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Abstract: Surface modification on Mg alloys is highly promising for their application in the field of
bone repair. In this study, a new metal–organic framework/MgF2 (Mg-MOF-74/MgF2) composite
coating was prepared on the surface of AZ31B Mg alloy via pre-treatment of hydrofluoric acid
and in situ hydrothermal synthesis methods. The surface topography of the composite coating is
compact and homogeneous, and Mg-MOF-74 has good crystallinity. The corrosion resistance of this
composite coating was investigated through Tafel polarization test and immersion test in simulated
body fluid at 37 ◦C. It was found that Mg-MOF-74/MgF2 composite coating significantly slowed
down the corrosion rate of Mg alloy. Additionally, Mg-MOF-74/MgF2 composite coating expresses
super-hydrophilicity with the water contact angle of nearly 0◦. In conclusion, on the basis of MgF2

anticorrosive coating, the introduction of Mg-MOF-74 further improves the biological property of
Mg alloys. At last, we propose that the hydrophilicity of the composite coating is mainly owing to
the large number of hydroxyl groups, the high specific surface area of Mg-MOF-74, and the rough
coating produced by Mg-MOF-74 particles. Hence, Mg-MOF-74 has a great advantage in enhancing
the hydrophilicity of Mg alloy surface.

Keywords: magnesium alloys; corrosion resistance; hydrophilicity; metal organic framework;
composite coating

1. Introduction

Magnesium (Mg) alloys have drawn interest as biomaterials to repair bone defects in recent
years [1–5]. Compared to other biomaterials, such as titanium alloys and stainless steel, Mg alloys
have a lot of advantages: (i) Mg alloys are much closer to natural bone in density and elastic modulus,
eliminating the stress shielding effects [6–8]; (ii) Mg2+ is essential to human beings [9]; (iii) because
of degradability of Mg in the human body, implants made of Mg alloys will not require a secondary
removal surgery [10]. However, their disadvantage as implants is their poor corrosion resistance,
greatly hindering their widespread clinical application so far.

Surface modification of Mg alloys using a biocompatible coating has shown to be a promising
method, which can lower the corrosion rate, and also improve the interaction between implant and
tissue [11]. Thus far, a variety of materials—such as bioactive ceramics [12], bioinert ceramics [5],
MgF2 coating [13], anode oxide film [14], biodegradable polymers [4,15], etc.—have been used
as a coating material. Among them, MgF2 coating is a common one because of simple process,
low cost, and good corrosion resistance [16–19]. Recently, considerable efforts have been made to
prepare composite coating of MgF2 and other materials for better property. Ren et al. synthesized
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a double layered composite coating of calcium phosphate glass/MgF2 on AZ31 substrate by
pre-treatment of hydrofluoric acid and sol-gel dip coating method, showing the improved corrosion
resistance [20]. Feng et al. prepared PRC-HA/MgF2 coating on Mg-Zn-Ca alloy by pulse reverse
current electrodeposition based on MgF2 coating, improving the corrosion resistance and the
bioactivity [21]. However, a hydrophilic surface is believed to be important for bone repair biomaterials,
it can improve the biocompatibility of implant in blood [22], and it is also beneficial for bone cells
adhesion and proliferation to promote further bone growth [23,24]. There have been many studies on
hydrophilicity surface of titanium alloys [25–27], but the study of hydrophilicity on magnesium alloys
is relatively less [28]. So far, few studies have been published about the hydrophilicity coating of Mg
alloys based on MgF2.

Metal–organic frameworks (MOFs), comprising of metal ions and various organic ligands,
have been used over past several years in many fields, such as gas separation [29], drug delivery
systems [30–32], corrosion protection of metals [33,34], and so on. Due to the excellent characteristics
of MOFs with high specific surface area and various functional groups, some MOFs are especially
biocompatible, it is possible to introduce MOF as the hydrophilicity coating.

The purpose of this study is to improve both hydrophilicity and corrosion resistance of Mg
alloys intended as implant. Here, a new Mg-MOF-74/MgF2 composite coating was fabricated by
pre-treatment of hydrofluoric acid and hydrothermal in situ growth methods. Mg-MOF-74 is a
classic biocompatible MOF material constructed with Mg2+ ion and 2,5-dihydroxyterephthalic [35].
It is selected here because: (i) Mg-MOF-74 contains the same metal Mg with MgF2 and Mg alloy,
avoiding the introduction of other disadvantageous metals and being helpful to the formation of
compact composite coating as well; (ii) a large number of hydroxyl groups on the outer and pore
surface of Mg-MOF-74 might be beneficial to improve hydrophilicity; (iii) it has big surface area,
good biocompatibility, and stability. Hydrophilicity was investigated through water contact angle
testing, and the mechanism was discussed. The study on corrosion resistance was performed using
an electrochemical test and the H2 gassing experiment in simulated body fluid (SBF) at physiological
temperature, respectively.

2. Materials and Methods

2.1. Reagents and Materials

AZ31B Mg alloy (composition: 2.5–3.5 Al, 0.6–1.4 Zn, 0.2–1.0 Mn, 0.04 Ca, 0.08 Si, 0.003 Fe, 0.001 Ni,
0.01 Cu, Mg, all in wt. %) was purchased from Luoyang Shengte Metalware Co., Ltd. (Luoyang, China).
2,5-dihydroxyterephthalic acid (98%), sodium hydrogen carbonate (99.8%), potassium chloride (99.5%),
di-potassium hydrogen phosphate trihydrate (99%), magnesium chloride hexahydrate (98%), calcium
chloride (96%), sodium sulfate (99%), and tris-hydroxymethyl aminomethane (AR) were bought
from the Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China). Magnesium nitrate
hexahydrate (99%) and anhydrous methanol were bought from the Tianjin Hengxing Chemical Reagent
co., Ltd. (Tianjin, China). Ethanol and sodium chloride (99.5%) were bought from the Tianjin Chemical
Reagent Supply and Marketing Company (Tianjin, China). Hydrofluoric acid (40%) was bought from
the Luoyang Haohua Chemical Reagent Co., Ltd. (Luoyang, China). N,N-dimethylformamide (99.5%)
was bought from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Hydrochloric acid
(36–38%) was purchased from the Zhengzhou Paini Chemical Reagent Factory (Zhengzhou, China).

2.2. Instrumentation

The phases of the samples were analyzed on a Bruker D8 Advance X-ray diffractometer
(Cu-Kα radiation) with the scan speed and step of 10◦·min−1 and 0.02◦, respectively. The surface,
cross-sectional morphologies and elemental composition of the coating were observed by scanning
electron microscopy (SEM, FEI INSPECT F50, Hillsboro, OR, USA) equipped with energy dispersive
X-ray spectrometer (EDS, BRUKER QUANTAX 400, Karlsruhe, Germany). Electrochemical tests were
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carried out using an electrochemical workstation (RST5000, Zhengzhou Shiruisi Inc., Zhengzhou,
China) with a three-electrode system. In immersion testing, a simple setup was made by ourselves to
record the evolved hydrogen volumes [36]. The static water contact angles were measured by using
a contact angle meter (JC2000D1, Shanghai Zhongchen Inc., Shanghai, China) to examine surface
wettability of all samples.

2.3. Sample Preparation

Pretreatment of Mg Alloy: AZ31B Mg alloy was cut into 20 × 20 × 2 mm sheets as substrates.
Then Mg alloy sheet was ground sequentially with 240#, 600#, and 1000# silicon carbide paper. Next,
the sheet was rinsed ultrasonically in ethanol for 15 minutes. At last, it was washed with deionized
water and dried in air.

Preparation of MgF2 coating: To obtain the MgF2 coating, the treated substrate was immersed in
40% (v/v) hydrofluoric acid at room temperature for 24 h. The specimen was later rinsed in deionized
water and dried in the air.

Fabrication of Mg-MOF-74/MgF2 composite coating: Mg-MOF-74 coating was provided by
hydrothermal synthesis method [37], and the preparation of reaction solution is as follows. Magnesium
nitrate hyxahydrate (2.5 mmoL) and 2,5-dihydroxyterephthalic acid (0.8 mmoL) were dissolved in
a solvent mixture of N,N-dimethylformamide (60 mL), ethanol (4 mL) and deionized water (4 mL).
The solution was transferred to an autoclave. Then specimen above was dipped vertically into the
solution in an oven for 24 h at 125 ◦C to yield Mg-MOF-74 crystals on the MgF2 coating. The process
of purification and activation is as follows: the specimen with Mg-MOF-74/MgF2 composite coating
was steeped in anhydrous methanol for 12 h, then this sample was treated under vacuum at 100 ◦C
for 3 h to remove the solvent molecules from the pores of Mg-MOF-74. The process on fabrication of
Mg-MOF-74/MgF2 composite coating is illustrated schematically in Figure 1.
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Figure 1. Schematic diagram of the preparation process of Mg-MOF-74/MgF2 composite coating.

2.4. Corrosion Resistance Study

Tafel polarization tests: A three-electrode system was employed, where the samples (with 1 cm2

exposed area), saturated calomel electrode (SCE), and a platinum wire served as the working electrode
(WE), reference electrode (RE), and counter electrode (CE), respectively. The solution was SBF at 37 ◦C,
which was made up according to previous studies [38], and the information about reagents used can
be found in Section 2.1 above. Tafel polarization tests were performed at a scan rate of 0.5 Mv·s−1, and
the samples were immersed in the SBF solution for about 30 min to obtain an electrochemical steady
state before the tests.
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Immersion tests: The samples were immersed separately in SBF solution controlled with a water
bath at 37 ◦C. The SBF volume to the exposed area of the sample was 100 mL·cm−2. The volumes of
hydrogen produced were recorded at different times to investigate the corrosion resistance of samples.

2.5. Hydrophilicity Study

In the process of water contact angle measurements, 1 µL of water was dropped on the surface
of samples, and then the images of the droplet were captured for 5 s after dropping. Three spots
were chosen at random on each sample surface to make the measurement and the results obtained
were averaged.

3. Results and Discussion

3.1. Microstructure and Composition of Coating

Figure 2a–c depicts the surface morphologies of uncoated, MgF2-coated and Mg-MOF-74/
MgF2-coated Mg alloys. As shown in Figure 2b, the scratch caused by the grinding is still obvious
after hydrofluoric acid etching, because the MgF2 layer is very thin. It also can be seen from the
cross-sectional micrograph of Mg alloy substrates with MgF2 coating (Figure 2d). Moreover, a
dense intergrown Mg-MOF-74 crystal layer is observed on the MgF2 coating (Figure 2c,e). It can
be attributed to that Mg source in MgF2 could provide activated sites to connect with organic ligands,
while Mg source in reaction solution is employed for growth of Mg-MOF-74 coating as well, named
‘dual-Mg-source’ method. Notably, this method not only benefits the coating compactness, but also
enhances the binding force between coating and substrate [39,40]. The EDS spectrum on MgF2 middle
layer (area circled in Figure 2e) shown in Figure 2f displays the existence of fluoride, suggesting that
MgF2 still existed after Mg-MOF-74 was coated onto it.
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Figure 2. SEM images. The vertical view of (a) bare Mg alloy, (b) MgF2-coated Mg alloy, and
(c) Mg-MOF-74/MgF2-coated Mg alloy; the cross-sectional view of (d) MgF2-coated Mg alloy and
(e) Mg-MOF-74/MgF2-coated Mg alloy; (f) the EDS spectrum on MgF2 middle layer.

Figure 3a depicts the X-ray diffraction (XRD) pattern of the Mg-MOF-74 powder collected at the
bottom of autoclave, produced in the process of Mg-MOF-74 coating preparation. The peaks at 7.5◦

and 12◦ match well with the characteristic peaks of Mg-MOF-74 in literature [41]. The XRD pattern
of Mg-MOF-74 powder almost does not change after seven days of immersion in SBF (Figure 3b).
It suggests that Mg-MOF-74 is stable enough in SBF. As can be seen in Figure 3c, the pattern of the
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Mg-MOF-74/MgF2 coated Mg alloy agrees with the Mg-MOF-74 powder and Mg (marked with *,
JCPDS No. 65-3365), indicating that the outer coating consisted mainly of crystalline Mg-MOF-74.
However, the characteristic peaks of Mg-MOF-74 in Mg-MOF-74/MgF2 coating become weaker and
shift slightly to the right compared to the powder sample. It is most likely due to the thin crystal film
formation of Mg-MOF-74.Materials 2018, 11, x FOR PEER REVIEW  5 of 9 
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3.2. Corrosion Resistance Property

Electrochemical test: Tafel polarization test is a common electrochemical test used to investigate
the corrosion resistance property of Mg alloy. The high corrosion potential (Ecorr) and low corrosion
current density (icorr) indicate the good corrosion resistance [42]. Figure 4 shows the Tafel polarization
curves of different samples in SBF solution at 37 ◦C, and the Ecorr and icorr obtained are summarized in
Table 1. The Ecorr values of the MgF2-coated and Mg-MOF-74/MgF2-coated Mg alloys are −1.52 V
and −1.54 V, which are higher than that of the uncoated Mg alloy (−1.65 V). These two coated Mg
alloys present two orders of magnitude reduction on icorr values (1.19 × 10−6 and 6.46 × 10−6 A·cm−2)
compared to the uncoated one (2.18 × 10−4 A·cm−2). It indicates that the MgF2 and Mg-MOF-74/MgF2

composite coatings could obviously enhance the corrosion resistance of Mg alloys.
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Table 1. Results of Tafel polarization tests in SBF

Sample Ecorr (V vs. SCE) icorr (A·cm−2)

Uncoated Mg alloy −1.65 2.18 × 10−4

MgF2-coated Mg alloy −1.52 1.19 × 10−6

Mg-MOF-74/MgF2-coated Mg alloy −1.54 6.46 × 10−6

Immersion test: H2 will be produced when Mg alloy is in corrosive medium, and the larger
the hydrogen volume is, the more serious the corrosion [4]. Herein, immersion test was carried
out to further evaluate the corrosion resistance of the composite coating. Figure 5 shows the
hydrogen evolution results of the different specimens in SBF for 72 h. Hydrogen releases from
the Mg-MOF-74/MgF2-coated and MgF2-coated Mg alloy much slower than from the uncoated one.
The uncoated Mg alloy releases a far bigger amount of hydrogen than the Mg-MOF-74/MgF2-coated
and MgF2-coated Mg alloys in 72 h. It proves that both MgF2 layer and Mg-MOF-74/MgF2 composite
coating can protect effectively Mg alloy.
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MgF2-coated, and Mg-MOF-74/MgF2-coated Mg alloy.

The results of these two tests prove that Mg-MOF-74/MgF2 composite coating could obviously
enhance the corrosion resistance of Mg alloy, although its anticorrosion effect is slightly worse than that
of single MgF2 coating. It is potentially due to partly dissolution of MgF2 layer during the Mg-MOF-74
synthesis, leading to greater probability of pit corrosion.

3.3. Hydrophilicity

The good hydrophilicity surface of bone repair implants is beneficial for bone cells adhesion
and proliferation, promoting further bone growth. The water contact angle is often used to evaluate
the hydrophilicity of material surface. Moreover, the smaller the contact angle is, the better the
hydrophilicity [43]. Figure 6 shows the photographs of water droplets on the surfaces of uncoated,
MgF2-coated and Mg-MOF-74/MgF2-coated Mg alloy samples. The surface wettability of Mg
alloy is obviously changed after being coated. The contact angles of the uncoated, MgF2, and
Mg-MOF-74/MgF2 coated samples are around 87.4◦, 52.3◦, and 0◦, respectively, indicating the outer
Mg-MOF-74 coating is superhydrophilic. According to previous study [44], hydrophilicity is connected
with chemical constitution, microstructure and roughness. The superhydrophilicity of Mg-MOF-74
can be attributed to the points as follows: (i) the massive hydroxyl groups exposed on the pore surface
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of Mg-MOF-74, which can form hydrogen bond with water; (ii) the high specific surface area of
Mg-MOF-74 as a MOF material [45]. According to the Wenzel model [44], a high specific surface
area leads to excellent hydrophilicity; (iii) the rough coating produced by Mg-MOF-74 particles could
decrease the contact angle between the water drop and the solid surface. Therefore, Mg-MOF-74 has
great advantage to increase the hydrophilicity of Mg alloy surface.Materials 2018, 11, x FOR PEER REVIEW  7 of 9 
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4. Conclusions

In this work, the Mg-MOF-74/MgF2 composite coating is fabricated on the AZ31B Mg alloy
surface by pre-treatment of hydrofluoric acid and hydrothermal in situ growth methods. This coating
has greatly improved the anti-corrosion and hydrophilicity of Mg alloys. In this composite coating, the
role of MgF2 is as an anticorrosion coating to lower degradation rate. Mg-MOF-74 mainly plays a part
in improving the hydrophilicity, which is probably conducive to bone cell adhesion and proliferation on
Mg alloys. Furthermore, the mechanism has been discussed and we propose that the massive hydroxyl
groups exposed on the pore surface, the high specific surface area of Mg-MOF-74, and the rough
coating produced by Mg-MOF-74 particles contribute mainly to improve hydrophilicity of the coating.
Especially, this work would offer a thought for the application of MOFs to bone tissue engineering.
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