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Abstract: A microstructure-based model is developed to study the effective anisotropic properties
(magnetic, dielectric or thermal) of two-phase particle-filled composites. The Green’s function
technique and the effective field method are used to theoretically derive the homogenized
(averaged) properties for a representative volume element containing isolated inclusion and infinite,
chain-structured particles. Those results are compared with the finite element approximations
conducted for the assumed representative volume element. In addition, the Maxwell–Garnett model
is retrieved as a special case when particle interactions are not considered. We also give some
information on the optimal design of the effective anisotropic properties taking into account the
shape of magnetic particles.

Keywords: particulate-reinforced composite materials; homogenization; effective field method;
numerical analysis; optimal design

1. Introduction

Temperature as well as magnetic and electric fields in composite materials are of interest in
many engineering applications. To use them effectively in modern constructions, it is necessary to
predict the effective homogenized properties. Theoretically, for particle-filled, two-phase composites,
their homogenized, effective physical properties may be derived in manner similar to the linear case.
The methods for searching for effective magnetic permeabilities, dielectric permittivities or thermal
conductivities are analogous and they may be calculated using the same approach. Although the
similarity of those three fields was noticed a long time ago, the models for the prediction of the effective
composite properties are built separately for each class of problems and in addition with the use of
various simplified hypothesis (assumptions).

It is worth pointing out that the analysis of an incompressible viscous fluid flow through a
porous medium can be described using analogous equations such as the ones mentioned above for the
two-phase composites. On the macroscopic scale, flow through the porous material is governed by
Darcy’s law having the permeability tensor KH, so that the methods, which are analogous to the ones
discussed herein may also be successfully applied to the fluid flow problems.

There are different homogenization approaches and they can be divided into three classes, i.e.,
direct, indirect and variational methods. Direct methods are based on the volume average of field
quantities and they can be performed by a numerical procedure, usually the finite element method
(FEM) or the boundary element method (BEM). Indirect homogenization follows the idea of the
equivalent inclusion method based on Eshelby’s eigenstrain solution. In this area, different variants of
solutions are developed and they may be divided into: the self-consistent schemes, the Mori–Tanaka
method and the differential method. The variational approach can give upper and lower bounds of
the effective properties. Monographs describing different homogenization methods in details have
been written by Mura [1], Nemat-Nasser and Hori [2], and Qin and Yang [3]. The review presented by
Wang and Pan [4] first examines the issues, difficulties and challenges in the prediction of material

Materials 2018, 11, 234; doi:10.3390/ma11020234 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma11020234
http://www.mdpi.com/journal/materials


Materials 2018, 11, 234 2 of 20

behaviors by summarizing and critiquing the existing major analytical approaches dealing with
material property modeling.

The model of Maxwell and Garnett [5,6] was one of the first to describe the effective permittivity
of composites containing randomly dispersed spherical particles. Hashin and Shtrikman [7] used a
variational approach to determine the upper and lower bounds of the effective magnetic permeability
of multiphase materials. To investigate the effect of the interaction between particles, Fu et al. [8]
presented an analytic approach to derive the explicit effective permittivity in the form of a series
for composites containing spherical particles. For periodically distributed composites, McPhedran
and McKenzie [9] as well as McKenzie et al. [10] extended a method devised by Rayleigh [11] to
calculate the conductivity of simple cubic, body-centered cubic, and face-centered cubic lattices of
composites containing conducting spheres. Doyle [12] and Lam [13] presented their models for
composites with cubic lattices of particles. White [14] introduced a T-matrix solution based on a
unit cell for general periodically distributed composites. Chen et al. [15] obtained the electric field
distribution numerically in a Legendre series for one chain embedded in an infinite medium. Yin and
Sun [16] derived effective magnetic properties for a chain-like structure considering a single column
of particles embedded in an infinite medium. Sareni et al. [17,18] applied the boundary integral
method to solve the effective permittivity for random and periodic composites. A broad review of the
above-mentioned approaches and methods with the particular discussion of the results is given in the
monograph of Kanaun and Levin [19]. In addition to the experimental and theoretical approaches,
computer simulations have been adopted more and more frequently to study the effective properties
of composites. Effective dielectric constants of two-phase composite dielectrics have been estimated
numerically by Wu et al. [20]. Krakovsky and Myroshnychenko [21] used the finite element method to
compute the effective permittivity for two-dimensional random composites. A numerical approach to
the evaluation of the effective properties for magneto-rheological fluids (MR fluids) is demonstrated in
reference [22], however, the analysis and results deal with the prediction of magnetic permeability in
one direction only. Although materials with directional features are common, most previous work was
focused on isotropic cases, except for some studies, which attempted to bring this property-direction
dependence into the general formulation. For instance, for MR fluids, some magnetic properties, such
as the saturation magnetization and the crystalline anisotropy, are intrinsic and depend mainly on
the chemical composition and the crystalline symmetry of the material. On the other hand, extrinsic
properties, such as remanence, coercivity and permeability, depend largely on the structure of the
material (Yin and Sun [16]) or on the shape of reinforced particles (Vereda [23]). Through analytical
predictions and numerical modeling, certain optimization approaches and design schemes for novel
materials could be used for engineering applications and, in turn, the new observations and experiences
from the practice would accelerate the development of new theories and methodologies.

By definition, smart materials have some properties which can be altered or tuned using an
external field. Here, the works by Cai et al. [24], Moiseev et al. [25] or Moiseev [26] can be quoted.
Other examples also include materials that exhibit ferroelectricity, pyroelectricity, piezoelectricity,
a shape memory effect, electrostriction, magnetostriction electrochromism, photomagnetism and
photochromism. Most of these materials tend to be used in their solid state, i.e., in a polycrystalline or a
single crystal form as bulk materials or thin films deposited on appropriate substrates. In general, they
form a special class of two-phase composite materials. When an external field is applied, the particles
become polarized and are thereby arranged into chains or clusters. The chains can further aggregate
into columns, when the composite material exhibits a solid-like mechanical behavior. Therefore,
the effective properties of smart materials vary in time, starting from a random state of particles in a
viscous fluid, and finishing in a composite solid as a chain-like structure.
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To demonstrate the theoretical limitations, this study firstly aims to present the possibility of
theoretical predictions of effective properties for smart materials in the 3D approach. The preliminary
results are discussed in the papers by Barski and Muc [27] and Barski [28]. The presented theoretical
approach is based on the use of the effective field method. Having in mind the possible applications of
two-phase composites as smart materials, two separate problems are discussed in detail, i.e., the case
of isolated inclusions and chain-like structures. Then, the numerical method of homogenization is
proposed and the results are compared with the theoretical ones. The suggested scheme of numerical
homogenization is applied to optimize the effective properties varying the shape of inclusions. As it is
reported in the literature, the behavior of aggregated particles has a great influence on the appropriate
modeling of the smart material deformation as it is strained and especially in view of its yield stress
value. For such a class of composites, the present analysis is an introduction to the global FEM
modeling of rheological deformations.

2. The Effective Field Method

First, let us note that in engineering practice particles embedded in a matrix are usually coated by
an additional material (an interface) between constituents (Figure 1) to enhance various properties of
composites, i.e., thermal, magnetic or dielectric. Surfactants are added to alleviate the settling problem.
Thus, a particulate composite is made of three different phases. Such a class of problems is analysed for
instance by Kamiński [29]. Since it is very difficult to estimate the physical properties of an interface,
our analysis is limited to the considerations of the two-phase material demonstrated in Figure 1b.
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Figure 1. Fields in a homogeneous medium with inclusions: (a) particles with interfaces; and (b) two
phase composites.

Variety of physical problems dealing with two-phase composites, understood in the sense of
particles embedded in matrix, are described in the similar manner, i.e., with the use of similar physical
equations. The examples of such relations are given in Table 1. For two-phased composites the general
mathematical formulation of the problem as well as the methodology of the derivation of the effective
material properties are presented in the Appendix A. The general symbols, which are used in the
Appendix A, are explained in the first column in Table 1. However, the further numerical investigations
concern the examples of the evaluation of effective magnetic permeability.

Below, two particular cases are solved to demonstrate the effectiveness and usefulness of
the approach.
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Table 1. The fundamental quantities and relationships for two-phase composites.

Magnetostatics Electrostatics Heat Flow Diffusion Porous Media

Definition of scalar potentials φ

φ Scalar potential φ (A) Electric potential V
(Volt) Temperature T (◦K)

Substance
concentration γ

(mol/m3)

Hydrostatic pressure p
(Pa)

Definition of vector fields in the vacuum Eα = ∇αϕ, rotαβEβ = 0

Eα
Intensity of magnetic

field Hα (A/m)
Intensity of electric

field Eα (V/m) Not used Not used Not used

Definition of material properties Cαrβ

Cαβ

Magnetic
permeability

coefficients µ0µαβ

(Tm/A)

Electric permittivity
coefficients ε0εαβ

[(A s)/(V m)]

Heat conduction
coefficients kαβ

[W/(◦K m)]

Diffusion coefficients
Dαβ (m2/s)

Proportionality
coefficients Kαβ/η

[m2/(Pa s)] *

Definitions of vector fields in a particular medium Dα

Dα
Magnetic flux
density Bα (T)

Electric flux Dα

(C/m2) Not used Not used Not used

Constative relations Dα = CαβEβ

Physical relations ∇αDα = 0

Gauss’s Law for
magnetism

∇α

(
µ0µαβHβ

)
= 0

Gauss’s Law
∇α

(
ε0εαβEβ

)
= ρ

Fourier’s Law
∇α

(
kαβ∇βT

)
+ Q = 0

Fick’s Law
∇α

(
Dαβ∇βγ

)
= 0

Darcy’s Law
∇α

[(
Kαβ/η

)
∇βp

]
= 0

µ0, magnetic permeability of vacuum, µ0 = 4π × 10−7 (Tm/A); ε0, electric permittivity of vacuum, ε0 = 8.854187817
× 10−12 [(A s)/(V m)]; * η, dynamic viscosity of fluid (Pas).

2.1. Isolated Inclusions

Let the matrix material be isotropic (C0
αβ = c0δαβ) and the isotropic inclusions be ellipsoids

with the same sizes randomly oriented in space. Neglecting the pair interaction between inclusions,
the analysis is reduced to the consideration of a single inclusion embedded in an infinite medium.
Thus, the effective properties of the two-phase composite can be easily computed from the relation in
Equation (A21) (see the Appendix A) with the use of the definition in Equation (A11). For instance,
in the case of spherical inclusions (so-called spherical symmetry), the operator A0

λµ takes the
following form:

A0
λµ =

1
3c0
δλµ (1)

the homogenized isotropic properties in Equation (A21) coincide with the well-known
Maxwell–Garnett formula [5,6].

2.2. Chain of Inclusions

Using the above methodology, the effective properties of two-phase composites may also be
found for materials with regular lattices of identical inclusions. In this case, the function Ψ(x, x′) in
Equation (A16) depends on the difference x-x′. From that definition one can find that:

Ψ(x) =
〈V(x′, x′ + x)|x′ 〉

〈V(x)〉 =
〈V(x′, x′ + x)V(x′)〉

〈V(x)〉2
(2)

For the i-th inclusion being in the regular lattice, the integral

∫
Vi(x′)Vi(x′ + x)dx′ =

4
3
πa1a2a3J(a), J(a) =

{
(1− 0.5|x/a|2)(1 + |x/a|/4), |x/a| ≤ 2
0, |x/a| > 2

(3)
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is the volume of the intersection of two identical ellipsoids with the center separated by the vector x.
Using the above definition, the numerator in Equation (2) can be written as follows:〈

V
(
x′, x′ + x

)
V
(
x′
)〉

= p∑
m

J(x−m) (4)

where m is the vector of the lattice composed by the centers of inclusions. Thus, the function Ψ(x) can
be expressed as follows:

Ψ(x) =
1
p∑

m

′J(x−m) (5)

where the prime over the sum symbol denotes the exclusion of the term with m = 0. Inserting the
above results into the relation in Equation (A17), one can find that:

KΨ =
∫

K
(
x− x′

)
Ψ
(
x− x′

)
dx′ = −A0 + ∑

m

′p.v.
∫

K(x)
[

1
p

J(x−m)− 1
]

dx (6)

and the symbol p.v. means that the integral is understood in the sense of the Cauchy principal value.
Finally, with using Equations (A21) and (6), one can evaluate the effective properties of the composite
with a regular lattice.

It is worth emphasizing that the above definition of the effective mechanical properties does not
consider the physical interaction between particles but the geometrical form of the assumed elementary
cells only. The analytical results of integration in Equation (6) can be obtained for specific forms of
regular lattices only. For instance, such a formula can be derived for an infinite chain of spherical
particles where the representative volume cell has the form of a cuboid having an infinite length in
two directions (Figure 2). In this case, the effective properties can be expressed in the following form:

C∗ii =
[

C0 + pC1

{
1 + (1− p)C1A0 + pη1C1

}−1
]

, i = x, y

C∗zz =

[
C0 + pC1

{
1 + (1− p)C1A0 + pη3C1

}−1
]

η1 = 2ρ3
0

∞
∑

m=1
1/m3, η3 = −2η1, ρ0 = rp/h

(7)

assuming the isotropic properties of the matrix and inclusions, and the operator A0 is described by
Equation (1).Materials 2018, 11, 233  6 of 20 
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3. Numerical Homogenization Strategy

All known analytical methods are valid under certain limitations and particular geometries or
classes of structures. For metamaterials comprising conducting and possibly resonant elements, and
for which the periodicity is not necessarily negligible relative to the free-space wavelength, analytical
homogenization techniques are unreliable or not applicable. Our intent here is to justify a numerically
based homogenization scheme based on Table 1, in which the local fields computed for one unit
cell of a periodic structure are averaged to yield a set of macroscopic fields. Having computed the
macroscopic fields, we can then determine the constitutive relationships between the macroscopic
fields, arriving at the effective electromagnetic parameters. We will see that there will be virtually
no restrictions on the contents of the unit cell, nor will the unit cell necessarily need to be small in
comparison with the wavelength. They have proven useful in many situations, e.g., low volume
fraction of homogeneous spherical or ellipsoidal inclusions in a homogeneous host material, but they
fail if the volume fraction is too high or if the inclusions are not spheres or ellipsoids. Then, a more
accurate homogenization procedure has to be used, which includes all contributions of the interaction
between the reinforcing particles.

For two-phase composites, a typical homogenization situation is depicted in Figure 3. It shows a
2D model of the composite material, which includes a matrix with inclusions. In the homogenization
method, the structure of the two-phase composite materials is assumed to be periodic, and the unit cell,
which is the minimum volume to represent the overall statistics, is defined. Here, it is assumed that
one particle inclusion is located in the center of the cell. The unit cell is regarded as a homogeneous
substance with the effective properties. The effective property is defined based on energy balance in
the unit cell (Figure 3). It is assumed that the original cell and the homogenized cell include equivalent
energy when both unit cells are immersed in equivalent external field.
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In an actual estimation, the solution of the Laplace equation obtained with the use of basic relation
shown in Table 1 is computed by FEM. In this analysis, the potential φ is unknown, and, assuming the
applied field is unidirectional at least in the cell, the boundary conditions are set as:

ϕ = 0 at the bottom x = 0, ϕ = Eyx at the top x = b/2 (8)

The identical boundary conditions are formulated at each parallel boundaries of the cell shown in
Figure 4 for the 2D case. Let us note that the above type of boundary conditions satisfies the periodicity
of boundary conditions for the arbitrary type of regular lattices as well as for the chain of inclusions
and for a single inclusion.
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Similar to the previous case for the effective field method, the FEM analysis is based on the
averaging method that is carried out for the representative volume element (RVE) having the volume
denoted by the symbol ΩRVE. Thus, it is obvious that the results, understood in the sense of the
average property tensor, are directly dependent on the dimensions and form of the RVE. It is worth
pointing out that, even for the 2D two-phase periodic composites, the RVE may be of an arbitrary form,
not necessarily rectangular as it shown in Figure 3. Since in our numerical analysis we intend to give
information on the variations of the property tensor components with respect to the volume fraction p,
we define it in the following way (see Figure 4):

p =
πr2

p

2brp
(
1 + gf/rp

) for 2D and p =
2πr3

p

3b2rp
(
1 + gf/rp

) for 3D (9)

where it is assumed that the RVE has a square cross-section in the y direction. Thus, for the prescribed
volume fraction p, the RVE is completely defined by the set of two parameters (geometrical ratios), i.e.,
gf/rp and b/rp for both 2D and 3D cases. Let us note that, for the constant volume fraction p and the
constant interparticle distance gf, the geometrical dimensions of the representative cell (i.e., b and h)
are uniquely determined.

For the selected RVE (Figure 4) and the selected boundary conditions in the form of Equation (8)
(the unidirectional external field), the average intensity and flux of the field are defined by:

〈Eα〉 =
TN

∑
m=1

Eαm, 〈Dα〉 =
TN

∑
m=1

Dαm (10)

where TN denotes the total number of elements in the FEM mesh. Using the above relations, it is
possible to compute four components of the average intensity and flux of the field for two types of
boundary conditions demonstrated in Figure 4 (the 2D problem) or nine for the 3D analysis. We do
not know in advance how many nonzero components in the property matrix C1

αβ occur. Therefore,
for the linear problem, all components of the property matrix C1

αβ (nine for the 3D problem) can be
derived directly from basic relationships presented in Table 1 where the appropriate components of
the vectors E and D are replaced by their average values evaluated in the local cell (RVE).

For the non-linear problem (understood in the sense of the non-linear relation, Table 1),
the components of the property matrix are computed by the comparison of the magnetic energy
of the homogenized and of the original (Figure 4) unit cell combined with the Newton–Raphson
method. The energy is represented as follows:

U =
∫

ΩRVE

∫
D

EdD dΩ (11)
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However, it is necessary to know in advance the D–E characteristic curve for the inclusions.
Commonly, the inclusion is modeled as isotropic material but for the unit cell the local property matrix
can possess anisotropic properties as it is shown for example in Section 2.

Figure 5 represents the example the FEM analysis conducted for two-phase ferromagnetic
composites made of phases having magnetic properties—the magnetostatic problem. The plots
demonstrate the distribution of the magnetic flux density, the magnetic field and the potential φ as the
external magnetic field is applied at the x direction—the boundary conditions in Equation (8). As can
be seen, the variations of the potential inside the local cell (Figure 5a) result in non-homogeneous
distributions of magnetic fields in all directions. The average values are evaluated by adding the
values of each finite elements in the elementary cell.

For two-phase composites, the effective property tensor has analogous properties to, e.g.,
the tension modulus in elasticity: if the behavior is identical in three perpendicular directions, then
it is isotropic. This conclusion points out a limitation of the use of constant second order tensors
for the description of behavior. Indeed, e.g., for magnetism, many experimental observations reveal
that cubic single crystals are not magnetically isotropic (see for instance Webster [30] for iron and
nickel or Wang et al. [31] for Terfenol-D). In fact, in the experiments, the chains of particles do not
have to be aligned in the direction of the external field, namely Ey. We have some more compact
aggregates. The microscopic analysis on the structure of the two-phase composites revealed that
there were aggregates forming rather than chains of spheres that can be approximated by ellipsoids,
stripes or cylinders. Therefore, it is interesting to verify the correctness of the introduced FE model in
cases when the external field is rotated with respect to coordinates defining RVE in order to consider
the relationship between the orientation of inclusions and to explore symmetries in the constitutive
relations in Equation (1) and their relevance to the homogenized composite medium. In the case of a
generalized anisotropic structure for which principal axis of external fields and the unit cell do not
coincide, the property tensor should satisfy the classical transformation rules of the second rank tensors.
To interpret and investigate those effects, let us analyze the form of the property (permeability) matrix
for the 3D ring structure shown in Figure 6. The geometry of unit cells is defined in the cylindrical
coordinate system but the external field is directed along the line joining the center of the central
spherical inclusion and the center of the ring curvature.
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Figure 6. The system of 5 ferromagnetic particles—the external field is applied at the x, y or z direction. 

The assumed form of the system of the unit cells reflects the situation as the external field is not 

always parallel to the cell edges. It may occur for instance for clusters of inclusion. Figure 7 shows 

the assumed boundary conditions and the values of the permeability matrix terms (the 

magnetostatic problem). The terms cαβ (α ≠ β) are not equal to zero, which means that it may be for 

instance the origin of clusters and of the inclusion aggregation at the beginning of magnetization. On 

the other hand, it may be easily verified that the terms of the property matrix satisfy the classical 

transformation rule: 
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Figure 5. The local distributions of magnetic fields for the boundary conditions in Equation
(8)—spheroids ax/ay = 2, p = 0.3, rp/h = 0.485, cp = 2000, c0 = 1: (a) distribution of the magnetic
scalar potential φ; (b) distribution of the magnetic field intensity; and (c) distribution of the magnetic
flux density.
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Figure 6. The system of 5 ferromagnetic particles—the external field is applied at the x, y or z direction.

The assumed form of the system of the unit cells reflects the situation as the external field is not
always parallel to the cell edges. It may occur for instance for clusters of inclusion. Figure 7 shows
the assumed boundary conditions and the values of the permeability matrix terms (the magnetostatic
problem). The terms cαβ (α 6= β) are not equal to zero, which means that it may be for instance the
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origin of clusters and of the inclusion aggregation at the beginning of magnetization. On the other hand,
it may be easily verified that the terms of the property matrix satisfy the classical transformation rule:

〈C〉Transf = M〈C〉MT, where M =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (12)

and θ denotes the angle of rotation which is equal to 14.110.
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4. Numerical Results

The homogenization method is applied to various 2D and 3D test problems to evaluate the
distributions of the terms of the property matrix and to compare theoretical predictions with numerical
ones that take into account the finite dimensions of the unit cell. In the test problems, a sample
two-phase composite material is composed of an isotropic matrix and the inclusions have the following
material properties: cp = 2000 and cf = 1. The analysis is conducted for 2D and 3D unit cells to test the
capability and limitations of the proposed model. Similar to the previous case, the numerical model
corresponds to the analysis of MR fluids.

4.1. 2D Problems

Let us consider a single circular particle surrounded by a nonmagnetic carrier fluid—the planar
problem in Figure 4. This is a typical homogenization problem analyzed for the MR fluids (see, e.g.,
Simon et al. [32] for MR fluids). However, on the contrary to the cited work, we compute the four
(the planar problem) permeability matrix coefficients. The off-axis terms are equal to zero, and two
others are plotted in Figure 8 for various volume fractions.

As can be seen, the effective permeability czz decreases as the interparticle distance increases and
it is the highest for the highest volume fraction p = 0.5. The decrease of the effective permeability
cxx is associated with the increase of the effective permeability czz. Let us note that, for the constant
volume fraction p, the variations of the ratio rp/h (or gf/rp) results in the change of the ratio b/rp

(see Equation (9)). Using the single unit cell (Figure 4), one can observe that, for the external magnetic
field having the non-zero component Hz only, the chains of ferromagnetic particles are completely
isolated since there is no interaction at the x direction. In fact, the experiments evidently demonstrate
evidently that they form clusters of different shapes (see Bossis et al. [33]). In Figure 9, a relationship
between the volume fraction and the effective permeability for arbitrary assumed value of ratio rp/h
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is depicted. As can be observed in the case of czz, these relations can be considered as almost linear.
In the case of cxx for small values of volume fraction, they are also linear. However, for the values
of volume fraction greater then p > 0.35, the effective permeability values increases exponentially.
For both parameters, czz and cxx, the values are achieved for volume fraction p = 0.5.
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4.2. 3D Problems 
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gives an isotropic one. The Maxwell–Garnett model always yields the same estimates for any rp/h 
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4.2. 3D Problems

Now, the 3D Laplace relationships shown in Table 1 have been solved for a 3D unit cell using the
FEM package. The results for the variations of the property tensor components are demonstrated in
Figures 10 and 11 considering the assumption in Equation (9), which leads directly to the transversely
isotropic properties of composites (i.e., cxx = cyy). The plots are drawn both for spherical (a = ax =
ay = az) and spheroid (a = ax = ay 6= az) inclusions. For spherical inclusions, the distributions of the
homogenized properties for the 3D case are similar to those for the 2D case (see Figures 8 and 9).
However, assuming the identical geometric ratios of the RVE, for the 3D case, the averaged values
in the x direction are higher than those evaluated for the planar case, whereas the values in the
z direction are almost identical. The shape of inclusions has a significant influence on the averaged
values. For the increasing az/h parameter, the effective property czz decreases, and cxx increases since
the x axis corresponds to the longer axis of spheroids. Figures 10 and 11 show that the proposed
model provides a transversely isotropic effective permeability, whereas the Maxwell–Garnett model
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gives an isotropic one. The Maxwell–Garnett model always yields the same estimates for any rp/h
because it is insensitive to the microstructure. Thus, the Maxwell–Garnett model cannot be used for
these composites because, even when the overall volume fraction is very small, the distance between
particles of the same chain is so small that particle interactions cannot be disregarded. For the low
volume fractions, the Maxwell–Garnett gives very good estimations in the x directions only (Figure 11).
For spherical inclusions, as can be observed in Figures 10 and 11, the effective field model gives
much better approximations of the effective values evaluated with the use of the FE model than the
Maxwell–Garnett model. However, the effectiveness of the effective field model decreases for the
high particle interactions (az/h < 0.1) and for the high volume fractions (p > 0.25). It is obvious that
theoretical estimations, i.e., with the use of the Maxwell–Garnett model and the effective field model
have limited applications in comparison with the FEM model since the first corresponds to the random
(quasi-isotropic) structure of reinforced particles, and the second to the chain-like structure, i.e., in two
directions the dimensions of the RVE tend to infinity.
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In the theoretical and numerical analysis, it is commonly assumed that the reinforcement 

particle has an ideal spherical form. However, as demonstrated in Figures 10 and 11, the shape of the 

particle can significantly affect the effective material properties. Therefore, the development of 

optimized multifunctional composite materials becomes of great interest from the technological and 

theoretical viewpoints to all engineering fields. In general, such an approach belongs to the class of 

so-called shape optimization problems (see Muc et al. [34]). The broader description of optimization 

algorithms that can be applied herein is discussed by Muc [35]. 

This section designs such materials computationally using the method of parametric 

optimization. In particular, two-dimensional periodic two-phase composite materials are optimized 
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5. Optimal Design

In the theoretical and numerical analysis, it is commonly assumed that the reinforcement particle
has an ideal spherical form. However, as demonstrated in Figures 10 and 11, the shape of the particle
can significantly affect the effective material properties. Therefore, the development of optimized
multifunctional composite materials becomes of great interest from the technological and theoretical
viewpoints to all engineering fields. In general, such an approach belongs to the class of so-called
shape optimization problems (see Muc et al. [34]). The broader description of optimization algorithms
that can be applied herein is discussed by Muc [35].

This section designs such materials computationally using the method of parametric optimization.
In particular, two-dimensional periodic two-phase composite materials are optimized for the optimal
effective properties. To analyze the effects of different shapes, for simplicity, it is assumed that the
particle is modeled as a superellipse (Figure 4) having the following form:(x

a

)n
+
( z

b

)n
= 1 (13)

where a and b denote the superellipse semi-axis, and n is a parameter greater than 1. Having the
constant volume fraction in the RVE and varying the n value, one can observe the change of the terms
in the effective property matrix.

For higher values of the n parameter (n > 10), the shape resembles a rectangle and, in this case, both
components of the effective permeabilities, i.e., cyy and cxx reach their optimal values (see Figures 12
and 13). However, the optimal values of the effective properties are strongly dependent on the values
of the geometrical ratios rp/h and the volume fractions p. Let us note that the maximal value of the
term czz is much higher than those plotted previously in Section 4, and the values of czz are much lower.
Therefore, it seems to be reasonable to conclude that the optimal rectangular form of the particles
can prevent their aggregation in ellipsoids or cylinders instead of linear chains and in this sense,
the theoretical effective field model may be applicable in the estimations of the effective properties.
It is worth mentioning that the obtained optimal designs completely resemble those obtained by Guest
and Prevost [36] for fluid transportation problem (the Darcy law). They concluded that the Schwartz
P minimal surface is believed to be the maximum permeability structure in the 3D case. However,
the authors of the cited paper assumed in advance the isotropic properties of the permeability matrix.
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6. Concluding Remarks  

For two-phase particulate composites, the compact, unique formulations and methods of 

solutions (theoretical and numerical) are presented in the paper. Although numerical examples deal 

with the analysis of magnetic phenomena, the methods and results can be easily extended to various 

other classes of problems. 

The properties of a heterogeneous medium (two-phase composites) made of inclusions 

distributed in a locally periodic way in a matrix have been derived and studied. A uniform test 

external field is applied on the boundary of the composite, and then the averaged fields of the 

particles and matrix are derived theoretically by the Green’s function technique and then compared 

with FE results based on the numerical homogenization technique. An anisotropic effective property 

tensor is further provided. The effective property tensor of the composite medium is symmetric, 

positive definite, generally anisotropic, and depends on the microstructure both for 2D and 3D cases.  

The results of the theoretical and computational (FEM) approximations are strongly dependent 

on the construction of the computational (representative) cell using specified dimensions and 

distributions of the reinforced particles, i.e., their location with respect to the centers of 

representative volume elements. The proposed methodology can be enriched by adding the 

interfacial elements between particles and matrices. 

The proposed method can be successfully applied to the analysis of the non-linear problems, 

considering the non-linearity of the characteristic curves (e.g., B–H). From these models, it is found 
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distance rp/h: (a) the x direction; and (b) the y direction.

6. Concluding Remarks

For two-phase particulate composites, the compact, unique formulations and methods of solutions
(theoretical and numerical) are presented in the paper. Although numerical examples deal with the
analysis of magnetic phenomena, the methods and results can be easily extended to various other
classes of problems.

The properties of a heterogeneous medium (two-phase composites) made of inclusions distributed
in a locally periodic way in a matrix have been derived and studied. A uniform test external field is
applied on the boundary of the composite, and then the averaged fields of the particles and matrix are
derived theoretically by the Green’s function technique and then compared with FE results based on
the numerical homogenization technique. An anisotropic effective property tensor is further provided.
The effective property tensor of the composite medium is symmetric, positive definite, generally
anisotropic, and depends on the microstructure both for 2D and 3D cases.

The results of the theoretical and computational (FEM) approximations are strongly dependent on
the construction of the computational (representative) cell using specified dimensions and distributions
of the reinforced particles, i.e., their location with respect to the centers of representative volume
elements. The proposed methodology can be enriched by adding the interfacial elements between
particles and matrices.

The proposed method can be successfully applied to the analysis of the non-linear problems,
considering the non-linearity of the characteristic curves (e.g., B–H). From these models, it is found that
the averaged property tensor components are strongly dependent on the dimensionless interparticle
distance and the volume fraction.

In addition, this paper proposes a shape optimization methodology for designing multifunctional
two-phase composite materials optimized for tensor property components. For the 2D problems,
the optimal shape resembles rectangle with rounded edges. It is verified in this study that the
optimal design based on the finite element analysis is a valid method for the output improvement
of constructions.

The validity of the model should be also estimated by the inclusion of the uncertainties dealing
with the shape of reinforcements or representative cells, e.g., using fuzzy sets [37].
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It is important to emphasize that the underlying methodology of homogenization and optimization
is quite general and can be applied to the design of arbitrary composite materials in different scales, i.e.,
micro-, meso- and even nanoscales.

The present analysis is conducted for single fields separately. In the global formulation of
homogenization problems for the composite considered, the next step can be achieved by the
compact formulation for coupled fields, i.e., the thermal and magneto-electric effects will be
analyzed simultaneously.

Author Contributions: Aleksander Muc prepared the analytical solution of homogenization problem, wrote the
text, Marek Barski performed numerical computations and prepared the graphs.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mathematical Formulation and Derivation of the Effective (Homogenized)
Material Properties

Let us consider a homogeneous medium with properties described by a tensor C0
αβ. The medium

contains the region Ω(1) (inhomogeneity) with another property tensor Cαβ. The intensity E(x) and
the flux D(x) of the field in the medium are described by the following system of differential equations:

∇αDα(x) = −q(x), Dα(x) = Cαβ(x)Eβ(x), rotαβEβ(x) = 0 (A1)

where q(x) is a scalar density of the field sources. The third equation is satisfied automatically if the
field Eα(x) is the gradient of a scalar function ϕ(x) called the potential of the field:

Eα(x) = ∇αϕ(x) (A2)

The physical meaning of the potential ϕ(x) depends on the problem under considerations.
It means the temperature field for heat transfer problems, the potential of the electric (magnetic)
field for the electrostatics (magnetostatics, respectively) fields.

The tensor Cαβ represents the local properties of the inclusion (Figure 1b) and is defined as the sum:

Cαβ(x) = C0
αβ + C1

αβ(x) (A3)

Thus, if we consider a homogeneous medium with the property tensor C0 containing a set of
inclusions with the property tensor C, the system of differential Equations (A1) and (A2) may be
reduced to integral equations for the fields E(x) inside the inclusions, i.e.,

Eα(x) +
∫

Ω1
(k)

Kαβ(x− x′)C1
βµ(x

′)Eµ(x′)V(x′)dx′ = E0
α(x) (A4)

where V(x′) is a characteristic function for the kth inclusion that is equal to one if the variable x′ belongs
to the region Ω1

(k) occupied by the kth inclusion and to zero if x′ does not belong to the domain Ω1
(k)

(see Figure 1). Here, E0 is the external field in the medium without the inclusion (C1(x) = 0) by the
action of the same sources of the field. The kernel K(x) is determined in the classical manner:

K(x) = −∇α∇β G(x) (A5)

where G(x) is the Green function for the infinite homogeneous medium with the property tensor C0.
The Green function satisfies the equation:

∇αC0
αβ∇β G(x) = −δ(x) (A6)
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The equivalence between the relations in Equations (A4) and (A1)–(A3) can be proven under two
additional assumptions:

- With the use of the potential ϕ(x), the solution of Equation (A1) can be decomposed as follows:
ϕ(x) = ϕ0(x) +ϕ1(x), where ϕ0(x) is the potential in the medium without the inclusion, and
ϕ1(x) is the perturbation of the potential due to the presence of the inclusion that tends to zero
when |x| → ∞ .

- The potentialϕ0(x) satisfies the relation analogous to Equation (A1), i.e.,∇αC0
αβ∇β ϕ

0(x) =−q(x).

The solution of this equation for an arbitrary anisotropic medium takes the following form:

G(x) =
1

4 π r(x)
, r(x) =

√
detC0xαB0

αβxβ, B0 = (C0)
−1

(A7)

The simplest version of the effective field method is based on the hypothesis that the local external
field E∗β(x), which acts on each inclusion, is the same for all inclusions, i.e., the field Eα(x) inside each
inclusion can be presented in the following way:

Eα(x) = ΛE
αβ(x)E

∗
β(x) (A8)

where the tensor ΛE
αβ(x) is determined from the solution of the problem for isolated inclusion in the

medium with the property tensor C0 by the action of the field E∗β(x), and, for ellipsoidal inclusions,
it takes the following form:

ΛE
αβ(x) =

(
δαβ + A0

αλC1
λβ

)−1
(A9)

where

A0
αβ = A0

1e1
αe1

β + A0
2e2

αe2
β + A0

3e3
αe3

β, A0
n = a1a2a3

2c0

∞∫
0

dσ

(a2
n+σ)

√
(a2

1+σ)(a2
2+σ)(a2

3+σ)
, n = 1, 2, 3 (A10)

a1, a2, and a3 are the semiaxes of an ellipsoid, and en
α are the unit vectors of the ellipsoid principal

axes, the orientation of which is given by the normal m. For a spheroid inclusion with the semiaxes
a1 = a2 = a, a3, the tensor A0 takes the following form:

A0
αβ = A0

1θαβ + A0
3mαmβ, θαβ = δαβ −mαmβ, A0

1 = 1
c0

f0(γ), A0
3 = 1

c0
(1− 2f0(γ)), γ = a

a3
> 1, f0(γ) =

1−g
2(1−γ2)

, g = γ2√
γ2−1

arctg
(√

γ2 − 1
)

(A11)

The effective local exciting field E∗β(x) acting on the kth inclusion is the sum of the external field
E0
β(x) applied to the medium and the field induced by others surrounding inclusions. The field Eβ(x)

inside the isolated kth inclusion being in the background matrix and caused by the action of the field
E∗β(x) is defined by Equation (A4) where E0

β(x) is replaced by E∗β(x). The field induced in the region
Ω1

(k) of the kth inclusion by all surrounding inclusions can also be represented using Equation (A4) in
the following form:

E∗α(x) = E0
α(x)−

∫
Ω1

(i)

Kαβ

(
x− x′

)
C1
βµ(x

′)ΛE
µλ(x)V

(
x; x′

)
E∗λ(x

′)dx′ (A12)

V(x; x′) = ∑
i 6=k

Vi(x′) when x ∈ Ω1
(k) (A13)

Averaging Equation (A12), assuming that the field E0
α(x) is fixed in the problem, i.e.,〈

E0
α(x)

〉
= E0

α (A14)
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and identifying the conditional mean 〈E∗α(x) |x 〉 with the effective field E∗α, we finally obtain the
following relation:

E∗α = E0
α − p

∫
Kαβ

(
x− x′

)
P0
µλΨ

(
x− x′

)
E∗λdx′ where P0

βλ =
1
〈Vi〉

〈 ∫
Ω1

(i)

C1
βµ(x)Λ

E
µλ(x)dx

〉
(A15)

The symbol 〈.〉 denotes the averaging, and the function Ψ is defined as follows:

Ψ
(
x, x′

)
=
〈V(x, x′) |x 〉
〈V(x)〉 where 〈f(x)|x〉 = 〈f(x)V(x)〉

〈V(x)〉 (A16)

p is the volume concentration of inclusions and it is equal to 〈V(x)〉. The symbol 〈· |x 〉 denotes
the averaging over the realizations of the random set of inclusions by the condition x ∈ V. The solution
of Equation (A15) can be expressed in the following way:

E∗α = E0
α

(
δαβ + pKΨ

αλP0
λβ

)−1
, KΨ

αλ =
∫

Ω1
(i)

Kαβ

(
x− x′

)
Ψ
(
x− x′

)
dx′ (A17)

Multiplying Equation (A4) by the property tensor C0 and using the definition in Equation (A1) of
the flux tensor D(x) (for the inclusion and the medium) after a set of transformation of the result, it is
possible to derive the average of the flux tensor, i.e.,

〈Dα(x)〉 =
[

C0
αβ + P0

αλ

(
δλβ + pKΨ

λµP0
µβ

)−1
]

E0
α (A18)

On the other hand, using Equations (A1) and (A3), the tensor of the effective (homogenized)
properties of the composite may be defined as follows:

〈Dα(x)〉 = C∗αβ〈Eβ(x)〉, C∗αβ = 〈Cαβ(x)〉 (A19)

Combining Equations (A18), (A19) and (A14), one can find that the tensor of the effective
properties of two-phase composite is represented by the relation:

C∗αβ = 〈Cαβ(x)〉 =
[

C0
αβ + pP0

αλ

(
δλβ + pKΨ

λµP0
µβ

)−1
]

(A20)

Taking into account Equations (A12) and (A15) as well as assuming that the tensor C1
βµ is

independent on the x variable, the above relation takes the following form:

C∗αβ = 〈Cαβ(x)〉 =
[

C0
αβ + pC1

αβ

{
δλβ +

(
A0

λµ + pKΨ
λµ

)
C1
µβ

}−1
]

(A21)

If the ratio γ has the same order as the inclusion aspect ratio, KΨ
λµ = −A0

λµ and the above
equation is further reduced. Thus, as may be easily observed, the two-phase composite has isotropic,
transversely-isotropic or anisotropic properties and they are directly dependent on the form of the
operator A0

λµ—under the assumption that both the matrix and the inclusion have isotropic properties.
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