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Abstract: AlSi10Mg inclined struts with angle of 45◦ were fabricated by selective laser melting (SLM)
using different scanning speed and hatch spacing to gain insight into the evolution of the molten
pool morphology, surface roughness, and dimensional accuracy. The results show that the average
width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease
with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be
almost constant under different processing parameters. The width and depth of the molten pool on
powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the
width changes more significantly than that of depth. However, if the scanning speed is high enough,
the width and depth of the molten pool and the lower surface roughness almost keep constant as the
density is still high. Therefore, high dimensional accuracy and density as well as good surface quality
can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut.

Keywords: selective laser melting; cellular lattice structure strut; molten pool morphology;
surface roughness; powder-supported zone

1. Introduction

Metal cellular lattice structures are a unique class of structures with combinational advantages,
such as: low densities, superior mechanical, thermal, electrical, and acoustic insulation properties.
However, conventional production techniques confront high difficulty to fabricate such kinds of
complex structures.

Selective laser melting (SLM), as one of powder bed based additive manufacturing techniques,
can produce near-net-shaped parts with customized and complicated structure directly from
computer-aided design data [1–6]. So, it is very suitable to make metal cellular lattice structures
beyond current limitations. In fact, SLM technology has attracted much attentions to fabricate cellular
lattice in recent years [7–10].

For a specific cellular lattice structure, the inside inclined struts play a central role in determining
its performance, such as elastic modulus, tensile strength, yield strength, etc. During SLM, the struts
generally suffer poor surface quality and low dimensional accuracy as well as internal defect.
Poor surface quality is very difficult to finish and leads to early fracture and low mechanical
properties [11,12]. Large geometrical error induces weight and mechanical properties deviating from
the target value [13,14]. The internal defects deteriorate the mechanical properties. Several researchers
have investigated on the surface morphology and the dimension deviation of the strut of cellular
lattice structure. Yan et al. [15] investigated the surface morphology and strut size of SLMed 316L
stainless steel gyroid cellular lattice structures with volume fraction of 6%, 8%, 10%, 12%, and 15%.
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The results show that the fabricated lattice structures exhibited very rough surfaces with many bonded
particles and the strut size is larger than target value. Also, the struts size of AlSi10Mg periodic
cellular lattice structures fabricated via direct metal laser sintering (DMLS) is also slightly higher than
target [15]. Van Bael et al. [16] compared the differences in pore size, strut thickness, porosity, surface
area, and structure volume between designed and manufactured cellular Ti-6Al-4V structures. All of the
morphologic properties deviated from original design. Leary et al. [17] reported that preferential particle
adhesion on the lower surface of lattice structures struts lead to increased roughness. Qiu et al. [18]
has carried out a parametric study on the influence of processing conditions on strut structure and
compressive properties of AlSi10Mg cellular structure. It revealed that the rough surface, defects, and
internal porosity exist due to the violent interaction between the laser beam and pool.

The usage of light metal and lightweight structures are two primary methods to reduce the weight
of components [19]. Aluminum alloys are suitable for the purpose. However, it is difficult to produce
aluminum alloys by SLM due to its high reflectivity and conductivity [20]. A widely studied aluminum
alloy in SLM is cast-alloy AlSi10Mg. Weingarten et al. [21] showed that the AlSi10Mg samples with
nearly 100% density can be produced by SLM. Thijs et al. [22] determined that AlSi10Mg components
that were fabricated by SLM have an extremely fine microstructure and hence a high hardness when
compared to the samples fabricated by conventional approaches.

Although there are many literatures reported the surface quality and dimension accuracy of lattice
structure, there are few researches investigated the induced causes in detail. Furthermore, there are no
literature investigating the density of the inclined cellular lattice strut and giving a method to obtain
high surface quality and dimension accuracy, as well as density simultaneously. This paper investigated
the evolution of the molten pool morphology, upper and lower surface roughness and dimensional
deviation of SLMed AlSi10Mg inclined struts. The aim of this study is to help to understand the
surface roughness and dimensional deviation of SLM process of cellular lattice structure and to obtain
a method to achieve high surface quality and dimension accuracy, as well as density simultaneously.

2. Experimentals

2.1. Materials and SLM Process

In this experiment, powder material of the wrought AlSi10Mg material was supplied by Hengji
Powder Technology China (Yueyang, China). The particle size was measured using the Malvern
UK Mastersizer 3000 (Malvern Instruments Ltd., Worcestershire, UK). The gas atomized AlSi10Mg
powders with spherical shape and particles size in the range of 18–50 µm were used. The composition
of powder was measured via ICP-AES (inductively coupled plasma atomic emission spectrometry,
PerkinElmer Instruments, Shelton, CT, USA). The chemical composition is shown in Table 1.

Table 1. The chemical composition of the AlSi10Mg powders.

Element Al Si Mg Fe Ti Ni Cu Zn Pb Sn Mn

Wt % Balance 10.04 0.47 1.42 0.018 0.043 <0.01 <0.01 <0.01 <0.01 <0.01

The detail about the origin CAD (Computer Aided Design) model of samples in the experiment is
given in Figure 1a. The inclined angle α is 45◦ and the section parallel to substrate is a rectangle with
area of 1 mm ×

√
2 mm. The image of the samples is given in Figure 1b.

The SLM experiments were conducted on a self-developed machine (LSNF-I, Wuhan, China),
which is equipped with a continuous wave IPG YLR-200 fiber laser (λ = 1.07 µm) with maximum laser
power of 200 W and focused spot diameter of about 100 µm. The detailed information about the SLM
system was introduced in our previous works [23,24]. Parameters used for preparing the samples in
this study are presented in Table 2. A standard alternating x/y raster strategy [25] was chosen for laser
scanning paths and the whole fabrication process was carried out in an argon atmosphere. A cleaning
system was used to remove the generated fume.
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Figure 1. Detail of original CAD model (a) and the image of the samples (b).

Table 2. Processing parameters used in this study.

Processing Parameters Value

Laser power P, W 200
Scanning speed v, mm/s 600–3000

Layer thickness δ,µm 20
Hatch spacing S, mm 0.04−0.10

2.2. Characterizations

Prior to characterization, all of the SLMed struts were ultrasonically cleaned in acetone for at
least 15 min to remove any trapped loose powder or dirt. The surface morphology was observed by
Philips Quanta 200 environment scanning electron microscope (ESEM, Quanta 200, FEI Co. Eindhoven,
The Netherlands). After preparation according to the standard metallographic technique, Matlab-based
shadow measurements of optical microscope image were used to determine surface roughness and
strut size. As shown in Figure 2, the original image is converted to binary one to extract and fit the
contour using Matlab R2014 (Mathworks Inc., Natick, MA, USA) to calculate roughness.
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As illustrated in Figure 3, F1 + F2 + F3 + · · ·+ Fn = G1 + G2 + G3 + · · ·Gm, the average surface
roughness Ra and peal-to-valley roughness Rz can be calculated as follows:

Ra =
1
L

∫ L

0
| f (x)|dx (1)

Rz = |Zmax − Zmin| (2)
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The strut size is measured as:

Sa =
∑N

1 (Pixnum × Pixsize)

N
(3)

where Sa is average strut size, Pixnum is the number of pixels between two profiles, Pixsize is the pixel
size under specific magnification, which shown in Table 3, N is the counts of each image. In this
paper, N is 38 (the 50× metallographic figure of 764 × 1024 pixel and every 20 pixel the strut size
was measured once) and the sizes of SLMed struts were determined by mathematically averaging the
measurement results of eight images.

Table 3. Pixel size under specific magnification.

Magnification um/Pixel (x Axis) um/Pixel (y Axis)

50× 1.92926 1.92926
100× 0.4761905 0.4746836

To analyze molten pool, metallurgical samples were chemically etched with Keller’s reagent
(containing 95 mL water, 1.0 mL hydrogen fluoride, 1.5 mL hydrochloric acid, and 2.5 mL nitric acid)
at room temperature. The Image-Pro plus 6.0 software was used to measure the depth and half width
of the molten pool. Figure 4 presents the definition of depth (D) and half width (W), tracks number
(1, 2 . . . n − 1, n). The average depth Dav and average half width Wav are calculated as Equations (4)
and (5), respectively:

Dav =
1

n− 2

n−1

∑
2

Di (4)

Wav =
1

n− 2

n−1

∑
2

Wi (5)

where Dn, Wn are the depth and half width of the nth track, respectively. i = 2, 3, · · · n− 1
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3. Results and Discussion

3.1. Density

Relationship among relative density, scanning speed, and hatch spacing has been investigated.
Figure 5 gives the relative density of SLMed struts fabricated at different hatch spacings and scanning
speeds. Clearly, the relative density with scanning speed of 600–1000 mm/s are always below 99.0%.
Further increasing the scanning speed, the density of SLMed struts is improved effectively. The relative
density is always up to 99.0% and not significantly be affected the scanning speed if the scanning
speed is in range of 1400–3000 mm/s. Besides, relative density is less dependent on hatch spacing as
the scanning speed increasing over 1200 mm/s. Compare with the metallograph of SLMed struts with
different hatch spacings and scanning speeds, it can be found that there are many spherical pores in
SLMed strut when the hatch spacing and scanning speed are small, e.g., high input energy (Figure 6).
The higher the input energy, the higher and larger the pores. More metallic vapor generated due to
high energy input. The intensity of liquid metal flowing also leads to the formation of pore. Most of
the pores are located at the powder-supported area. When the scanning speed is 3000 mm/s, there are
less pores in all of the samples.
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3.2. Molten Pool Morphology

The average depth and half width of molten pools with different scanning speed and hatch
spacing have been studied. Figure 7 shows the variation trend of the measured average depth and half
width of molten pools under different processing parameters. Obviously, if the hatch spacing is kept
constant, both the average depth and the width of molten pools decrease with the increase of scanning
speed. But, the dependence of average half width on scanning speed becomes weak as the scanning
speed arrives a definite value. When the scanning speed is kept constant, the molten pool has deeper
depth and wider width under smaller hatch spacing.
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Accroding to Equations (1) and (2), the Ra and Rz of the samples with different processing
parameters have been calculated. Figure 8 shows the cross-sectional morphology of molten pool of the
SLMed samples fabricated using different scanning speed at a fixed laser power of 200 W and a hatch
spacing of 0.06 mm. The depth and half width of molten pool of different tracks were measured and
the results are shown in Figure 9, except for the first and the last track (totally 23 tracks in each layer
when the hatch spacing is fixed at 0.06 mm).
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It can be seen that half width and depth of the molten pools at the tracks ranging from 18th to
22nd are larger than that of other tracks. As illustrated in Figure 4, all of these tracks are near to the
powder-supported zone. For a Gaussian beam with spot diameter of d, the maximum temperature
(Tmax) in the center of the beam can be calculated by Equation (6) [26]:

Tmax =

√
2AId

K
√

π
tan−1

√
2kt
d

(6)

where A is laser absorptivity coefficient, I is laser intensity, K is thermal conductivity, k is thermal
diffusivity of molten material, and t is interaction time between laser beam and metal powders. Due to
the fully solidified part exhibits higher thermal conductivity than the loose powder [27], the maximum
temperature of powder-supported zone Tp

max is higher than that of solid-supported zone Ts
max, e.g.,

Tp
max > Ts

max (7)

Therefore, the big size molten pool that is generated in powder-supported zone. However, the
half width of molten pool changed more significantly than that of the depth. This is due to the fact that
the liquid metal has good wettability and flowability at high temperature, which leads to the wide
spread. Furthermore, the large difference exists between them when a low scanning speed is applied.
This is because that the energy input is large under a low scanning speed, resulting in the significant
effect of thermal conductivity.

3.3. Surface Roughness

The arithmetic average roughness (Ra) and peak-to-valley height roughness (Rz) of lower surface
of SLMed struts that were fabricated by different processing parameters are shown in Figure 10.
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For the strut with inclined angle α, the upper and lower surface roughness caused by the “stair
stepping effect”, named as theoretical average roughness Rat and peak-to-valley height roughness RZt,
as shown in Figure 11, can be calculated from Equations (9) and (10):

Rat =
1
L

∫ L

0
| f x|dx =

1
4

δcos(α) (8)

Rzt = δcos(α) (9)

In this study, Rat is about 3.536 µm and RZt is 14.142 µm. However, from Figure 10, it can be
found that Ra and Rz are much larger than Rat and RZt, respectively, indicating other causes that
significantly influence the surface roughness. Furthermore, the curves in Figure 10 show a similar
trend: when the applied laser power and hatch spacing are fixed, as increasing the scanning speed,
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Ra and Rz increase firstly, and then decrease, if the scanning speed is large enough, then the curves
turn stable.Materials 2018, 11, x FOR PEER REVIEW  8 of 13 
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Figure 11. The surface roughness caused by the “stair stepping effect”.

During SLM, the lower surface roughness is determined by the laser penetration and infiltration
effect, as shown Figure 12. The laser penetration has little effect on the surface roughness since the
penetration depth is same for same process parameters, e.g., it almost equals to the “stair stepping
effect”. However, the infiltration effect influences the surface roughness significantly. If the scanning
speed is very low, such as 600 mm/s, the interaction time of t, e.g., d/v increases, the temperature
of the molten pool center Tmax also increases, leading to a longer lifetime of molten pools as well as
good wettability and flowability. Therefore, more liquid infiltrates into the powder gaps, inducing
significant infiltration effect. The liquid fills the gaps very well, inducing plate surface and small surface
roughness, as shown in Figure 12a. As the scanning speed increases, the infiltration effect becomes
weak, inducing uneven surface and large Ra and Rz, as shown in Figure 12b. Further increasing the
scanning speed, the infiltration effect is too weak to bond the powders, Ra and Rz decreases, as shown
in Figure 12c.
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Figure 12. The schematic diagram of lower surface roughness caused by laser penetration and
infiltration effect. (a) Low scanning speed; (b) Middle scanning speed; and, (c) High scanning speed.

There is only little difference in surface roughness as hatch spacing changes, except for the hatch
spacing of 0.04 mm. The reason may attribute to that large hatch spacing has little thermal accumulation
effect on the adjacent tracks, so the infiltration effect almost same for the same scan speed.

Figure 13 gives the variation in upper surface roughness. The upper surface roughness Ra and
Rz are almost constant under different scanning speed and hatch spacing. For the upper surface
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roughness, “stair stepping effect” is generally considered as the main cause [28]. But, datasets in
Figure 13 shows a small deviation from Ra and a large deviation from Rz. This may be attributed to
the bonded particles and balling on the stair steps, as shown in Figure 14.
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As schematically illustrated in Figure 11, Rat and RZt are theoretical average roughness and
peak-to-valley height roughness of upper surface on ideal condition, respectively, i.e., no particles or
balling on the stair steps. Clearly, bonded particles or balling will change the profile of upper surface.
Assuming that the real profile of the surface is denoted as F(x) and the largest value of F(x) is F(u)
(as shown in Figure 15). The increment of Ra and Rz can be calculated as:

∆Ra =
1
L

∫ L

0
|Fx− f (x)|dx =

1
L

∫ L

0
|Fx|dx− 1

4
δcos(α) (10)

∆Rz = F(u)− δcos(α) (11)
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upper surface.

If F(u) > RZt, ∆Ra > 0 and ∆Rz > 0. In this study, the average powder size (31.4 µm) is about
two times of Rzt, so the bonded particles on the stairs will lead to F(u) is bigger than RZt. The deviator
brought by bonded particles cannot be ignored, especially for the starting powders with large particle
size. In addition, the balling will become the key factor for the roughness of upper surface under high
scanning speeds.

When compared with Figures 10 and 13, the lower surface quality is worse than upper surface,
indicating that much more attention should be paid to improve the lower surface quality.

3.4. Dimensional Accuracy

Figure 16 shows the effect of scanning speed and hatch spacing on the dimensional deviation of
the SLMed struts. It can be seen that the strut dimensional deviation decreases with the increase of
the scanning speed if the hatch spacing is fixed, an inflection point, et al., vc, can be found in each
curve. If the scanning speed is lower than vc, the dimensional deviation decreases rapidly with the
increase of the scanning speed. If the scanning speed is larger than vc, the dimensional deviation
almost keeps constant with the increase of the scanning speed. The smaller the hatch spacing, the
larger the vc. When comparing Figure 16 with Figures 7b and 10, it can be found that they have similar
shape, suggesting that the width of molten pool and surface quality are the key factors that leading to
size deviation of SLMed samples. In order to clarify the relationship among molten pool morphology,
upper and lower surface quality, and dimensional accuracy, Pearson’s Correlation coefficient analysis
was applied. The Ra is taken to represent the surface quality. Dimensional deviation Sa, Ra and average
width of molten pool d are calculated as follows:

∆Sa = Sa − 0 ∆Wav = Wav − d ∆Ra = Ra − Rat (12)
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The calculated Pearson’s correlations were presented in Table 4.

Table 4. Pearson’s Correlation coefficient.

Pearson’s Correlation ∆Ra of Upper Surface ∆Ra of Lower Surface ∆Wav ∆Sa

∆Sa −0.03063976 0.7003351 0.7395423 1

Clearly dimensional accuracy has strong correlation with lower surface quality and width of
molten pool. A strut with small molten pool and good surface quality has high dimensional accuracy.
According to the analysis, high scanning speed can satisfy the requirements. Therefore, high scanning
speed should be applied to decrease the dimensional deviation when the inclined strut is fabricated.

4. Conclusions

Selective laser melting of AlSi10Mg inclined struts has been carried out in this study. The influence
of scanning speed and hatch spacing on the molten pool evolution, upper and lower warding surface
roughness, as well as the dimensional deviation of the SLMed samples was investigated systemically.
Based the investigations, the following conclusions can be drawn as follows:

(1) Both the average depth and half width of molten pool decrease as the scanning speed increases.
But, the dependence of the half width becomes weak when the scanning speed is high enough.

(2) Bigger molten pool is formed and the half width changed greatly than that of the depth when
laser irradiates from solid-supported zone to powder-supported zone.

(3) The lower surface quality is deteriorated under low scanning speed due to infiltration effect.
The upper surface roughness has small fluctuation under different hatch spacing and scanning
speed due to the bonded particles and balling on stair step. The surface roughness of lower is
larger than that of upper.

(4) Dimensional accuracy has strong correlation with lower surface quality and width of molten
pool. The dimensional accuracy can be improved by applying high scanning speed when the
inclined strut was fabricated.

(5) SLMed AlSi10Mg inclined strut with low surface roughness and high dimensional accuracy as
well as high density can be achieved simultaneously by using high scanning speed.
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