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Abstract: While the rule of mixture is applicable for addressing the overall Poisson’s ratio of a
concentrically aligned bi-layered rod under longitudinal loading, the same cannot be said for this rod
under torsional loading due to the higher extent of deformation in the rod material further away from
the torsional axis. In addition, the use of adhesives for attaching the solid inner rod to the hollow
outer rod introduces an intermediate layer, thereby resulting in a tri-layered concentric rod if the
adhesive layer is uniformly distributed. This paper investigates the effect of the adhesive properties
on the overall auxeticity of a rod consisting of two concentrically aligned cylindrical isotropic foams
with Poisson’s ratio of opposite signs under torsional loads. An indirect way for obtaining Poisson’s
ratio of a concentrically tri-layered rod was obtained using a mechanics of materials approach.
Results show that the auxeticity of such rods is influenced by the adhesive’s stiffness, Poisson’s ratio,
thickness, and radius from the torsional axis.
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1. Introduction

In the analysis of negative materials, the term “conventional materials” is typically adopted
when referring to materials with properties that are normally taken for granted, such as positive
Poisson’s ratio, positive thermal expansivity, and positive stiffness. For papers that deal with auxetic
materials, “conventional” materials are those that exhibit a positive Poisson’s ratio. The problem
of torsion of cylindrical rods made from conventional materials is well established and has been
a subject of extensive research. The theory of generalized torsion was first worked out by Voigt
and the rigorous theory of pure torsion was developed by Saint–Venant. There are many classical
works on the theory of pure torsion (e.g., [1–4]). Tsukrov and Drach [5] gave explicit analytical
expressions for displacement and stress fields in a multilayered composite cylinder with cylindrically
orthotropic layers subjected to homogeneous boundary conditions. The solutions are derived under the
assumption of perfect bonding between layers. Torsion of laminated cylindrical shells with adhesive
interlayers was investigated by Maksymuk and Shcherbina [6]. Based on refined equations of the
Timoshenko-type shell theory, the contact stresses in torsion of a two-layer cylindrical shell with an
adhesive interlayer were numerically studied. The effect of the geometric and physical-mechanical
parameters of the load-carrying layers and the adhesive interlayer of the shell on the distribution
of the interlaminar tangential stress was analyzed as well. The magnetoelectric (ME) effect in a
piezoelectric/piezomagnetic (PE/PM) composite cylinder, which is induced by a torsional deformation,
was investigated by Huang and Zhang [7]. Both the PE and PM layers are circumferentially
polarized. For a specific applied magnetic field, the displacement component in the PM layer was
analytically presented. Levin et al. [8] considered a static problem of torsion of a cylinder composed of
incompressible, nonlinear elastic materials at large deformations. The cylinder contained a central,
round, cylindrical inclusion that was initially twisted and stretched (or compressed) along the axis and
fastened to a strainless, external, hollow cylinder.
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Since 1987, when negative Poisson’s ratio foams were developed by Lakes [9,10], it is known
that materials and structures showing a negative Poisson’s ratio do exist in nature. Popereka and
Balagurov [11] presented ferromagnetic films having a negative Poisson ratio; Milstein and Huang [12]
confirmed the existence of a negative Poisson ratio in face-centered cubic (fcc) crystals. Simple
mechanical [13–15] and thermodynamic [16] models, which show auxetic behavior, were found in the
80s of the 20th century; the latter was studied in the form of hexagonal molecules in two-dimensional
(2D) lattice [17,18]. The counterintuitive nature of auxetic materials avails much potential as safer
fasteners [19], improved arterial prostheses [20], artificial intervertebral discs [21], drug eluting
stents [22] and other prostheses [23], more comfortable cushions [24,25], highly tunable molecular
sieves [26–29], antivibration gloves [30], novel textiles [31], better material for diabetic shoes [32],
safer pressure vessels [33] and other thin-walled structures [34], and a better performing crash/shock
absorber [35,36]. It has also been found that novel properties, distinct from conventional or auxetic
materials, arise when a composite structure is made from both conventional and auxetic materials.
In addition to a recent comprehensive survey of auxetic materials and structures [37], the reader is also
referred to a recent focus issue on “auxetics and other systems of anomalous characteristics” [38–42],
as well as papers in this special issue [43–48].

Interlacing effects from the auxetic and conventional materials have been shown to give interesting
properties in bi-layer [49,50], tri-layer [51,52], and multi-layered systems [53–60], and continuous
unidirectional fiber composites [61]. One category of auxetic structural element is that of rods
possessing circular or elliptical cross-sections with auxetic and conventional materials alternated
in concentric [62,63], angular [64], and helical [65] directions. The earlier approach [62] assumes that
(a) the interface between both the auxetic and conventional phases has no thickness and that (b) the
bonding between both phases is perfect; due to finite element approximation used in the numerical
model of the two-phase composites [63–65], an “interface layer” with thickness is present instead of
the perfect bond between the material. In practice, adhesion is required between both phases such that
the interface between both phases is replaced by an interphase and that the interphase has its own
material properties and thickness. This paper attempts to model, by an analytical approach, a single
tri-layered cylindrical rod consisting of a solid inner foam rod adhered to a hollow outer foam rod,
with significant adhesive modulus as the interface of the two foam rods.

The overall auxeticity of a concentric rod whereby the core and shell possess Poisson’s ratio
of opposite signs is influenced by the mode of loading [62]. It is obvious that during axial loading
both the core and shell experience equal longitudinal strain but during torsional loading, the shell
undergoes greater shear strain than the core. In this concentrically bi-layered rod system, the auxeticity
during axial and torsional loading modes changes at different rates with respect to the ratio of
the inner-to-outer diameters. This results in a range of inner-to-outer diameter ratios whereby the
concentric rod exhibits overall Poisson’s ratio of different signs depending on the loading mode.
However, the assumption of a bi-layered concentric foam system is no longer valid when a layer of
high modulus adhesive exists between the two concentric rods. The adhesive layer can be thought
of as an intermediate layer that fills the gap between the two concentric cylinders. Even in the case
where the surfaces of the inner and outer cylinders are in contact with each other, the slight seepage of
adhesive fluid into the foam before its solidification gives rise to a high modulus intermediate layer.
The effect of the adhesive’s elastic properties under torsional load on the concentric foam rods of
opposing Poisson’s ratio signs, but with comparable Young’s modulus, is investigated in this paper as
a tri-layered concentric rod system.

2. Theory and Formulation

Unlike uniaxial loading whereby the diameter changes for non-zero Poisson’s ratio, there is no
salient change in the rod diameter under torsional load. With reference to Figure 1, a component
of radial increase due to one principal strain is canceled by a component of radial decrease due to
another principal strain in the same plane. Hence, there is no change in the rod diameter under torsion.
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Nevertheless, it is obvious that the auxeticity of the rod must be related to that of the material that
constitutes the rod.
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Figure 1. Schematics for (a) a rod under torsion, (b) an elemental volume under pure shearing,
and (c) an equivalent stress state at 45◦ showing in-plane principal stresses. Red arrows indicate
stress directions.

2.1. Single Solid Rods

Since an observation on rod diameter yields no change regardless of the rod auxeticity, we herein
consider the rod auxeticity—under torsional loading—in terms of the moduli ratio G/E (or E/G) using
the elastic relation:

G =
E

2(1 + v)
. (1)

By virtue of Equation (1), the moduli ratio G/E→∞ (or E/G→0) as v→−1, and that G/E→1/3
(or E/G→3) as v→1/2. Hence, the auxeticity of a material can be inferred from the moduli ratio as an
alternative to the usual way of measuring the change in dimension during axial loading. For a single
solid rod of diameter D and length L undergoing torsion T, the angular twist φ is given as

φ =
TL
GJ

(2)

whereby the polar moment area of the circular cross-section J is

J =
π

32
D4. (3)

Substituting Equations (1) and (3) into Equation (2), we have Poisson’s ratio of the rod:

v =
D4Eπφ

64TL
− 1 (4)
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or, for convenient comparison with subsequent sub-sections, we write

vSingle =

(
64TL

D4Eπφ

)−1
− 1. (5)

2.2. Bi-Layered Concentric Rods

As opposed to summative angular twist and common transmitted torsional load for two rods
arranged in series, the case of two concentrically arranged rods is governed by a common angular
twist with summative torsional loads as depicted in Figure 2a,b, respectively.
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Figure 2. Comparison between two rods in (a) series and (b) concentric arrangement.

Hence, the common angular twist for the inner and outer rods

φi = φo (6)

and the summative torsional load

T = Ti + To =
φiGi Ji

L
+

φoGo Jo

L
(7)

give
TL
φ

= Gi Ji + Go Jo. (8)

Substituting Equations (1) and (3) into Equation (8) leads to

64TL
Do4Eoπφ

=

Ei
Eo

(
Di
Do

)4

1 + vi
+

1−
(

Di
Do

)4

1 + vo
. (9)
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It can be easily seen that Equation (9) can be reduced to Equation (5) under certain special cases;
substituting Di = 0 (i.e., E = Eo for the entire rod) into Equation (9) leads to

64TL
Do4Eoπφ

=
1

1 + vo
(10)

or

vo =

(
64TL

Do4Eoπφ

)−1
− 1 (11)

while the substitution of Di = Do (i.e., E = Ei for the whole rod) into Equation (9) gives

64TL
Do4Eiπφ

=
1

1 + vi
(12)

or

vi =

(
64TL

Do4Eiπφ

)−1
− 1. (13)

Hence, by virtue of Equation (5) and neglecting the adhesive layer, the effective Poisson’s ratio for
two perfectly bonded concentric cylinders under torsional loading mode is

vBi−layer =

(
64TL

D4
o Eoπφ

)−1
− 1 (14)

where the term in parenthesis is given by Equation (9) in the case of a bi-layered concentric rod.
However, to prevent unnecessary error, caution must be taken when using Equation (9) under some
limiting conditions. For example, it is obvious that E = Ei and v = vi for the entire rod if we let Di = Do;
however, substituting Di/Do = 1 and Ei/Eo→∞ into Equation (9) results in v = −1 instead of v = vi.
The source of this error can be traced by considering the fact that the substitution of Di/Do = 1 into
Equation (9) implies that Eo and the ratio Ei/Eo on the LHS and RHS of Equation (9), respectively, do
not exist; the correct expression is indicated by Equation (12).

2.3. Tri-Layered Concentric Rods

Figure 3 shows the adhesive layer being the interlayer, thereby extending the bi-layered concentric
rod into a more realistic tri-layered concentric rod with the thickness of the adhesive layer δ being

δ =
DA − Di

2
. (15)

As in the case of a bi-layered concentric rod, the angular twist for a tri-layered rod is common

φi = φA = φo (16)

while the torsional load is carried by all three layers

T = Ti + TA + To. (17)

Proceeding similarly as in the case of a bi-layered concentric rod, the effective Poisson’s ratio for a
tri-layered concentric rod under torsional loading mode is

vTri−layer =

(
64TL

D4
o E0πφ

)−1
− 1 (18)
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with

64TL
Do4Eoπφ

=

Ei
Eo

(
Di
Do

)4

1 + vi
+

EA
Eo

[(
DA
Do

)4
−

(
Di
Do

)4
]

1 + vA
+

1−
(

DA
Do

)4

1 + vo
(19)

where (
DA
Do

)4
−

(
Di
Do

)4
= 8

δ

Do

(
Di
Do

)3
+ 24

(
δ

Do

)2( Di
Do

)2
+ 32

(
δ

Do

)3 Di
Do

+ 16
(

δ

Do

)4
(20)

and

1−
(

DA
Do

)4
= 1−

(
Di
Do

)4
− 8

δ

Do

(
Di
Do

)3
− 24

(
δ

Do

)2( Di
Do

)2
− 32

(
δ

Do

)3 Di
Do
− 16

(
δ

Do

)4
. (21)

It can be seen from Equations (20) and (21) that as δ→0 or δ << Do, Equation (19) reduces to
Equation (9). If the adhesive layer is very small in comparison to other radial dimensions and the adhesive
modulus is in the same order as that of the foam material, then the following simplifications of(

DA
Do

)4
−

(
Di
Do

)4
≈ 8

δ

Do

(
Di
Do

)3
(22)

and

1−
(

DA
Do

)4
≈ 1−

(
Di
Do

)4
(23)

are valid for Equations (20) and (21), respectively. A direct consequence of this simplification is that
Equation (19) resembles Equation (9); that is,

64TL
Do4Eoπφ

=

Ei
Eo

(
Di
Do

)4

1 + vi
+

8 EA
Eo

δ
Do

(
Di
Do

)3

1 + vA
+

1−
(

Di
Do

)4

1 + vo
(24)

such that the influence from the adhesive material is confined to only one term, that is, on the second
term on the RHS of Equation (24). Here, the relative modulus of the adhesive-to-outer foam material
EA/Eo and the relative adhesive thickness δ/Do play equal importance. The simplification suggested
in Equation (22), however, is no longer valid when the relative modulus of the adhesive material
EA/Eo is several orders higher. Hence, the retention of Equation (20) with the use of Equation (23)
provides balanced simplification and accuracy. Without diminishing the adhesive layer, the tri-layered
concentric rods reduce to bi-layered ones under the following special cases: (a) Di = 0, in which the
adhesive layer takes the place of the inner core in the form of a very slim reinforcement rod, and (b) Di
≈ Do with a very thin δ in which the adhesive layer takes the place of the outer shell in the form of a
very thin tube. It can be shown that as Di→0, Equation (24) reduces to

64TL
Do4Eoπφ

≈ 1
1 + vo

+
8 EA

Eo
δ

Do

(
Di
Do

)3

1 + vA
. (25)

Likewise, Equation (24) simplifies to

64TL
Do4Eiπφ

≈ 1
1 + vi

+
8 EA

Ei
δ

Do

1 + vA
(26)

as Di→Do. It can be observed that the limiting conditions for the tri-layered rod as specified in
Equations (25) and (26) closely resemble those of the bi-layered cases of Equations (10) and (12),
respectively. In the results section, curves of the effective Poisson’s ratio for the tri-layered rods are
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plotted against Di/Do for the range 0 ≤ Di/Do ≤ 1 in which both extreme cases Di = 0 and Di = Do are
valid under the earlier imposed condition that δ << Do.
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Figure 3. Side (left) and axial (right) views of a rod made from two concentric foams with opposite
Poisson’s ratio signs, in which the adhesive material is assumed to take on the shape of a thin
cylindrical shell.

3. Results and Discussion

The influence of the intermediate layer on the overall Poisson’s ratio of a rod made from foams
of opposing Poisson’s ratio signs can be observed by considering the adhesive layer’s elastic and
geometrical properties. Specifically, these properties are (a) the elastic properties in terms of the
adhesive modulus relative to that of the foam EA/EFoam and the adhesive Poisson’s ratio vA, as well as
the (b) geometrical properties in terms of the adhesive thickness relative to the rod diameter δ/Do and
the adhesive diameter relative to that of the rod Di/Do.

In the plotted results of the effective Poisson’s ratio in Figures 4–6, we adopt the concentrically
tri-layered cylinder using Equations (18)–(20) and (23) for the case of an equal inner and outer foam
modulus:

Ei = Eo = EFoam, (27)

and equal Poisson’s ratio magnitudes for the inner and outer foams

± vi = ∓vo = 0.5. (28)

The effect of the relative moduli ratio EA/EFoam on the variation of the combined rod’s effective
Poison’s ratio veff with the inner-to-outer cylinder diameters Di/Do is plotted in Figure 4 with relative
adhesive thickness at δ/Do = 0.001, Poisson’s ratio of solidified adhesive at vA = 0, and relative
adhesive modulus at EA/EFoam = 10n for n = 0, 1, 2, 3, 4, 5. Figures 4a and 4b refer to the auxetic core
(−vi = vo = 0.5) and auxetic shell (vi = −vo = 0.5), respectively. As expected, the rod auxeticity increases
(or the overall Poisson’s ratio decreases) with the relative size of the auxetic core, as shown in Figure 4a.
However, an unexpected trend is observed whereby the overall Poisson’s ratio approaches −1 as the
inner-to-outer diameter approaches 1, although none of the material components possess a Poisson’s
ratio lower than −0.5. Plotted results also reveal that the rod auxeticity increases with the use of a
higher adhesive modulus. When the position of the auxetic and conventional parts are swopped, only
the case of moderate relative adhesive modulus gives an intuitive trend, that is, increasing Poisson’s
ratio with increasing conventional inner cylinder size. However, the trend reverses for an extremely
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large adhesive modulus. This may well be due to the high torsional stiffness that translates into a high
ratio, which is associated with auxeticity.
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Figure 4. Effect of relative adhesive modulus on the compound rod auxeticity: (a) Auxetic core; (b)
Auxetic shell.

The effect of relative moduli thickness (δ/Do) on the variation of the combined rod’s effective
Poison’s ratio veff with the inner-to-outer cylinder diameters Di/Do is plotted in Figure 5 with relative
adhesive modulus at EA/EFoam = 1000, Poisson’s ratio of solidified adhesive at vA = 0, and relative
adhesive thickness at δ/Do = 10n for n = −1, −2, −3, −4, −5. Figure 5a,b correspond to the use of
an auxetic core (−vi = vo = 0.5) and auxetic shell (vi = −vo = 0.5), respectively. The trends obtained
in Figure 5 are somewhat similar to those of Figure 4, signifying an almost similar effect of adhesive
thickness with adhesive modulus. The similarity is attributed to the increasing stiffness contributed by
the intermediate layer’s increasing modulus and increasing thickness.

The effect of the adhesive’s Poisson’s ratio vA on the variation of the combined rod’s effective
Poison’s ratio veff with the inner-to-outer cylinder diameters Di/Do is plotted in Figure 6 with a
relative adhesive modulus at EA/EFoam = 1000, relative adhesive thickness at δ/Do = 0.001, and
adhesive Poisson’s ratio at vA = ±0.1, ±0.3, ±0.5. Figure 6a,b correspond to the use of an auxetic core
(−vi = vo = 0.5) and auxetic shell (vi = −vo = 0.5), respectively. As with Figures 4 and 5, a drop in the
overall Poisson’s ratio towards −1 is obtained with increasing adhesive ring diameter. As expected,
the overall Poisson ratio is influenced by the Poisson’s ratio of the adhesive material, thereby causing
an upward or downward shift in the overall Poisson’s ratio arising from the positive or negative sign
of the adhesive material’s Poisson’s ratio.

The current findings complement the results of Maksymuk and Shcherbina [6], which conclude
that at a constant total thickness of the adhesive block the value of the tangential contact stresses
can be regulated (by changing the geometric and physical-mechanical parameters of the layers and
adhesive interlayer) in order to increase the rigidity characteristics of composite multilayer cylindrical
shells in torsion. While the usual or direct approach for obtaining the effective Poisson’s ratio attempts
to apply an axial load on the concentric rod such that the arising interfacial surface gap mismatch
is removed by means of geometrical compatibility, the absence of radial change in the torsion of
concentric rods circumvents the need for bridging the gap. The advantage of this simplicity, however,
renders the current model inaccurate when considering combinations of foam materials with significant
differences in their Young’s modulus. Specifically, the imposition of Equations (6) and (16) for the
bi-layered and tri-layered rods, respectively, implies that the inner and outer foams must rotate by
equal amounts of angle but this is not the case when the torsional stiffness of the inner core and
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outer shell are significantly different; in addition to φi 6= φo, an interfacial shear stress acting in the
circumferential direction arises. Nevertheless, an accuracy of ±10% is achieved; that is, φi ≈ φo for
the case of auxetic core (vi = −0.5) and auxetic shell (vo = −0.5) when 10/11 ≤ Ei/Eo ≤ 10/9 and
30/31 ≤ Ei/Eo ≤ 30/29, respectively.
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So far the choice of Poisson’s ratio of foams has been limited to v = ±0.5. For other
auxetic-conventional combinations within this range, one may expect the following combination
of factors:

(a) less pronounced effective Poisson’s ratio if the magnitudes are equal and less than 0.5,
(b) the outer shell plays a larger role than the inner core in influencing the effective Poisson’s ratio

under bending and especially torsion, but is directly proportional to the cross-sectional area for
the axial load,
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(c) the foam with a larger Poisson’s ratio magnitude will exert a greater effect on the sign of the
effective Poisson’s ratio.

4. Conclusions

The effect of adhesive properties on the overall auxeticity of a rod consisting of two concentrically
aligned cylindrical isotropic foams with Poisson’s ratio of opposite signs—under torsional loading
mode—has been investigated in this paper. Using the mechanics of materials approach, an indirect
way for inferring the Poisson’s ratio of a concentrically multi-layered rod was obtained. Results show
that the following factors increase the auxeticity of the rod under consideration: (a) adhesive modulus,
(b) adhesive Poisson’s ratio, (c) adhesive thickness, and (d) adhesive radius. The plotted results also
suggest that, even with each component possessing a Poisson’s ratio not lower than −0.5, the overall
Poisson’s ratio within the framework of torsional loading approaches −1 as the outer shell thins.
An understanding of the effect of adhesive elastic and geometrical properties of a rod made from
concentrically aligned auxetic and conventional foams is useful for designing such rods whenever an
adhesive with a large modulus is used for attaching both foams. Further refinements to the current
model to cater for considerable differences in the inner and outer foams’ Young’s modulus is suggested
for future work.
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