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Abstract: Vanadium (IV) oxide (VO2) layers have received extensive interest for applications in smart
windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods
utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially
competitive because of its simplicity when performed at atmospheric pressure (APCVD). APCVD’s
success has shown that it is possible to create tough and stable materials in which their stoichiometry
may be precisely controlled. Initially, we give a brief overview of the basic processes taking place
during this procedure. Then, we present recent progress on experimental procedures for isolating
different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum
characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2

by APCVD.
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1. Chemical Vapour Deposition

1.1. General Information

CVD is a practical method of atomistic or near atomistic deposition having the ability to synthesize
well-controlled dimensions and structures at reasonably low temperatures, high purity and in multiple
formats such as single layer, multi-layer, composite and finally functional coatings. In its simplest
incarnation, CVD encompasses a single precursor gas flowing into a chamber containing the substrate
to be coated. Although, there are exceptions, the vapour of the reactive compound, usually an easily
volatilized liquid or in some cases a solid, is sublimed directly and transported to the reaction zone by
a carrier gas. A thin film is then deposited by chemical reaction or decomposition of the gas mixture
on the substrate surface or in its vicinity at a defined temperature.

The precursors used within a variety of CVD techniques can be single source or dual source in
origin. Single source precursors contain all the groups/elements required for successive thin film
production. On the other hand, dual source precursors involve the interaction between multiple
precursors for the synthesis of thin films. In each case, it is vital for production of thin films to deliver
the gas phase precursors with a carrier gas. The most common carrier gases are N2, He or Ar, especially
when highly reactive or pyrophoric reactants are used and in some cases, reactions entail an energy
input from the carrier gas, e.g., H2 or O2 enrichment.

Reactor systems in CVD processes must allow controlled transport of the reactant and diluent
gases to the reaction zone, maintain a defined substrate temperature and safely remove the gaseous
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by-products. These functions should be fulfilled with sufficient control and maximal effectiveness,
which requires optimum engineering design and automation. The reactor in which the thin film
deposition actually takes place is the essential part of the system and must be designed according
to the specific chemical process parameters. To coat layers using Chemical Vapour Deposition at
Atmospheric Pressure (APCVD), four basic types can be classified according to their gas flow and
operation principles:

1. Horizontal tube displacement flow type.
2. Rotary vertical batch type.
3. Continuous—deposition type using premixed gas flow.
4. Continuous—deposition type employing separate gas streams.

1.2. CVD Processes

Any CVD process including APCVD involves the subsequent operations. First, the reacting gas is
directed into the reactor. The gas moves towards its thermal equilibrium temperature and composition
through gas-phase collisions and reactions. Near-equilibrated species are then transported to the
reaction surface, the surface chemical reactions commence and the thin film is formed. The processes
are summarized below (Figure 1) [1]:

1. Creation of active gaseous reactants.
2. Transport of the precursor to the CVD reactor.
3. Decomposition of gas phase precursor to remove gaseous by-products and grow

reactive intermediates.
4. Gaseous reactants transportation onto substrate area.
5. Surface diffusion for nucleation and thin film growth.
6. Desorption of by-products and mass transport away from active reactive zone.
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1.3. APCVD

A schematic presentation of the APCVD system is shown in Figure 2. It is designed with no
joints in all outlet lines to avoid blocking. A flow of inert gas, usually nitrogen, is passed through the
apparatus during all operations. The amount of the precursor delivered into the reactor is calculated
from the Equation (1)
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a =
VP × F

(760 − VP)× 24.4
(1)

where a, is the amount of precursor (mol min−1), VP, is the vapour pressure of precursor at the
bubbler’s temperature (mm Hg), F, is the nitrogen flow rate through the bubbler (L min−1) and 24.4,
is a constant for the molar volume of an ideal gas at standard temperature and pressure (L mol−1).

In a typical APCVD experiment, once all temperatures are stabilized over time, the N2 is passed
through the bubblers and then the precursor gas flow rate is directed into the mixing chamber where
the mixture begins in order to be utilized before entering the reaction chamber for the deposition to
take place. Once the allotted time is complete, the precursor bubbler is closed. The reactor heater is
turned off and the substrate is allowed to cool down under an atmosphere of N2. Ideally, the carrier
gas inlet flows should be fully saturated with precursor vapour; this can be achieved with knowledge
of the precursor volatility and vapour pressure and then controlled by the carrier gas flow and bubbler
temperature using flow meters and heating jackets.
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2. Vanadium Oxides

The binary Vanadium-Oxygen phase diagram consists of a large number of phases between V2O3

and VO2 of the form VnO2n−1 commonly known as the Magneli phases [2] that exhibit distinctive
electrical and optical properties. The variety of Vanadium-Oxygen stoichiometries emerges from the
ability of vanadium atoms to adopt multiple oxidation states, which consequently results in synthetic
challenges to control the structure of the materials [3].

More than ten kinds of crystalline phases of VO2 have been reported elsewhere, whereas some
examples are monoclinic VO2 (M), tetragonal VO2 (R) and several metastable forms of VO2 (A), VO2 (B)
and VO2 (C) [4]. Among these phases, only the rutile VO2 (R/M) phase undergoes a fully reversible
metal insulator transition at a critical temperature (Tc) [1], where an abrupt alteration in optical
and electronic properties is observed making it ideal for optoelectronic switches [5], memristors [6],
artificial neuron networks [7,8] and intelligent window coatings [9,10].

The high temperature phase (T > Tc), has a tetragonal type structure characterized by chains of
edge sharing [VO6] octahedral along the c-axis with equidistant vanadium atoms (V-V = 2.88 Å) [11].
While, the low temperature structure involves V4+-V4+ pairing with alternate shorter (0.265 nm) and
longer (0.312 nm) V4+-V4+ distances along the a-axis and tilting with respect to the rutile c-axis [11].
At 25 ◦C, the lattice has unit cell parameters; a = 5.75 Å, b = 4.52 Å, c = 5.38 Å and β = 122.60◦ [12].
The lattice is the result of the distortion occurring at the high temperature metallic tetragonal phase.



Materials 2018, 11, 384 4 of 8

The mechanism of metal insulator transition in VO2 has been investigated through computational,
experimental and theoretical studies [13–15]. Nevertheless, the mechanism of the transition
remains unresolved, since the VO2 phases exhibit diverse lattice structures but have analogous
electronic properties.

3. Advancements

There have been numerous studies on the VO2 grown by APCVD since Maruyama and Ikuta
utilized vanadium (III) acetylacetonate (V(acac)3) as a single-precursor to deposit polycrystalline pure
VO2 films on fused quartz and sapphire single crystals [16]. In this review article, we will focus on the
progress taking place during the last four years regarding the control of the processing parameters to
isolate the VO2 phases strengthening the functional properties of APCVD VO2 layers.

The growth of amorphous pure and tungsten doped VO2 coatings is possible on SnO2-precoated
glass substrates using vanadyl (V) triisopropoxide (VO(OC3H7)3) as single-precursor [9,10,17,18]. It is
interesting to note that the presence of tungsten in the lattice of VO2 changed the surface morphology
to worm-like (Figure 3) from granular structure [9]. This approach has several advantages including the
high vapour pressure of the precursor (i.e., decomposition over time and transport of unknown species
are prevented). Additionally, the operations are simplified by removing the commonly necessary
oxygen source, which is usually provided either in the form of pure gas or from an extra bubbler
through H2O or alcohol. Vanadyl (IV) acetylacetonate (VO(acac)2) along with propanol, ethanol and
O2 gas as oxygen sources is accomplished to grow VO2 of different crystalline orientations [19,20].
The a-axis textured monoclinic is enhanced with propanol and ethanol, while the 022-oriented single
phase V2 is obtained with O2 gas possessing grains (a-axis coatings) and agglomeration of grains
forming rod-like structures (002-oriented phases). On controlling the oxygen gas flow rate (Figure 4),
isolated monoclinic and metastable VO2 phases can also be achieved using VO(acac)2 as vanadium
precursor on flexible [21] and SnO2-precoated glass substrates [22].

Materials 2018, 11, x FOR PEER REVIEW  4 of 8 

 

3. Advancements 

There have been numerous studies on the VO2 grown by APCVD since Maruyama and Ikuta 
utilized vanadium (III) acetylacetonate (V(acac)3) as a single-precursor to deposit polycrystalline pure 
VO2 films on fused quartz and sapphire single crystals [16]. In this review article, we will focus on 
the progress taking place during the last four years regarding the control of the processing parameters 
to isolate the VO2 phases strengthening the functional properties of APCVD VO2 layers. 

The growth of amorphous pure and tungsten doped VO2 coatings is possible on SnO2-precoated 
glass substrates using vanadyl (V) triisopropoxide (VO(OC3H7)3) as single-precursor [9,10,17,18]. It is 
interesting to note that the presence of tungsten in the lattice of VO2 changed the surface morphology 
to worm-like (Figure 3) from granular structure [9]. This approach has several advantages including 
the high vapour pressure of the precursor (i.e., decomposition over time and transport of unknown 
species are prevented). Additionally, the operations are simplified by removing the commonly 
necessary oxygen source, which is usually provided either in the form of pure gas or from an extra 
bubbler through H2O or alcohol. Vanadyl (IV) acetylacetonate (VO(acac)2) along with propanol, 
ethanol and O2 gas as oxygen sources is accomplished to grow VO2 of different crystalline 
orientations [19,20]. The a-axis textured monoclinic is enhanced with propanol and ethanol, while the 
022-oriented single phase VO2 is obtained with O2 gas possessing grains (a-axis coatings) and 
agglomeration of grains forming rod-like structures (002-oriented phases). On controlling the oxygen 
gas flow rate (Figure 4), isolated monoclinic and metastable VO2 phases can also be achieved using 
VO(acac)2 as vanadium precursor on flexible [21] and SnO2-precoated glass substrates [22]. 

SnO2 was chosen as a substrate due to the similar crystalline structure with VO2, which can act 
as a template for the growth of rutile VO2 and promote the crystallinity of the oxide [23]. 

 
Figure 3. Field emission-scanning electron microscopy image of the APCVD tungsten doped VO2 coating. 

 
(a) (b) 

Figure 4. Field emission-scanning electron microscopy images of APCVD vanadium oxides using 
oxygen flow rate of 0.4 (a) and 0.8 L min−1 (b). 

  

Figure 3. Field emission-scanning electron microscopy image of the APCVD tungsten doped VO2 coating.

Materials 2018, 11, x FOR PEER REVIEW  4 of 8 

 

3. Advancements 

There have been numerous studies on the VO2 grown by APCVD since Maruyama and Ikuta 
utilized vanadium (III) acetylacetonate (V(acac)3) as a single-precursor to deposit polycrystalline pure 
VO2 films on fused quartz and sapphire single crystals [16]. In this review article, we will focus on 
the progress taking place during the last four years regarding the control of the processing parameters 
to isolate the VO2 phases strengthening the functional properties of APCVD VO2 layers. 

The growth of amorphous pure and tungsten doped VO2 coatings is possible on SnO2-precoated 
glass substrates using vanadyl (V) triisopropoxide (VO(OC3H7)3) as single-precursor [9,10,17,18]. It is 
interesting to note that the presence of tungsten in the lattice of VO2 changed the surface morphology 
to worm-like (Figure 3) from granular structure [9]. This approach has several advantages including 
the high vapour pressure of the precursor (i.e., decomposition over time and transport of unknown 
species are prevented). Additionally, the operations are simplified by removing the commonly 
necessary oxygen source, which is usually provided either in the form of pure gas or from an extra 
bubbler through H2O or alcohol. Vanadyl (IV) acetylacetonate (VO(acac)2) along with propanol, 
ethanol and O2 gas as oxygen sources is accomplished to grow VO2 of different crystalline 
orientations [19,20]. The a-axis textured monoclinic is enhanced with propanol and ethanol, while the 
022-oriented single phase VO2 is obtained with O2 gas possessing grains (a-axis coatings) and 
agglomeration of grains forming rod-like structures (002-oriented phases). On controlling the oxygen 
gas flow rate (Figure 4), isolated monoclinic and metastable VO2 phases can also be achieved using 
VO(acac)2 as vanadium precursor on flexible [21] and SnO2-precoated glass substrates [22]. 

SnO2 was chosen as a substrate due to the similar crystalline structure with VO2, which can act 
as a template for the growth of rutile VO2 and promote the crystallinity of the oxide [23]. 

 
Figure 3. Field emission-scanning electron microscopy image of the APCVD tungsten doped VO2 coating. 

 
(a) (b) 

Figure 4. Field emission-scanning electron microscopy images of APCVD vanadium oxides using 
oxygen flow rate of 0.4 (a) and 0.8 L min−1 (b). 

  

Figure 4. Field emission-scanning electron microscopy images of APCVD vanadium oxides using
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SnO2 was chosen as a substrate due to the similar crystalline structure with VO2, which can act as
a template for the growth of rutile VO2 and promote the crystallinity of the oxide [23].

4. Challenges

A comparative study among VO(acac)2 and VCl4, the most utilized vanadium precursors for
APCVD VO2, indicated that the transport rate of VO(acac)2 is lower than VCl4 [24]. This can be
handled by increasing the temperature and the N2 flow rate in the bubbler. However, this is not
anticipated because the precursor may decompose over time leading to irreproducible delivery
rates and the transport of unknown species. On the other hand, VCl4 is highly reactive with H2O
resulting in inhomogeneous films [25]. A new approach uses the ethyl acetate (EtAc) as an excellent
oxygen precursor resulting in the precise control of the growth rate and porosity of the films after
the optimization of VCl4/EtAc system [26]. A route to improve this system involves the combination
of X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) to
determine the effect of the substrate choice on the VO2 formation for functional properties such as
thermochromism [27]. It is then possible to grow VO2 (Figure 5) onto substrates that induce lattice
matching (SnO2) or others (F-doped SnO2) that promote a destabilization of V4+ ions and a further
increase in V5+ deteriorating the functional properties (Figure 6).
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Furthermore, monoclinic VO2 exhibits poor adhesion and is chemically susceptible to attack,
restricting the use as solar control coating. In that respect, multi-functional, robust APCVD
VO2/SiO2/TiO2 films on glass substrates demonstrates excellent solar modulation properties,
high transparency and resistance to abrasion compared to single VO2 films of the same thickness [28].

5. Prospects and Outlook

In the field of APCVD VO2, the altering of the processing parameters and the manipulation of the
substrate surface is just starting to be understood. New evolvements in experimental procedures such
as the utilization of single vanadium precursor and the oxygen source have addressed APCVD routes
in isolating the intrinsic material properties. There are numerous exciting challenges in developing
VO2 with functional properties, which expand our understanding of the underlying chemistry and
potentially lead to anticipated applications.

Two-dimensional (2D) VO2 can also be possible by APCVD through Computational Fluid
Dynamics (CFD) simulations. CFD simulations are performed to evaluate and define the whole
experimental process, before, while and after the experimental procedure isolating the intrinsic material
properties (Figure 7). CFD results of exhaust and quartz tube presented the simulation procedure
regarding the flow rates and the temperature distribution along the boundaries of the metallic parts.
The flow rate of N2 was set at 0.1 L min−1 and the temperature in the inner boundaries was at
300 ◦C. Every aspect of the APCVD process is simulated to approach the optimal characteristics of the
oxide in tandem to the surface to be deposited. Prospects in developing the growth of high-quality
large-area materials with well-defined sizes, high dispersion and excellent control on layer thickness
will then appear. The potential impact is illustrated by considering the exploitation possibilities of the
high-performance materials by APCVD to create advanced devices for practical applications.
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