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Abstract: A novel medium consisting of iron oxide-coated porous ceramsite (modified ceramsite)
was investigated for NO removal under thermophilic conditions in this study. We used a surface
coating method with FeCl3·6H2O as the modifier. When ceramsite was calcined for 4 h at 500 ◦C,
the surface pH value decreased to 3.46, which is much lower than the isoelectric point of ceramsite,
ensuring its surface was electropositive. The surface of modified ceramsite changed from two-
to three-dimensional and exhibited excellent adsorption behavior to assist microbial growth;
the maximum dry weight of the biofilm was 1.28 mg/g. It only took 8 days for the biofilter constructed
from the modified ceramsite to start up, whereas that packed with commercial ceramsite took 22 days.
The NO removal efficiency of the biofilter did not decrease apparently at high NO inlet concentration
of above 1600 mg/m3 and maintained an average value of above 90% during the whole operation
period. Additionally, the morphological observation showed that the loss of the surface coating was
not obvious, and the coating properties remained stable during long-term operation. The maximum
NO inlet loading of the biotrickling filter was 80 g/(m3·h) with an average removal efficiency of
91.1% along with a quick start-up when using the modified ceramsite filler. Thus, modified ceramsite
can be considered a very effective medium in biotrickling filters for NO removal.
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1. Introduction

With the rapid industrial development achieved in recent years, the emission of flue gas has
increased, which is strongly linked to air pollution levels. Flue gas from a powerplant consists of CO2,
SOx, NOx and O2, and the primary pollutants are SOx and NOx. NO is the primary composition of
NOx, particularly to flue gas, and accounts for about 90% [1]. Nitrogen oxides (NOx) from flue gas
can cause acid rain and are the main substance during the formation process of photochemical smog.
Besides, NOx can destroy the ozone, which brings a threat to human health and the environment [2].
For a long period of time, chemical and physical methods are the basis for the purification treatment of
NOx [3]. The typic techniques of simultaneous desulfurization and denitrification are widely used
in atmospheric control [4], while being prohibitively expensive when dealing with large volumes of
flue gas [5]. Furthermore, secondary pollutants can be produced and often need further treatment [6].
There have been emerging various new technologies to reduce NOx from flue gas [7–11]. Advances in
microbiology, especially associated with the isolation of aerobic denitrifying bacteria, have revealed that
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microbial purification of volatile pollutants is a promising technique [12,13]. Microbial denitrification
has rapidly become a new research focus. Bioprocesses using biotrickling filters and biofilters are
emerging post-combustion control technologies that are potential alternatives for purification of gases
containing small amounts of NOx [14,15].

The packing material is the carrier of microorganisms in biofilters, and is the main location of
immobilization and pollutant treatment [16]. Therefore, it is of great significance to choose suitable
packing materials for effective operation of biofilters. To select a good packing material should consider
the following factors: (a) packing material type, (b) packing porosity, (c) packing moisture capacity,
(d) packing nutrient content, and (e) sorption characteristics of the packing surfaces. In addition,
besides, it is essential to study the adsorption characteristics of the target chemical by the packing
material to determine a suitable packing material.

A modified packing material is a microbe carrier surface coated with a modifier by physical and
chemical reactions, thereby changing the primary physical and chemical properties of the packing
material particle surface. Such modification can enhance the immobilization ability of the material
and its adsorption capacity for certain specific substances. These favorable changes mean that packing
material modification is widely used in wastewater treatment processes. Research has shown that
Fe2O3 is more sensitive to bacteria than other packing material [17], which is probably because
of its relatively higher point of zero charge (PZC) [18]. When an electrolyte oxide or amphoteric
species is placed in water, the zwitterionic electric charge could change because of the different pH
value of the solution. In addition, an electric double layer can form on the surface and generate
electrophoresis when a voltage is applied. Adding some electrolyte to the water will compress the
counter ion layer of the electric double layer. Conversely, adding a certain number of ions will result in
minimum compression of the counter ion layer, a surface potential of zero, and no electrophoresis;
this status is referred to as PZC. At this time, the solution pH is the pH of the isoelectric point of the
oxide, which is indicated as PI. When the solution pH is higher than the PI (pH > PI), amphoteric
ions release protons and are negatively charged. When the pH of the solution is lower than the PI
(pH < PI), zwitterions are protonated and thus positively charged. It was found that cell-induced and
supernatant-induced reductions were combined to achieve favorable results in a biofilter modified
with Fe2O3 [17]. Therefore, the use of Fe2O3 as a modifier to improve the surface properties of biofilters
is attracting increasing attention [19]. In addition, Chen [20] assessed the effectiveness of sand covered
with aluminum hydroxide by in situ precipitation over four months, and during this period, the sand
was exposed to wastewater. Biogrowth in one set of columns was prevented by receiving chloride
wastewater, while a parallel column was used to treat dechlorination wastewater. The results showed
that the aluminum content of coated sand decreased by about 25% in the first two weeks, and remained
relatively stable, much higher than that of uncoated sand. Similarly, the zeta potential of the coated
sand decreased from above +20 mV to below −70 mV in the first two weeks, which was still much more
electropositive than that of uncoated sand. In the absence of biogrowth, the zeta potential of coated
sand subsequently remained approximately unchanged, and most importantly, it exhibited excellent
performance for bacteria removal. This study assesses the technological potential and economic
implications of metallic hydroxide coating of filter media.

The natural inert packing material typically used in biotrickling filters include rock wool-compost [21],
zeolite [22], and the compound packing material lightweight ceramsite [23]; most of these are silicate
minerals or organic polymer and are negatively charged. Generally, it is believed that the adsorption
capacity of such packing material for negatively charged bacteria is weak; after modification, their
adsorption capacity can be greatly increased. Modification technology has gradually been developed for
nearly a decade. The basic theory of such modification is to change the physical and chemical properties
of the original packing material or its surface by physical and chemical methods [24,25]. Guzek [26]
analyzed modified packing material and noted that the physical and chemical properties of the surface
coating affected filler adsorption capacity. Because the coating had a large surface area, numerous
surface adsorption sites, and high surface roughness and porosity, the modified packing material
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exhibited great advantages over their unmodified equivalents in biofiltration. Modified fillers can be
divided into two categories: one is the addition of components during the manufacturing process,
such as nano-modified ceramics and modified polypropylene biological packing material. The other
involves changing the surface properties of the filler matrix. For example, activation of modified
zeolite membranes at 500 ◦C was found to effectively promote catalytic cracking deposition of silane
in the zeolitic pores, which resulted in considerable improvement of adsorptive performance [27].
There have been multiple investigations of modified packing material used for wastewater treatment;
however, their application in gas pollutant treatment has seldom been reported [28–30].

Packing material modification is beneficial to improve packing physical parameters, enhance the
biofilm capacity in a reactor, and effectively increase the reaction area of pollutants and biological
membranes. Thus, packing material modification affects biological filter processing capacity, buffering
capacity, and the volume load of the whole biofilter system, ultimately improving the removal ability
of NOx by a biological trickling filter. In this study, we selected a commonly used commercial ceramic
as the matrix for modification, as it has a regular shape and stable property, most of all, it could
be easily achieved with low lost. We investigate the surface modification method to improve the
surface properties of the packing material to provide a more favorable growth environment for
microorganisms, and then use the modified material in a thermophilic biofilter reactor, as shown in
Figure 1. This novel biofilter is used to treat NO from simulated flue gas under thermophilic conditions.
The performance of the biofilter, including the start-up rate and NO removal efficiency, is investigated.
The coating properties after a long period of operation are examined. The results of this study provide
theoretical guidance for the practical application of iron oxide-based ceramsite in biotrickling filters
for NO removal.
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2. Materials and Methods

2.1. Microbes

The strain Chelatococcus daeguensis TAD1 was isolated by our group from the biofilm of an on-site
biotrickling filter at a coal-fired power plant (Guangzhou, China). The 16S rRNA sequences (1385 bp)
of C. daeguensis were searched for similarities in blastn (NCBI, Bethesda, MD, USA). The sequence
data for the strain has been submitted to the DDBJ/EMBL/Gen-Bank databases under accession
No. HM000004 [31].
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2.2. Growth Medium

The trickling nutrient liquid included the following components (in g/L): KNO3, 1.0 (in the
start-up stage); NaCl, 4.7; disodium succinate, 5.0; Na2HPO4, 7.9; KH2PO4, 1.5; MgSO4·7H2O,
0.1; 1 mL of trace element solution. The trace element solution consisted of (in g/L): EDTA, 50.0;
CaCl2, 5.5; MnCl2·4H2O, 5.06; FeSO4·7H2O, 5.0; ZnSO4, 2.2; CoCl2·6H2O, 1.61; CuSO4·5H2O, 1.57;
(NH4)6Mo7O2·4H2O, 1.1. All chemicals were analytical-grade reagents, commercially available,
and used without further purification. NO (99.9%) was obtained from Foshu Kede Gas Co., Guangzhou,
China. N2 (99.99%) and O2 (99.99%) were obtained from Guangzhou Gas Co., Guangzhou, China.

2.3. Biotrickling Filter Setup and Operation

The bench-scale biofilter reactor shown in Figure 1 was used in this study. The reactor was
constructed of cylindrical plexiglass. The height and diameter of the reactor were 80 and 10 cm,
respectively. Iron oxide-coated ceramsite (or commercial ceramsite as a reference) was used as the
packing material. The packing space was in the height of 20 cm. The reactor was wrapped with heating
tape, and then covered with a layer of fiberglass as insulator. The heating tape was controlled by a
digital temperature controller, which maintained the reactor temperature at 50 ± 1 ◦C.

Inlet gas was obtained by mixing pure NO, N2, and O2, while the three gases were mixed in a
humidifier before entering the reactor. The simulated inlet gas was preheated by passing through the
humidifier, which was set in a thermostatic water bath (50 ± 1 ◦C). The inlet NO concentration was
controlled by adjusting the flow rate of each gas through the flow meter before entering the humidifier.
The constant-volume (3 L) liquid reservoir for nutrient recycling was also controlled at 50 ± 1 ◦C
by a thermostatic water bath. The recycling liquid was pumped to the upper surface of the packing
materials by a peristaltic pump which was set at a flow rate of 250 mL/min to maintain sufficient
moisture. A 500-mL aliquot of the liquid medium was drawn off and renewed with fresh nutrient
solution containing 1% C. daeguensis TAD1 daily to confirm that the denitrifying strain C. daeguensis
TAD1 was the dominant type of bacteria in the microbial community and provide necessary nutrients
for microbial growth. The NO concentration in the influent gas was varied by regulating the mass flow
meters. The main conditions for biotrickling filter setup and operation are listed in the Table 1.

Table 1. The operating conditions for each packing material.

Packing
Material

Start Up
(d)

NO3
−-N

Concentration (mg/L)
pH Operation

(d)
NO Inlet

(g/m3) EBRT (s) T (◦C)

Ceramsite 22 136–145 7–7.5 35 0.2–2 88 50 ± 1
Modified
ceramsite 8 136–145 7–7.5 35 0.2–2 88 50 ± 1

2.4. Analytical Methods

Nitrate was analyzed by ion chromatography (DX-500; Dionex Corporation, Sunnyvale, UK).
The column used was Dionex ionpac AS14. To measure the thermophilic removal of NO in a continuous
gas stream, the NO, N2 and O2 fluxes were controlled by a mass flow controller (FM310-MT, Opine,
Tianjin, China). The NO concentration at both the inlet and outlet was analyzed by a flue gas analyzer
(350Pro, Testo, Baden-wurttemberg, Germany) at 10-h intervals. The NO concentrations at the inlet
and outlet of the biofilter were also measured. The performance of the biofilter was quantified by its
NO removal efficiency (RE) and Inlet loading, which were calculated as follows:

RE =
Cin − Cout

Cin
× 100% (1)

Inlet loading (L, g/(m3·h)):

L =
Q · Cin

V
(2)
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where V is the packing volume of the filler in the biofilter reactor (L); Q is the gas flow rate (L/h),
it was set at 60 L/h in this study; and Cin and Cout are the inlet and outlet NO concentrations
(g/m3), respectively.

The biomass concentration attached to the packing materials was measured by the oven-drying
method as follows [32]. Several ceramsites were removed from the biofilter to place in an oven at
105 ◦C, and then dried to a constant weight. W1 represented the dry weight, including the biofilm and
carriers. The dry carriers were soaked in hydrochloride acid (1 mol/L) solution for 2 h at 80 ◦C, carried
out ultrasonic cleaning for 1 h, and then rinsed with water until all the biofilm was cleaned away.
Finally, drying treatment to the clean carriers until a constant-weight carrier was formed. The dry
weight of the clean carriers was marked as W2. Thus, the biomass weight was obtained by subtracting
W2 from W1. The biomass concentration attached to the packing materials was calculated as the ratio
of the biomass weight to that of the dry carriers.

2.5. Modified Ceramic

2.5.1. Ceramic Modification

The purpose of this experiment is to make the surface of ceramic with positive charge group
composition. Therefore, the modified agent containing metal cations can be used. FeCl3·6H2O is
cost low, and with low microbial toxicity, so we chose it as modifier. Ceramic modification involved
three steps: surface pretreatment, soaking, and high-temperature calcination [28]. In the first step,
the material was soaked in H2SO4 with a 1:500 volume ratio for 24 h, washed with water to a pH near
neutral, and placed in a tray for drying at 105 ◦C. In the soaking step, the material was soaked
with modifier of FeCl3·6H2O (1 mol/L) and then dried at a comparatively low temperature (usually
105 ◦C). The main purpose of this step is to induce the modifier to fully attach to the surface of the
carrier. The material was stirred every 30 min to ensure full contact between the modifier and material.
The surface preparation of selected carriers was conducted to restore the surface activity to achieve
the strongest adhesion of the modifier. High-temperature calcination was performed to make the
FeCl3 coating evaporate from the solution and then metal oxide was deposited on the filler surface.
The calcination temperature and time directly affected the performance of the modified material.

2.5.2. Evaluation Parameters of the Modified Ceramic

The preparation and use of modified ceramic require some of the physical and chemical
parameters to be evaluated. Physicochemical parameters of fillers include porosity, density, surface
pH, surface composition, isoelectric point (PI), and the amount of coating.

Surface pH

To measure the surface pH of the ceramic, 10 g of the selected ceramic was weighed accurately
and placed in a beaker. Distilled water (90 mL) was added and then the suspension was stirred for
10 min. The pH of the solution was then measured, which was defined as the surface pH.

Porosity

Ceramic porosity was determined as the ratio between the pore volume and total volume of the
ceramic. The filter layer gap ratio and filter particle shape, uniformity, and degree of compaction affect
ceramic porosity. The measurement method is as follows:

First, measure the density of the ceramic: 100 mL (V1) water was added to the 200 mL-pycnometer,
then put into 100 g dried ceramic slowly, tilt and shake the bottle to get rid of gas, read the bottle
surface V2 after standing 24 h, which can have the formula of packing density ρ

ρ (g/cm3) = G/(V2 − V1) (3)
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where G is mass of dried ceramic (g), V1 is the volume of added water (cm3), V2 is the volume after
24 h (cm3).

Once you have measured the density of the ceramic, put the ceramic after drying in the cartridge
and the filler is filtered with water for some time, then measure the filter layer volume V. The porosity
(m0) is calculated as follows

m0 (%) = 100 × (1 − G/ρV) (4)

where ρ is packing density of dried ceramic (g/cm3), V is the volume of filter layer volume (cm3).

Isoelectric Point

PI values were obtained by the analysis of empirical constants and potentiometric titration
depending on the nature of the oxide.

Coating Content

Coating content (M) was determined per unit mass in units of mg/g. Coating amount directly affects
the surface properties of the modified ceramic. To measure M, 50 g of ceramic was weighed accurately
with an analytical balance, which is referred to as M1. M was calculated by the following equation,

M (mg/g) =1000(M2 − M1)/M1, (5)

where M1 is the ceramic mass before modification (g) and M2 is the ceramic mass after modification (g).

3. Results and Discussion

Usually, modification effect is evaluated according to the biomass amount when biofilm formation
is completed. Besides, the experimental parameters for modified material before and after use
including physical and chemical indicator nature, film forming properties, and pollutant removal can
be compared.

3.1. Modification Conditions

The biotrickle reactor used for evaluating modification conditions is a smaller one with an
operation period of 20 days. The height and diameter of the reactor were 50 and 8 cm, respectively.
The packing space was in the height of 10 cm and the operation steps are just the same as the start-up
period described in Section 2.3.

3.1.1. Calcination Temperature

In the calcination process, the ceramsite was modified with the modifier FeCl3·6H2O concentration
of 1 mol/L by calcination for 3 h at a temperature of 300, 400, 500, or 600 ◦C. The prepared
modified ceramsite samples were used in a small biological trickling filter tower for microbial biofilm
experiments. The dry weight of each biofilm was measured when the biofilm of biotrickling filter
was stable.

As shown in Figure 2, the dry weight of the biofilm was 1.01 mg/g for the ceramsite modified
at a calcination temperature of 300 ◦C and it increased by about 20% to reach 1.21 mg/g when
the calcination temperature was 400 ◦C. The mass increased a bit more when the calcination
temperature was raised up to 500 ◦C and then the mass remained constant when the calcination
temperature was 600 ◦C. Based on these results, we selected 500 ◦C as the calcination temperature for
ceramsite modification.
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the modified ceramsite.

3.1.2. Calcination Time

To determine the effect of calcination time on ceramsite modification, experiments were performed
with a modifier concentration of 1 mol/L, calcination temperature of 500 ◦C, and calcination times
of 1, 2, 3, 4, 5, and 6 h. The prepared modified ceramsite samples were then used in small biological
trickling filter towers for microbial biofilm experiments. The dry weight of each biofilm was measured
when the biofilm of each biotrickling filter was stable.

Figure 3 reveals that there was no obvious modification effect when the calcination time was 1 h,
because the dry weight of biofilm was only 1.01 mg/g, which was only a slight increase over that of
the case for unmodified ceramsite. The same phenomenon occurred when the calcination time was
2 h. The dry weight of the biofilm increased sharply, reaching 1.2 mg/g (an increase of nearly 20%)
when the calcination time was extended to 3 h. When the calcination time was 4 h, the maximum
dry weight of the biofilm of 1.28 mg/g was obtained and then stayed quite stable with the further
lengthening of calcination time. According to the change of the dry weight of the biofilm, the crystal
state of the surface was stable after calcination for 4 h, and the number of microbes adsorbed on the
surface did not change when the calcination time was prolonged further. Therefore, we determined
that the optimal calcination time was 4 h at 500 ◦C.
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3.2. Properties of Modified Ceramics

The purpose of modification is to change the surface properties of the ceramic which is reflected
by the physical and chemical parameters, purification efficiency, and stability of the modified ceramic.
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The modification conditions were determined experimentally. The surface physical and chemical
properties of the modified ceramsite were suitable to realize strong adsorption and immobilization of
nitrogen removal bacteria. The physical and chemical properties of the ceramsite surface were changed
by modification. Characteristic parameters of the unmodified and modified ceramsite samples are
listed in Table 2. SEM images of the unmodified and modified ceramics are presented in Figures 4
and 5, respectively.

Table 2. Characteristic parameters of ceramsite and modified ceramsite.

Shape Diameter
(mm)

Coating Contents
(mg/g)

Density
(g/m3)

Surface Area
(m2/m3)

Porosity
(%) PI Surface pH

Before sphere 3–5 0 1.98 398 48 0.7–3 6.95
After sphere 3–5 42.1 2.36 398 55 8.5 3.46
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Table 1 indicates that the shape and particle size of ceramsite did not change after modification,
but its density increased by 17% and porosity increased by about 15%. In addition, modification
increased the PI of ceramsite by more than four times and lowered the surface pH to 3.46. The surface
pH is much lower than PI, which confirms that the surface is electropositive.

Figures 4 and 5 illustrate that the modified ceramsite has a rougher surface compared with that of
ceramsite; modification changed its two-dimensional rough surface into a three-dimensional surface.
The modified ceramsite surface was thickly covered with crystals. The crystal morphology was trigonal
and consistent with hematite, confirming the existence of a stable form of iron oxide on the modified
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ceramic surface. That is, the surface coating process successfully coated iron oxide on the ceramic
surface. There are studies showing that crystal structure affects adsorption performance. For example,
Bruno et al. [33] studied the sorption of phosphorus from aqueous solutions by crystalline and
amorphous blast furnace slags. They found that the two slags had quite different sorption properties
for phosphorus even though they had nearly the same compositions, which was attributed to their
dissimilar morphological structures resulting in different surface areas. The surface area of crystalline
slag was 0.65 m2/g, whereas that of amorphous slag was only 0.5 m2/g.

3.3. Start-up Performance of the Biotrickling Filter

A previous study revealed that NO injection is not required until the denitrifying ratio reaches
80% and a macroscopic yellow biofilm appears [34]. Therefore, we replaced NO with KNO3 during the
start-up period of the biotrickling filter. During the start-up period, the trickling rate was controlled at
250 mL/min and 50% of the trickling liquid was replaced every other day. To maximize cell adhesion to
the packing medium, the reactor was operated in closed-loop mode. The NO3

− removal efficiency was
considered the indicating factor in the start-up period. To obtain a reliable variation of the NO3

−-N
removal efficiency, a stable initial NO3

−-N concentration for each day of the start-up period should be
maintained, hence, the external nitrogen (KNO3) concentration of the newly added trickling liquid
was variable due to the residual NO3

−-N concentration and the initial NO3
−-N concentration was

ranged from 136 to 145 mg/L for each day during the whole startup phase. The results are presented
in Figure 6. Generally, the formation of a biofilm in biological trickling filters is more difficult and
requires a longer time compared with that in common biological filters [35]. This is mainly because the
moving liquid has a shearing action on the packing; therefore, the adherent microbes must overcome
this scouring force to grow. In addition, because microbial cells are covered in negative charges
under natural conditions and commonly used packing material surfaces are also usually negatively
charged, charge repulsion might hinder microbe adsorption on the filler. Thus, the start-up period
of biotrickling filters is usually long (more than 20 days) with various type packing materials [36,37].
Some researchers [38] reported an enhanced system which featured a shorter start-up period with the
inoculation of the enriched denitrifying bacteria significantly reducing its acclimation time to 17 days.
As shown in Figure 6, when commercial ceramsite was used as a filler, the biofilm took about 22 days
to fully mature. Conversely, it only took 8 days for the biotrickling filter to start up when the modified
ceramsite was used as the packing material. That is, ceramsite modification greatly shortened the
start-up period. These results indicated that the biofilter packed with the modified filler could be
quickly started up by inoculation with C. daeguensis TAD1.Materials 2018, 11, x FOR PEER REVIEW  10 of 14 
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3.4. Performance of the Biotrickling Filter

We used the modified ceramsite and commercial ceramsite as packing material in different
biofilters and then tested the biofilter performance for NO removal under thermophilic conditions
for 35 days after start-up. The bench-scale biofilter reactors (see Figure 1) were operated at high
temperature (~50◦ C). The circulating fluid (pH = 7) was sprayed at a rate of 250 mL/min, and the
empty bed residence time (EBRT) was 88 s. The inlet NO concentration was increased from 200 to
2000 mg/m3. The results are shown in Figure 7. For the biofilter with modified ceramsite, the removal
efficiency was less than 80% during the first three days, which was because NO suddenly became the
only nitrogen source when it replaced KNO3. However, the removal efficiency increased appreciably
after 3 days. When the inlet NO concentration was increased from 200 to 2000 mg/m3 and EBRT
was 88 s, the removal efficiency of NO did not apparently decrease and maintained an average
value of above 90% during the remaining 32 days of treatment. The biofilter containing commercial
ceramsite displayed lower removal efficiency compared with that of the biofilter with the modified
ceramsite; in particular, at a high NO inlet concentration of above 1600 mg/m3, the removal efficiency
was less than 80%. The biofilter with the modified filler exhibited stable and efficient NO removal
performance compared with that of the unmodified case, and this effect was more prominent at high
NO inlet concentration. The iron oxide-modified ceramsite improved the performance of the biofilter
for NO removal.

The maximum inlet loading of the modified ceramsite biofilter was 80 g/(m3·h) with an average
removal efficiency of 91.1%, which revealed that the maximum elimination capacity was much higher
than that of some typical biofilters as shown in Table 3. In general, the capability of the modified
ceramsite biofilter for NO removal was excellent and presented a promising practical application for
NO removal with strong adaptability under various conditions especially for the high inlet loading.Materials 2018, 11, x FOR PEER REVIEW  11 of 14 
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Table 3. Performance of some typical bioreactors for NO removal.

Filler Temperature
(◦C) O2 (%) NO Inlet

(mg/m3)
EBRT
(min)

Inlet Loading
(g/(m3·h)) RE (%) Reference

modified PVC 50 ± 0.5 1–3 315 1 18.75 75 [39]
soil 20–37 - 335 - - 60 [40]

ceramics 50 ± 0.5 2–20 800 1.8 26.67 80–92 [41]
ceramics 30 ± 0.5 2–20 800 1 48 63 [42]

woven fiber 50 ± 1 8 2000 0.7 163.6 89.8 [34]
modified ceramsite 50 ± 1 8 2000 1.5 80 91.1 This study
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3.5. Analysis of Surface Stability

The performance of ceramsite as a filler was greatly improved following modification with
an iron oxide-based coating on its surface. To investigate the stability of the ceramic surface
coating, the modified ceramsite was packed in a biotrickling filter before start-up and operation
over a continuous period of 90 days, and then removed for morphological observation (Figure 8).
Compared with that of the unused modified filler surface (Figure 5), the crystal structure became clearer.
This was attributed to the gradual loss of the amorphous component during operation, whereas the
stable crystal structure was not removed so easily; therefore, the surface of the iron oxide-coated
ceramsite remained intact. The loss of the surface coating was not obvious under the investigated
experimental conditions, indicating that the coating is relatively stable when used in a biological filter
system during long-term operation.
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Figure 8. Scanning electron micrograph of modified ceramic after 2160-h use.

4. Conclusions

The performance of iron oxide-modified ceramsite as a filter medium in a biotrickling process was
investigated. SEM results suggested that the modified ceramsite possessed a uniform interconnected
crystal structure, which was more suited to microbial growth than the compact and closed pore
structure of commercial ceramsite. It only took 8 days for the biotrickling filter with the modified
ceramsite to start up, which was much shorter than the start-up period of the filter with commercial
ceramsite. The filter packed with the modified filler displayed stable NO removal performance that
was more efficient than that of the biofilter with the unmodified ceramsite; this effect was more
prominent at high NO inlet concentration. The iron oxide-coated porous ceramsite thus improved
the NO removal performance of the biofilter. The loss of the surface coating was not obvious under
the experimental conditions and the coating remained relatively stable during operation for a long
period. These observations reveal the promise of iron oxide-coated ceramsite as packing material in
biotrickling filters for NO removal under thermophilic conditions.
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