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Abstract: The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale
tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based
diamond wear model in relation to the dominant wear behaviors. During drilling, high volume
fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool
involve thermodynamically activated physicochemical wear due to diamond-graphite transformation
catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency
scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling
Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and
implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate
in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined
abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling.
The developed drilling FE model for reproducing diamond tool wear was validated for feasibility
and reliability by comparing numerically simulated tool wear morphology and experimentally
observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor
deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated
results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D
drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more
accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during
drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear
model in conjunction with other machining FE models can be easily extended to the investigation of
tool wear evolution with various diamond tool geometries and other machining processes in cutting
different workpiece materials.

Keywords: diamond tool; drilling; abrasive-chemical wear; graphitization; finite element;
SiCp/Al6063 composites

1. Introduction

Silicon carbide particulate reinforced aluminum matrix (SiCp/Al) composites have been of great
potential due to their superior physical and mechanical properties, such as high stiffness-to-weight
ratio, high specific strength, high wear resistance, low sensitivity to temperature variations and
excellent corrosion resistance [1]. This composite material has a promising application prospect in
many advanced industries such as aerospace, marine, automotive and sport equipment [2,3]. However,
SiCp/Al composites are limited in the actual production applications by their poor machinability
since the hard SiC particles in the aluminum matrix lead to serious tool wear and undesired surface
quality [4,5].
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In cutting SiCp/Al composites, the conventional tools such as high-speed steel (HSS) and ceramics
easily suffer from rapid tool wear, poor hole quality and higher cutting forces induced by tool
wear [6–8]. Although the carbide tools are found to be superior machining performance to HSS
and ceramics tools but fail to perform well in machining SiCp/Al composites with SiC volume fraction
higher than 50% [9] due to severe tool wear. Hence, the diamond, diamond coated and diamond-like
tools are considered one of the most favorable ones for cutting these materials [10,11].

Since progressive tool wear can weaken tool structure, cause obvious increase in cutting force
and eventually lead to poor surface finish and catastrophic failure of cutting tools, the capability
of predicting contribution of miscellaneous wear mechanisms to tool wear is very helpful for the
selection of tool materials, redesign of tool geometry and optimization of cutting process [12]. Over the
past several decades, the research upon tool wear has been mainly based on empirical method or
experimental investigation [13,14]. Due to the excessive process parameters influencing tool wear,
numerous cutting experiments need to be carried out to develop empirical relationships among them.
Based on Taylor’s basic and extended equations, the empirical tool life models under very limited
cutting conditions were developed. Many models based on extended Taylor’s tool life equation
involving process variables were developed to describe more reliable tool life estimates and to extend
its applicability to other cutting technologies. Colding [15] extended a generalized tool life estimate to
a variety of machining technologies and derived the relationship between process parameters and tool
life. Such relation has been modified further by Choudhury [16] that take into account tool geometry
to achieve more accurate estimate for tool life, which in turn was used to maximize tool life subject to
practical cutting conditions. However, although this empirical approach for tool life estimates aimed at
some specific materials and tool geometries has gained a certain popularity, its applicability in solving
general problems of tool wear is severely limited due to the lack of inherent physical meaning in these
empirical life models. And only characterized by sufficient process parameters can these empirical
models estimate tool life more accurately but the cost of tool wear experiments for identifying model
parameters is often heavy. Moreover, except for the available tool life based on empirical Taylor model,
it is impossible to get further information upon the tool wear progress, worn geometry, or even wear
mechanism in different tool zones which are sometimes necessary and important for tool design
and tool material selection [17]. Issues with empirical approach of tool life testing were identified.
Regarding tool life testing, there are some ISO standard, e.g., ISO 8688-2 [18], which recommends
testing procedure, tool wear modes, etc.

To establish the tool wear model with less process variables that can provide accurate tool life
estimate and more wear details, many studies [19–22] were dedicated to developing the tool wear
analytical models. These analytical models were characterized as the effects of internal variables
such as the temperature at the tool-workpiece interface, stresses at the tool surface, relative sliding
velocity between the tool and workpiece and microstructure of the tool and workpiece on tool wear in
different wear modes involving abrasion, adhesion and diffusion. Among all analytical wear models,
the wear one proposed by Takeyama [21] is used to describe the combined effect of mechanical abrasion
proportional to sliding velocity and thermally activated diffusion in relation to interface temperature
and activation energy for diffusion. Subsequently, the research of Usui [22], based on Shaw’ adhesive
wear model [23], derived tool wear equation to incorporate the influence of interface temperature,
relative sliding velocity, interface pressure upon tool wear rate. Actually, these analytical models
cannot be applied directly for wear estimate since the thermomechanical loads near cutting edges keep
changing with cutting conditions and tool wear evolution [24]. It is necessary to require the knowledge
of these internal variables near cutting edges under different cutting conditions and their variation
in tool wear evolution process. Therefore, some researchers have adopted experimental or analytical
approaches to provide these inputs of internal variables as a function of cutting parameters and tool
wear geometry [25,26]. However, in terms of difficulty of modeling a continuously progressive wear
process and ever-changing process variables in predicting tool wear evolution, the popularity of this
analytical modeling approach is also limited.



Materials 2018, 11, 252 3 of 21

With rapidly increasing computer power and continually developing numerical methods, some
attempts were made to numerically simulate cutting process, to calculate the thermo-mechanical
loading histories and other process variables during cutting and in conjunction with analytical wear
model to arrive at tool wear evolution at the cutting edges with reasonable accuracy. Therefore, some
simulation has been implemented to reproduce tool wear evolution by integrating the above analytical
wear models and cutting numerical models. The pioneering research of Xie [27] developed a 2D
FE-based tool wear procedure based on the Python user program to predict the progression of tool
wear. During each calculation cycle (time increment) of tool wear, FE analysis of chip formation and
heat conduction during steady-state cutting was made to extract the process variables information
essential for the inputs of Usui abrasive wear analytical model. According to the calculated wear rate,
the tool nodal displacement in each time increment was obtained and hence the worn geometry can be
updated based on nodal displacement. The next FE analysis cycle for predicting tool wear continued
in an updated worn geometry until a use-defined tool reshape criterion was reached. Attanasio [28]
extended the 3D FE simulation of tool wear by integrating the abrasive wear model proposed by
Usui [22] and the high-temp diffusion wear model of Takeyama [21] to achieve a satisfactory wear
estimate for 3D turning. Although some work has successfully reproduced the tool wear morphology in
the experimental tests using the developed numerical models based description of different mechanical
and physical wear mechanisms, 3D simulation of diamond physicochemical wear regarding the
graphitization involving transformation of diamond into graphite and diffusion of newly-formed
graphite into the workpiece has not yet been reported in metal cutting, especially for drilling. What’s
noteworthy about modelling diamond physicochemical wear is that several researchers have attempted
to mimic the transformation of tetrahedral diamond into hexagonal close-packing graphite and
subsequent diffusion of graphite into transition metals and their alloys and find out suitable crystal
orientations resistant to graphitization, using Molecular Dynamics method [29,30]. Unfortunately,
Molecular Dynamics are used solely for simulating material removal process at nanoscale well within
several hundred nanoseconds due to the combined limitations in available computer power, numerical
methods and computational cost [12]. The aim of this paper is hence to analyze machining induced
wear mechanisms underlying macroscale wear behavior and develop tool wear FE model based
analytical description of wear mechanisms in diamond drilling of SiCp/Al composites. This was
achieved by incorporating a combination of Usui wear model and graphitization induced chemical
wear model into 3D FE model of diamond drilling as follows.

2. Experimental Work

2.1. Experimental Setup

The material employed for the drilling tests was Al6063 matrix composites reinforced by
65% volume fraction SiC particulates (Al6063/SiCp/65p composites) fabricated through vacuum
infiltration method. Figure 1 shows the microstructure of Al6063/SiCp/65p composites, in which
SiC particulates are homogeneously distributed and not obviously clustered in the aluminum matrix.
Its chemical composition determined using Energy-dispersive X-ray spectroscopy is given in Table 1.
The drilling tests were performed on a DMU 80 monoblock machining center, equipped with a rotating
4-Component Dynamometer Kistler 9123 (Kistler Instrument China Ltd., Shanghai, China), as is
shown in Figure 2. The wear morphologies of cutting tools were examined using 3D Laser Scanning
Microscope VK-X200 (Keyence, Osaka, Japan). The measurement of drilling forces in machining
was implemented using Kistler 9123. In this paper, the brazed polycrystalline diamond (PCD) drill
and chemical vapor deposition (CVD) diamond coated drill were used to perform the cutting of
Al6063/SiCp/65p composites. A summary of the experimental details upon tooling, workpiece and
drilling conditions are given in Table 2.
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Figure 1. Micrograph of Al6063/SiCp/65p composites.

Table 1. Chemical composition of Al6063/SiCp/65p composites.

Element Al Mg Cu Si C Others

wt % 38.33 0.48 1.51 51.24 8.43 margin

Table 2. Summary of experiment details.

Items
Contents

Tooling

Tool Manufacturer Zhengzuan Precision Manufacture Co., Ltd. (Zhengzhou, China)
Drill bit material PCD CVD diamond
Diameter d (mm) 3 3
Point angle φ (◦) 120 140
Rake angle γ (◦) 0
Relief angle α (◦) 10
Helix angle ω (◦) 30 30

Workpiece

Material Al6063/SiCp/65p composites
Thickness (mm) 2

Cutting Conditions

Operation Drilling
Rotational speed n (rpm) 2000

Feed velocity v f (mm/min) 100
Drilling environment Dry
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and CVD drill bits. The grooves and scratches parallel to cutting direction indicate the tool flank face 
suffered from severe abrasive wear. The combined action of two-body and multi-body abrasion at 
the tool-workpiece-chip interface resulted in the formation of flank wear land. The considerable and 
uneven wear morphologies on the rake face away from cutting lips of PCD drill and irregular wear 
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Figure 2. Experimental setup.

2.2. Wear Mechanisms

Figure 3 shows the experimental findings of tool wear morphologies after drilling 10th hole using
PCD and CVD diamond coated drills. The wear land was formed on the flank faces of PCD and
CVD drill bits. The grooves and scratches parallel to cutting direction indicate the tool flank face
suffered from severe abrasive wear. The combined action of two-body and multi-body abrasion at
the tool-workpiece-chip interface resulted in the formation of flank wear land. The considerable and
uneven wear morphologies on the rake face away from cutting lips of PCD drill and irregular wear
land on the rake face near cutting lips was suspected to be caused by physicochemical wear.
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2.2. Wear Mechanisms 

Figure 3 shows the experimental findings of tool wear morphologies after drilling 10th hole 
using PCD and CVD diamond coated drills. The wear land was formed on the flank faces of PCD 
and CVD drill bits. The grooves and scratches parallel to cutting direction indicate the tool flank face 
suffered from severe abrasive wear. The combined action of two-body and multi-body abrasion at 
the tool-workpiece-chip interface resulted in the formation of flank wear land. The considerable and 
uneven wear morphologies on the rake face away from cutting lips of PCD drill and irregular wear 
land on the rake face near cutting lips was suspected to be caused by physicochemical wear. 

Position PCD tool CVD diamond coated tool 

As received 

Flank face 

Figure 3. Cont.
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Figure 3. Wear morphologies of PCD and CVD diamond coated tools after drilling Al6063/SiCp/65p
composites using 3D Laser Scanning Microscope VK-X200 (Keyence, Osaka, Japan).

Nevertheless, it is well-known that diamond tools cannot be used for cutting effectively transition
metals and their alloys due to severe chemical wear. Actually, diamond tools can be used for cutting
Cu and its alloys, although Cu is transition mental. And the significant graphitization of diamond tool
has not been reported during cutting Copper and its alloys. The phase transformation of diamond into
graphite during drilling of Al6063/SiCp/65p composites containing Cu is correlated to machining
induced thermodynamics conditions with the catalysis of Cu in air atmosphere. The reciprocating
actions of thin graphite layer formed by the oxidation of hydrogen chemisorbed on diamond surface
with copper oxides and SiC particulates’ high-frequency scrape on newly-formed graphite film
lead to the continual and significant occurrence of diamond graphitization [31]. More details of
diamond tools wear during machining of SiCp/Al composites containing Cu is provided in [31]. It
is found experimentally that PCD tool suffered from micro chipping, abrasive wear, adhesive wear
and chemical wear, whereas CVD diamond coating tools suffered from abrasive wear, adhesive wear,
delamination wear (peeling) and chemical wear. Tool wear in cutting is a complicated evolution
process which is not formed by a unique wear mechanism but a combined action of mechanical,
physical and chemical wear mechanisms [32,33]. In view of the complexity of tool wear mechanisms
and theories, it is almost impossible to implement an overall wear model that considers all wear
mechanisms involved in cutting to mimic tool wear progression. A simple but practical way to
estimate tool wear is to only take into account those predominant wear mechanisms that occur under
certain cutting conditions. The mechanically-induced abrasion and thermodynamically-activated
graphitization are the predominant and common wear mechanisms for PCD and CVD tools during
drilling Al6063/SiCp/65p composites containing Cu.

3. Results

Figure 4 shows the flowchart of tool wear calculation procedure using DEFORM 3D FE codes.
A 3D incremental Lagrangian drilling model—in which initial tool geometry and an equivalent
homogenous material (EHM) based workpiece were incorporated—was established to implement an
EHM drilling simulation of SiCp/Al6063 composites. The elasto-plastic workpiece and rigid tool are
considered in the Lagrangian drilling model. To reduce computational cost, the modeling of drill bit is
only focused on the tool tip part involving realistic drilling and the sharp edges is considered owing
to newly-received drill bit employed at the beginning of drilling (Figure 5a). The motions for tool
feed and rotation are imposed on the tool center axis. For workpiece modelling, the workpiece part
neighbored to the tool tip are accounted for in drilling model and to arrive at stable drilling as soon as
possible, a cone-like concave machined surface is firstly pre-built on the workpiece surface, as shown
in Figure 5b.
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Figure 5. Drill modelling and simulation: (a) drill simplification; (b) FE modelling of drilling.

The chip formation and heat transfer analysis are implemented by running 3D coupled
thermomechanical drilling model to provide the inputs of process variables (contact stress at the
tool surface, relative sliding velocity between the chip and tool, temperature at the chip-tool interface)
required for tool wear estimate and subsequent tool worn geometry updating. The distributions
of these process variables were then input into a subroutine for tool wear calculation based on the
analytical description of the dominant diamond wear mechanisms during drilling Al6063/SiCp/65p
composites. According to the calculated tool nodal wear rate and worn geometry, the tool geometry in
finite element codes is updated and new Key files are prepared for the next simulation cycle.
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3.1. Chip Formation

3.1.1. Material Model

In modelling of forming, manufacturing and structural mechanics, the characterization of material
thermomechanical behaviors is often made using a widely-used phenomenological constitutive model.
The thermomechanical behaviors of SiCp/Al6063 composites during drilling were reflected by using
a phenomenological constitutive model determined through quasi-static and dynamic compression
tests. To simulate chip formation during drilling, a generalized Johnson-Cook plasticity model was
adopted for describing the material responses of SiCp/Al6063 composites in cutting.

σ =
(

A + Bεn
p

) [
1 + C ln

( .
ε/

.
ε0
)]( .

ε/
.
ε0
)α[D− E(T∗)m] (1)

With

T∗ =


0; T < Troom

(T − Troom)/(Tmelt − Troom); Troom ≤ T ≤ Tmelt
1; T > Tmelt

(2)

D = D0 exp
[
k(T − Tb)

β
]

(3)

where A, B, C, n, α, m, E, D0, k, β are material coefficients, σ and εp are respectively flow stress
and effective plastic strain,

.
ε0 is the reference strain rate, Tmelt is melting temperature, T workpice

temperature and Troom room temperature, Tb reference temperature.
A multi-objective method for model parameters identification proposed in [34] was employed to

find a feasible set of parameter estimates so that the formulated plasticity model by these parameters
can capture the material behaviors in both quasi-static and dynamic loading modes equally well.
Using multi-objective identification strategy, the obtained values of material parameters of the
generalized Johnson-Cook plasticity model for Al6063/SiCp/65 composites are given in Table 3.
The overall fit standard error and R2 is respectively 18.048 MPa and 97.92%. The good agreement of
model prediction with test data under different loading conditions is illustrated in Figure 6. Apart from
material parameters for J-C plasticity model, the physical and mechanical properties of Al6063/SiCp/65
composites are presented in Table 4.

Table 3. Material constants for generalized J-C plasticity model for Al6063/SiCp/65p composites.

A/MPa B/MPa C D0 E n m α β k Tb

501 449 0.0002 0.291 0.8995 0.2539 1.602 0.0105 0.1675 0.4781 98.2

Table 4. Physical and mechanical properties of Al6063/SiCp/65p composites [34].

Notation Material Properties Value

ρc Density (kg/m3) 2960
Cp Specific heat capacity (J/kg) 750
α Coefficient of thermal expansion (10−6) 7.7
κ Thermal conductivity (W/m·) 175
E Elastic modulus (GPa) 221
υ Poisson’s ratio 0.21

Troom Room temperature 20
Tmelt Melting point 635

.
ε0 Reference strain rate 0.01
η Inelastic heat fraction 0.9
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3.1.2. Chip Separation

Chip separation during chip formation is correlated to material failure mechanisms. Generally,
the failure mechanisms of particulate reinforced metal matrix composites (PRMMCs) are manifested
in: (i) particulate cracking, (ii) debonding interface between particulate and metal matrix and
(iii) nucleation, growth and coalescence of voids within metal matrix [35]. Which of the three
mechanisms dominated in composites failure is dependent on microstructural morphology information
of particulate volume fraction, shape, size, spatial location and on mechanical behavior of metal matrix.

The experimental findings of Lloyd [36] indicate that only when particulate size is ≥20 µm,
particulate cracking becomes the dominant failure mode in PRMMCs. This is also confirmed in
Xie [37] on the investigation of defect formation mechanism in machining SiCp/Al composites using
multi-phase FE model. Provided that reinforcement particulates are distributed uniformly and have
no preferred orientation in metal matrix, the area fraction of reinforcement particulates on any cross
section with large enough area should be approximately equal to the volume fraction of reinforcement
particulates. This paper employed the statistical characterization methodology of PRMMCs proposed
by Zhang [38] to quantify the microstructural information and estimated the mean effective diameter
of SiC particulates to be about 4.55 µm according to the microstructure containing large numbers of
SiC particulates shown in Figure 7. Therefore, the damage and failure for Al6063/SiCp composites is
accompanied by the nucleation of microvoids originated from matrix cracking and particulate/matrix
interface debonding, growth and coalescence of voids. The fracture morphologies of Al6063/SiCp/65p
composites after uniaxial compression and machining in Figure 8 are also shown to be made up of
dimpled Al matrix, debonded SiC particulates and fewer cracked SiC particulates. As can be seen,
the occurrence of damage and failure for Al6063/SiCp/65p composites is of localized characteristics
and the damage and failure modes involve Al matrix cracking and interface degradation induced
matrix fracture around large numbers of particulate inclusions.
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Figure 8. Fracture morphologies of Al6063/SiCp/65p composites after (a) uniaxial compression and
(b) machining.

The Cockroft & Latham damage criterion is shown to be capable of incorporating the tensile
stress effect on chip formation during drilling [39,40]. Hence, the Cockroft & Latham damage
model is employed for determining material damage and resultant chip segmentation during drilling
Al6063/SiCp/65p composites.



Materials 2018, 11, 252 11 of 21

D =

ε f∫
0

σ

(
σ∗

σ

)
dεp (4)

where D is the damage state variable for characterizing continuum damage softening. And when D
reaches the critical value Dcr, the chip separation is triggered by the corresponding elements deletion.
σ∗ the maximum principal stress.

3.2. Heat Generation

The temperature during cutting process plays a major role in tool wear evolution and wear
mechanisms [41]. The heat generation during machining is divided into plastic deformed heat and
friction induced heat. Figure 9 shows the schematic of heat partitioning in the chip formation process.
The converted heat rate

.
qp by plastic deformation leads to the workpiece temperature variation ∆T in

material forming and machining.
.
qp = ηpτΦdγ = ρCp∆T (5)

where ηp is Taylor-Quinney coefficient that indicates the fraction of plastic work conversion into heat,
τΦ effective adiabatic shear flow stress, γ effective plastic shear strain, ρ and Cp the workpiece density
and specific heat, respectively.
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The mechanical formulations for sticking and slipping contact along local tangent directions
are respectively defined as shear friction and Coulomb friction in terms of the division of slipping
(µp ≤ τcrit) and sticking (µp > τcrit) regions in possible contact domain.

τf =

{
µp, µp ≤ τcrit

τcrit = mσ/
√

3, µp > τcrit
(6)
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where τcrit is the critical shear flow stress, of which the magnitude is generally
√

3 times lower than
the tensile yield stress σ, p the chip-tool interface pressure, µ the friction coefficient. The friction heat
qf at the workpiece-tool interface can be computed according to Equations (6) and (7).

.
qf = ηf

∫
τfdvs (7)

where ηf is the converted fraction of friction work into heat, kinterface interface heat transfer coefficient.
The amount of heat flux into the tool

.
qtool

f and workpiece
.
qwork

f can be given by the following
quantitative relations of heat partitioning at the tool-workpiece interface.

.
qtool

f = ff
.
qf +

.
qc (8)

.
qwork

f = (1− ff)
.
qf −

.
qc (9)

with
.
qc = −kint

(
Ttool

int − Twork
int

)
(10)

where ff is the fraction of frictional heat flux qf transferred to tool, kint the interface heat
transfer coefficient, Ttool

int and Twork
int the tool and workpiece temperature near the workpiece-tool

interface, respectively.

3.3. Diamond Wear Modelling

The rate of volume loss on the tool per unit area per unit time is calculated by a wear rate model
considering the predominant wear mechanisms. Due to highly abrasive characteristics of SiCp/Al6063
composites, hence the abrasive model proposed by Usui was adopted to include the contact stress
p, relative sliding velocity vs and tool temperature T dependencies. According to the analysis of
wear mechanisms in Section 2.2, hence, the coupled abrasive-chemical wear model based description
of the dominant wear mechanisms of diamond during drilling Al6063/SiCp/65p composites was
implemented into a subroutine for tool wear estimate.

∂W
∂t = ∂Wa

∂t = Apvs exp
(
− B

T

)
T ≤ Ttrans

∂W
∂t = ∂Wa

∂t +
∂Wg

∂t = Apvs exp
(
− B

T

)
+ Gpn exp

(
− E

RT

)
T > Ttrans, p ≤ ptrans

(11)

where ∂W/∂t is the overall tool wear rate, ∂Wa/∂t is the wear rate calculated according to Usui abrasive
model. ∂Wg/∂t is the wear rate calculated according to graphitization induced chemical wear model
that extends the Arrhenius law to include pressure-dependence, E activation energy, R gas constant,
A, B, n and G experimentally calibrated coefficients. Ttrans and ptrans are the activation temperature
and pressure for the transformation of diamond into graphite (respectively equal to 500 ◦C and 15 GPa
under Cu catalysis) [31].

In this work, the coupled thermomechanical FE model of 3D drilling was applied to drilling
process simulation to obtain the distribution of the process variables such as the temperature at the
workpiece-tool interface, the relative sliding velocity between the workpiece and tool, contact pressure
on the tool surface during drilling. The combined abrasive-chemical wear model in Equation (11)
was implemented into an appropriate subroutine for calculating the wear rate and wear variables
at the tool nodes in contact with the deforming workpiece by using the available information about
thermo-mechanical variables, nodal area and time step. According to the estimated wear rate through
the subroutine, the nodal displacement on the tool surface at current time step was computed. The tool
geometry was recalculated and updated based on the computed nodal displacement and updated tool.
Then a second wear estimate at next time step started with the update worn tool geometry. As this
process was repeated, the tool wear evolution was reproduced throughout the machining process.
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4. Results and Discussions

4.1. Cutting Forces

Based on the experimental details in Table 2, the simulated and experimental cutting forces
during drilling Al6063/SiCp/65p composites using PCD and CVD drills is presented in Figures 10
and 11. It can be found that the good agreement between simulated and experimental in thrust force is
reached except at the beginning stage of drilling. However, the 14.4% and 10.9% overestimation for
the torque acting on PCD and CVD diamond coated drills may be partly due to the small difference
between realistic and simulated tools geometry to which the torque is more sensitive and partly due
to the restricted material flow by the fixed lateral wall of the workpiece. As evident, the developed
drilling model allowed a fairly accurate prediction of the cutting forces, while it overestimates the
torque that has less influence on tool wear. As seen from Figures 10 and 11, under the same cutting
conditions, the cutting forces applied on PCD drill was higher than those on CVD diamond coated
drill. The increase in cutting forces could result in easy damage and consequent breaking of the chips.
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4.2. Chip Morphology

The disclosure of chip formation mechanism contributes to assisting the redesign of tool
geometry and optimizing the machining processes. Comparison of the experimental and simulated
morphologies of the chips formed using PCD and CVD diamond coated drills is depicted in Figure 12.
The simulated chip shape matched well with experimental obtained chip morphology, especially in
chip curling. Additionally, the chip produced by straight cutting lip of PCD drill is more discontinuous
and fragmentary than that by curved cutting lip of CVD diamond coated drill during drilling
Al6063/SiCp/65p composites. As show in Figure 13a, when drilling the corresponding Al alloy,
the force originated from chip formation drives the chip moving up along the flute and rotating
by its own chip axis ωchip, simultaneously the force normal to the flute surface from the drill flute
promotes the chip curling by twisting the chip and eventually leads to spiral chip formation during
drilling Al alloy [42]. Whereas, Al6063/SiCp/65p composites, having high volume fraction of SiC
reinforcement and consequently low ductility and resistance to bending, generated small fragmentary
chips (Figure 13b). The apparent difference of chip morphology during drilling requires in-depth
understanding of deformation and failure mechanisms at microstructure scale of Al alloy and SiCp/Al
composites subjected to shear loading that lead to different chip formation.
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As can be seen from Figure 14, unlike coordinated deformation of Al grains in drilling Al alloy,
when drilling Al6063/SiCp/65p composites, the localized shear applied by cutting lips would cause the
deformation incompatibility of SiC particulates and Al grains in the primary shear zone, thus making
the microcracks initiated at the interface of SiC particulates and the Al matrix due to uncoordinated
deformation. Simultaneously, the machining induced compressive stress relief in the freshly generated
chip would lead to the formation of a microcracked region with numerous discontinuous cracks in
the chip free surface due to the presence of high volume faction brittle phase SiC in Al6063/SiCp/65p
composites (Figure 15). As the drill travels, the newly-formed chip slides outward along the shear
plane, meanwhile the microcracked region on the chip free surface propagates further along the rake
face. When the chips gradually bend to some extent in which the propagation of the crack to the
cutting lip due to microcrack coalescence, sudden brittle fracture of the chip would occur. Therefore,
the formed chip when drilling Al matrix composites reinforced by SiC particulates is easily broken and
fragmented. Additionally, the chip formation is found to be associated with drill geometry, especially
drill flute. Often, the more freely the chip moves, the larger the formed chip length is. When the chip
comes into the drill flute, the chip motion is impeded by the flute. The flat flute face of PCD drill would
restrict the chip curling, while the curved flute face of CVD diamond coated drill can accommodate the
curling deformation of the chip. Moreover, compared to the straight lips of PCD drill, the curved lips
of CVD diamond coated drill result in larger uncut chip thickness and increased bending strength of
the resultant chips, thereby delaying chip-breaking. Therefore, the chip produced using CVD diamond
coated drill is longer and bent more severely, compared to that using PCD drill.
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Figure 15. SEM micrograph of the chip: (a) free surface, (b) image magnification of rectangle region in (a).

4.3. Tool Temperature

Increase of the friction force at the tool-chip interface caused by heat localization during
high-speed cutting leads to heat localization and high temperature rise in the cutting zone.
Consequently, the built-up edge (BUE) often occurs by adhering to the cutting edges of drill bit and this
adhesion on the drill surfaces would reduce the hole surface quality and result in the adhesive wear on
the cutting edges by intermittent growth and scraping off of BUE. Due to semi-enclosed characteristics
of drilling operation, the temperature distribution of drill surface is difficult to measure, especially on
the cutting edges. However, a more important issue in tool wear estimate is temperature prediction.
To some extent, the distribution of BUE on the drill bit can provide some valuable information and
reference about temperature distribution. In Figure 16b, larger high-temperature affected zone is
formed on the rake face of PCD drill compared to that of CVD diamond coated drill and thus the larger
active area of BUE on the PCD drill than on the CVD diamond coated drill is observed, as shown
in Figure 16a. BUE is not observed near the PCD cutting lips, while there exists BUE on the drill
faces far away cutting lips. This implies that the BUE formed near cutting lips were scraped off soon
due to high-frequency friction effect from SiC particulate. Again, the agreement of experimentally
determined BUE distribution on PCD and CVD diamond coated drills bit with numerically simulated
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high-temperature affected zone instills confidence in the developed 3D drilling FE model for tool
wear progression.
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Figure 16. (a) Built-up edge and (b) temperature distribution on rake and flank faces of PCD and CVD
diamond coated drills.

4.4. Tool Wear

Based on the relative velocity between the drill and chip, the temperature at the drill-chip interface
and contact stresses at the drill surface obtained through the coupled thermomechanical analysis of chip
formation during 3D drilling, the subroutine for calculating combined abrasive-graphitization wear
rate on tool nodes is called to estimate tool wear and update tool geometry. The tool wear calculation
cycle is continually repeated until a drilled hole is accomplished. In Figure 17, the experimentally
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observed and numerically simulated wear morphologies of PCD and CVD diamond coated drills are
compared after drilling a hole. As can be seen, the presence of graphitization induced chemical
wear resulted in the irregular evolution of the simulated tool wear showing a good agreement
with experimental observations, compared to even wear morphology caused by only abrasive wear.
PCD drill with straight cutting lips suffered form more severe wear than CVD diamond coated drill
with curved cutting lips in drilling Al6063/SiCp/65p composites, especially in chisel edge. Table 5
shows the comparison of the maximum flank wear width (MFWW) between experiment and FE
simulation. The similar wear morphologies and matched MWFW of both PCD and CVD diamond
coated drills between experimental results and model prediction validate the feasibility and reliability
of the developed 3D tool wear FE model based analytical description of the dominant diamond wear
mechanisms taking into account the abrasion and graphitization.
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Figure 17. (a) Experimental and (b) simulated wear morphologies of PCD and CVD drills after drilling a hole.

Table 5. Comparison of the MFWW between experiment and FE simulation.

Cutting Tool Experimental MFWW Simulated MFWW Relative Error

PCD 43.237 µm 47.544 µm 9.96%
CVD 38.119 37.608 µm 1.34%

5. Conclusions

In this paper, an attempt was made to predict the wear evolution of diamond tools during drilling
SiCp/Al composites by using the developed drilling FE model based analytical description of the
dominant diamond wear mechanisms. The diamond tool wear in drilling SiCp/ Al6061 composites is
mainly attributed to the combined effects of abrasion from SiC particulates and graphitization catalyzed
by Cu in the Al6061 matrix. The combined abrasive-chemical wear model coupling Usui abrasive model
and Arrhenius extended graphitization wear model was implemented by a user-defined subroutine
for the tool wear rate estimate that is formulated by some process variables such as the relative velocity
between the drill and chip, the temperature at the drill-chip interface and contact stresses at the drill
surface. These process variables can be available from the coupled thermomechanical FE analysis
of 3D drilling. The developed FE model for tool wear estimate was validated for feasibility and
reliability by comparing numerically simulated tool wear morphology and experimentally observed
results after drilling a hole using PCD and CVD diamond coated drills. The similar cutting forces,
chip and tool wear morphologies between experimental results and model prediction indicate that the
developed 3D drilling FE model, combined with a subroutine for tool wear estimate can provide good
prediction not only in cutting forces and chip shape but also in tool wear behavior. The presence of
graphitization induced chemical wear resulted in the irregular evolution of the simulated tool wear,
which demonstrates a good agreement with experimentally observed tool wear. Hence, it is possible
to utilize the tool wear FE simulation based analytical description of the dominant wear mechanisms
to estimate the overall tool wear.

The developed diamond tool wear FE model can be feasibly extended to the investigation of
diamond tool wear evolution with various diamond tool geometries in cutting different workpiece
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materials once calibrated the tool wear model and determined the workpiece constitutive model.
Capability of evaluating the dominant diamond wear mechanisms effects on tool wear contributes to
the redesign of tool geometry and optimization of cutting process.
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