases of the samples (XRD, Rigaku, Tokyo, Japan). Thermal gravimetric analysis was performed in
a TA Instruments Q50 (TGA, TA Instruments, New Castle, DE, USA). The magnetic properties of the
nickel nanoparticles were measured by an IBHV-525 vibrating sample magnetometer (VSM, Riken
Denshi, Tokyo, Japan). The microwave electromagnetic properties were investigated using a vector
network analyzer (Agilent 8720ET, Agilent Technologies Inc., Santa Clara, CA, USA) in the frequency
range of 0.5–18.0 GHz.

3. Results and Discussion

3.1. Morphological Properties

In this solvothermal reaction system, PEG was used as reductant and template in the synthesis of
Ni nanoparticles. Therefore, the influence of PEG stoichiometry on morphology of Ni nanoparticles was
investigated by SEM. As can be seen from Figure 1a that sample (Ni-P1.5/T200/H15) is mainly composed
of curly nanoflakes with hollow structures. With increasing of PEG, hydrangea-like submicron
spheres (Ni-P4.5/T200/H15) are observed in Figure 1b. In Figure 1c, well-defined rod-like structures
(Ni-P7.5/T200/H15) were formed. Magnified image shows that these rod-like structures are probably
due to self-assembled with dense nanoflakes. In Figure 1d, there are massive hydrangea-like submicron
hemispheres (Ni-P9/T200/H15) with a diameter of ca. 670 nm, formed tubular structures with
a diameter ca. 3 µm. It can be observed that the structure of nanoparticles changes from hydrangea-like
submicron spheres to tubular as the weight of PEG increases. It seems that the hydrophilic groups
in PEG polymeric chain are adsorbed on the surface of nanoparticles to prevent the aggregation,
and promote the 3D growth of Ni nanoparticles with reduced surface energy [20,21]. Moreover, the
morphologies and structures of Ni nanoparticles are investigated by altering the reaction temperature
and reaction time while keeping the other conditions constant. Figure 2 shows the morphologies of
Ni-P1.5/T200/H10, Ni-P1.5/T200/H15 and Ni-P1.5/T200/H20 samples synthesized at 200 ◦C for 10, 15
and 20 h respectively. In addition, based on SEM images, the corresponding particle-size analysis
obeys normal Gaussian distributions. In Figure 2a, we can see that the Ni-P1.5/T200/H10 spheres
with hollow structures have some similarities with Ni-P1.5/T200/H15, but the average diameter of
Ni-P1.5/T200/H10 (440 nm) is obviously smaller than that of Ni-P1.5/T200/H15 (730 nm). It can be
deemed that with the increase of reaction time, the diameter of the nickel spheres becomes larger.
While the reaction time extends to 20 h, almost all the nanoparticles (Ni-P1.5/T200/H20) have irregular
sphere-like shape with an average diameter of ca. 770 nm, there are still a few flower-like nanospheres
can be found in Figure 2c. With a closer inspection, the nanospheres have irregular radius. According to
the mechanisms of aggregative growth [22], in the initial induction period, the size of the nanoparticles
increase corresponds to the classical nucleation and growth rate. This regime may be followed with
aggregative nucleation and growth. Small nanoparticles have higher mobility and collision frequency
than large nanoparticles, owing to their large surface fractions and high energies. Therefore, the small
nanoparticles are found to be more prone to merge than large nanoparticles [23]. We thus infer that
as the reaction time increases the small nanoparticles tends to form large particles through mutual
integration and thus have irregular radius.
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Figure 1. SEM images of Ni-P1.5/T200/H15 (a); Ni-P4.5/T200/H15 (b); Ni-P7.5/T200/H15 (c); and Ni-P9/T200/H15 
(d) powders. The scale bars apply to all images in a column. 

 

Figure 2. SEM images and corresponding particle size distributions of Ni-P1.5/T200/H10 (a,d),  
Ni-P1.5/T200/H15 (b,e), and Ni-P1.5/T200/H20 (c,f) powders. The scale bars apply to all images in a column. 

Figure 1. SEM images of Ni-P1.5/T200/H15 (a); Ni-P4.5/T200/H15 (b); Ni-P7.5/T200/H15 (c); and
Ni-P9/T200/H15 (d) powders. The scale bars apply to all images in a column.
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The effect of reaction temperature on morphology was also discussed in this work. Figure 3a
shows the representative SEM images of the Ni-P1.5/T160/H15 fabricated at 160 ◦C for 15 h. It is
observed that most Ni-P1.5/T160/H15 nanoparticles are similar in shape with Ni-P1.5/T200/H15 with
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an average diameter of 470 nm. Meanwhile, it is seen that the Ni-P1.5/T160/H15 nanoparticles consist
of interconnected and conglutinated petals. However, as the reaction temperature increases to 220 ◦C,
the Ni-P1.5/T220/H15 nanoparticles aggregate together and possess the sphere-like structures. It is
found that the Ni-P1.5/T220/H15 nanoparticles are close to regular submicron spheres with rough
surface and with an average diameter of 660 nm (Figure 3c). Compared with Ni-P1.5/T200/H15,
the increase of reaction temperature obviously leads to the reduction of the crystal size of Ni
nanoparticles. As a result, the reaction temperature and time play a role in the particle size and
morphology of Ni nanoparticles.
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In order to investigate the crystal structure crystal and phase of these samples, XRD patterns of
the as-prepared Ni nanoparticles were conducted. As shown in Figure 4, most of the samples present
characteristic diffraction peaks at 44.5◦, 51.8◦ and 76.4◦, corresponding to Ni (111), (200), and (220), which
belong to the face centered cubic (FCC) structure in good consistent with the database of JCPDS Card
(No. 04-0850) [24]. However, as for Ni-P1.5/T160/H15, the intensity of the characteristic diffractions peaks
is weak, indicating that the lower temperature is adverse to reduce Ni2+ to Ni and form Ni crystals
completely. According to the reported data (JCPDS card No. 04-0850), it can be identified that the
Ni-P1.5/T160/H15 is nickel hydroxide [Ni(OH)2·0.75H2O]. This result indicates that Ni(OH)2·0.75H2O
formed at above low reaction temperature is the precursor of Ni crystals, thus explains the reason that
the morphology of Ni-P1.5/T160/H15 is similar to that of Ni-P1.5/T200/H15 [25–27]. The XRD patterns
for Ni-P1.5/T160/H15, Ni-P1.5/T200/H10 and Ni-P1.5/T200/H15 are further exhibited in Figure S1 and S2
(Supplementary Materials). As shown in Figure 4d, it is revealed that the intensity of diffraction peaks
significantly increases as the reaction temperature increases, which indicates that the samples have higher
crystallinity and better purity [19]. In addition, as the reaction time increases, the intensity of diffractions
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peaks increases. Interestingly, the peaks are observably enhanced with increasing of the PEG weight
first, and then the intensity of the peaks is found to be decreasing with the weight of PEG increases.
The variation in intensity of the peaks reveals that the PEG surfactant plays an important role in the
fabrication of Ni particles, which is consistent with the SEM results.
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Ni-P1.5/T200/H15, and Ni-P1.5/T160/H15; (d) The intensity of XRD peaks of all samples.

3.2. Thermal Properties

The TGA spectra of various samples are performed and the results are shown in Figure 5 and
Table 2. Almost all samples indicate that weight losses have two phases decomposition process with the
maximum-rate decomposition temperatures of the first (T1) and second (T2) phases. Figure 5a shows
the TGA curves of the Ni-P1.5/T200/H15, Ni-P4.5/T200/H15, Ni-P7.5/T200/H15 and Ni-P9/T200/H15

samples. At the first phase (below 300 ◦C) there is a slow decomposition rate due to the thermal
decomposition of organic components in the samples [28]. The maximum decomposition temperatures
of the second phase were at 319.2, 326.5, 320.1 and 314.5 ◦C respectively. In addition, the total
weight losses at 500 ◦C were 19.9%, 36.1%, 38.2% and 43.9% respectively for the first group of
samples. The second phase of decomposition process is due to the decomposition reaction of nickel.
This decomposition process may be related to the crystallinity and structure of nickel [29]. These results
indicate that the thermal stability of the samples decreases with the increasing addition of PEG.
Additionally, the samples exhibit good thermal stabilities owing to the increasing of the reaction time
and temperature, shown in Figure 5b,c. As is known to all, the magnetic properties of the nanomaterials
are widely claimed to be highly dependent on the crystallinity, morphology, size and composition [30].
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Therefore, these data reveal that thermal stability of the nickel particles was determined corresponding
to the structures and appeared to be related to the PEG content.Materials 2018, 11, x FOR PEER REVIEW  7 of 12 
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Table 2. The thermal and magnetic properties of the as-prepared samples.

Samples Ms (eum/g) Mr (eum/g) Hc (Oe) T1 (◦C) T2 (◦C)

Ni-P1.5/T200/H15 23.5 3.7 205.7 319.24 -
Ni-P4.5/T200/H15 13.0 1.8 200.8 291.4 326.5
Ni-P7.5/T200/H15 10.2 1.6 218.0 292.2 320.1
Ni-P9/T200/H15 5.9 0.87 222.2 292.2 314.5
Ni-P1.5/T200/H10 15.9 2.1 197.8 336.0 -
Ni-P1.5/T200/H20 36.8 7.4 206.8 337.6 -
Ni-P1.5/T160/H15 1.1 0.08 185.6 252.5 280.3
Ni-P1.5/T220/H15 40.7 8.5 216.6 322.5 341.6

3.3. Magnetic Properties

The magnetic properties of the different samples (the magnetic value were referred to the content
of only the metallic part) are measured in an applied magnetic field sweeping from−10,000 to 10,000 Oe,
and shown in Table 2. The hysteresis loops in Figure 6a shows that the saturation magnetization (Ms)
and coercive force (Hc) of Ni-P1.5/T200/H15, Ni-P4.5/T200/H15, Ni-P7.5/T200/H15, and Ni-P9/T200/H15

samples with different PEG content are 23.5, 13.0, 10.0, 5.9 eum·g−1 and 205.7, 200.8, 218.0, 222.2 Oe
respectively. It is found that the Hc value was significantly improved relative to the bulk nickel (100 Oe),
possibly due to its nanosized structure [31]. Interestingly, the Ms of Ni particles decreases along with the
increasing content of PEG. It can be inferred that the surfactant affects the particle size, crystallinity and
morphology of the nanoparticles, and thus affects the magnetic properties of the nanoparticles, which
has a special structure and high order of shape anisotropy [32]. As shown in Figure 6b, the Ms values
of Ni-P1.5/T160/H15, Ni-P1.5/T200/H15 and Ni-P1.5/T220/H15 samples are 15.9, 23.5 and 36.8 eum g−1,
respectively, and the Hc values are 197.8, 205.7 and 206.8 Oe respectively. Clearly, the saturation
magnetization and coercivity increase with the increase of reaction time. In similarity, it can be seen
from Figure 6c that with the increase of the reaction temperature, the saturation magnetization and
coercivity are also enhanced. It can be inferred that the reaction of temperature and time have a big
impact on the crystallinity of the nanoparticles, which is corresponding to results of the SEM, XRD
and TGA investigation.
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Figure 6. (a) Magnetization curves of Ni-P1.5/T200/H15, Ni-P4.5/T200/H15, Ni-P7.5/T200/H15, and
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3.4. Microwave Absorption Properties

It is generally known that the microwave absorption properties of materials are reflected by
the value of the reflection loss (RL), which is closely related to the complex permittivity (ε′, ε′ ′),
permeability (µ′, µ′ ′) as well as the thickness of absorber layer. The complex permittivity (ε′, ε′ ′) and
permeability (µ′, µ′ ′) of the Ni-P9/T200/H15 with 25 wt % paraffin are shown in Figure 7a, respectively.
With the increase of frequency, the ε′ value of Ni-P9/T200/H15 gradually decreases from 9.8 to 7.0,
then stabilized. Meanwhile, ε′ ′ increases slowly from 0.5 to 1.6. When the frequency is relatively low,
interfacial polarization can be induced, but with the increase of frequency, it cannot keep up with
the pace of the alternating electric field [33]. Thus, as the frequency increases, relaxation polarization
loss and electric conductance loss increase, which determines the increase of dielectric loss [34].
This explains why ε′ ′ increases while ε′ decreases as the frequency increases. In Figure 7b, it is clearly
that the real permeability µ′ first decreases in the frequency range of 0.5–14 GHz, and then followed by
a slight increase. The decline of µ′ is ascribed to the hysteresis of domain-wall motion and rotation as
the frequency increases [35]. In contrast, the imaginary permeability µ′ ′ displays a wide peak in the
frequency range of 2.5–15 GHz due to the domain-wall resonance and relaxation loss [36].
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According to established model for single-layer plane-wave from the transmission line theory [37],
the reflection loss (RL) can be calculated by the following equations:

RL (dB) = 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (1)

zin = z0

√
µr
εr

tan h
(

j
2πfd

c
√
µrεr

)
(2)

where Zin is the normalized input characteristic impendence, Z0 is the free space impendence, f is the
frequency of microwaves, d is the thickness of absorber layer, and c is the speed of light. εr and µr can
be obtained by following equations εr = ε′ − jε′ ′ and µr = µ′ − jµ′ ′. The calculated results of RL of the
Ni-P9/T200/H15 are shown in Figure 8. Moreover, the calculated reflection losses of pure paraffin is
presented in Figure S3 (Supplementary Materials). When the thickness of absorber layer is 2, 2.5, 3,
4 and 5 mm, the corresponding minimum RL peak value is −27 dB at 13 GHz, −26 dB at 10.3 GHz,
−22.5 dB at 7.9 GHz, −16 dB at 5.7 GHz and −9 dB at 16.8 GHz, respectively. It can be observed that
the absorption frequency region shifts from low frequency to high frequency and its corresponding
peak intensity increases as the absorber layer thickness increases. Particularly, the minimal RL of
Ni-P9/T200/H15 is −42.6 dB at 17.3 GHz with 1.7 mm thickness of absorber layer, demonstrating
superior electromagnetic microwave absorption properties in the Ku-band (12.0–18.0 GHz). In addition,
Figure 9 shows the calculated three-dimensional representations of the RL for Ni-9 sample. It is clear
that the value of the RL of Ni-P9/T200/H15 in the frequency range of 6–18 GHz is less than −20 dB,
and the value of the reflection loss at 1.7 mm absorber layer is less than −40 dB. Although the RL
peak value decreases as the absorber layer thickness increases, it has a wide absorption band. It is
worth noting that if the value of the reflection loss is less than −20 dB, the equivalent of 99% of the
electromagnetic wave will be absorbed [38,39]. More importantly, each absorber layer thickness of
Ni-P9/T200/H15 corresponds to distinctly different absorption peak. This allows potential application
in the notch filter [40], which is a sort of special electromagnetic shielding device that can rapidly
attenuate the input signal at a certain frequency. The above results indicate that the Ni-P9/T200/H15

sample is an ideal microwave absorbing material with multi-band and strong absorption performance,
which has extensive application.
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4. Conclusions

In conclusion, self-assembled submicron Ni particles with different morphologies and structures
were successfully prepared through a simple one-step surfactant-assisted solvothermal method.
The morphologies of Ni particles were studied, indicating that the PEG as a surfactant plays an
important part in the fabrication of Ni particles with the impact of stoichiometry. Meanwhile,
different morphologies and structures of Ni particles including flower-like nanoflakes, chain structures,
sphere-like structures, and hollow structures were obtained through altering reaction temperature
and time. Importantly, these Ni particles exhibit excellent thermal stabilities with a possible growth
mechanism for the variety of the structure-tuned formation. Additionally, the as-obtained Ni particles
exhibit good saturation magnetization and high coercivity values as a result of the unique structures.
Furthermore, the Ni-P9/T200/H15 sample exhibits excellent microwave electromagnetic properties.
The absorbing layer with thickness of 1.7 mm possesses the minimum RL of −42.6 dB at 17.3 GHz.
This one-pot synthesize method offers a practical, facile and economical way for preparations of Ni
particles uniformly, and it is expected to have potential applications in commercial and industrial
production of Ni particles.
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