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Abstract: The conductivity mismatch in the composite insulation of high voltage direct current
(HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown.
Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of
cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning
electron microscopy, and their trap parameters are characterized using thermal stimulated current
(TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC
concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear
conductivity, more than one order of magnitude higher than that of pure LSR with improved
temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and
dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to
those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced
the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the
sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and
electric field distribution within the HVDC cable accessories, thus improving the reliability of the
HVDC cable accessories.

Keywords: cable accessories; liquid silicone rubber; SiC/LSR nanocomposites; dielectric properties;
electric field distribution; thermal stimulated current test

1. Introduction

High voltage direct current (HVDC) transmissions have attracted increasing attention because of
their many advantages [1–3], such as large capacity, long distance, fast and flexible power regulation,
high transient stability, and low line loss. HVDC cables are indispensable to HVDC systems and have
been widely used in asynchronous networks, underground power grids, and submarine transmission
cables recently [4–6].

The operational safety and reliability of HVDC cables is very important for the stability of the
HVDC transmission network [7]. Cable accessories have always been the weakest part of HVDC cables
because of their complex insulation structure, where most failures occur [8,9]. The composite insulation
of cable accessories generally comprises cross-linked polyethylene (XLPE; cable insulation) and silicone
rubber (SR; reinforced insulation of accessories). Under DC voltage, the electric field distribution of
cable accessories only depends on the conductivity of the composite insulation and the interface space
charge [10]. Moreover, the conductivity is severely affected by temperature and electric field strength,
while the dependence of two materials is different [11–13]. In general, the conductivity of XLPE is one
or two orders of magnitude higher than SR insulation, which easily leads to electric field distortion or
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even insulation breakdown [14,15]. Further, it is difficult to realize uniform electric field distribution of
cable accessories by varying the temperature and electric field stress. Nevertheless, the application
of nanocomposite dielectrics provides a solution for the conductivity matching problems in HVDC
cable accessories.

MgO/XLPE nanocomposites as main insulators for ±500 kV HVDC cables have been successfully
developed in Japan [16,17]. ABB Company has added a nonlinear transitional layer between the main
insulation of the cable and the reinforced insulation of the cable accessories to match the conductivity
of XLPE/SR [18,19]. This additional layer realizes uniform electric field distribution within the cable
accessories and reduces the space charge on the interface. Nano modification has also been widely
used to improve various properties of materials, such as thermal conductivity, flame retardancy,
and dielectric and mechanical properties [20–23]. Numerous related experimental studies have been
reported globally. For example, preparing XLPE composite dielectrics by adding a small amount
of nanoparticles (such as SiO2, ZnO, Al2O3, and MgO) has achieved a certain degree of success in
improving the insulation properties of these dielectrics [24–26] and suppressing the space charge.
These nano modification studies mainly focus on cable insulation (XLPE), and research on nano
modification of reinforced insulation of cable accessories (SR) has been relatively scarce. In this study,
a nanocomposite dielectric was prepared for insulation of cable accessories using SiC nanoparticles as
the filler and liquid silicone rubber (LSR) as the matrix, achieve a conductivity matching with XLPE
and promoting uniform distribution of the electric field within the DC cable accessories to improve the
safety and reliability of HVDC cable accessories.

2. Materials and Methods

2.1. Sample Preparation

POWERSIL®737 manufactured by Wacker Chemical Co., Ltd. (Munich, Germany), was used
for sample preparation. This is an A/B two-component addition type LSR and is different from
traditionally used high temperature vulcanization or room temperature vulcanization SR because of its
low viscosity, excellent mechanical properties, and outstanding dielectric behavior. SiC nanoparticles
were obtained from Hefei Kelvin Energy Technology Co., Ltd. (Hefei, China) (purity ≥ 99.9%, average
size 60 nm).

The flow chart of the preparation of the SiC/LSR nanocomposites is shown in Figure 1. The sample
preparation process was as follows: a weighed quantity of A/B rubber and a certain amount of SiC
nanoparticles were taken in a beaker and mixed using a multifunctional agitating machine and
evacuated repeatedly until no bubbles were generated. Then, the rubber was molded under a flat
vulcanizing machine for 10 min at 393 K and 15 MPa; the secondary vulcanization was performed
in a circulating air oven with fresh air supply at 473 K for 4 h. Finally, the samples were placed in a
drying oven for 24 h to eliminate the impurities and moisture. The samples had a radius of 50 mm and
a thickness of 0.3 mm.
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2.2. Dielectric Properties

The dielectric properties of the pure LSR and SiC/LSR nanocomposites were tested according to
the following aspects:

(a) Conductivity: The DC conductivity of the LSR and SiC/LSR samples was measured at room
temperature by a three-electrode system, as shown previously [27]. A high-voltage electrode was
connected to a DC source through a series of resistance. The DC source had an output voltage of
0–10 kV to obtain DC electric field conductivity varying from 0.1 to 30 kV/mm. The stable current (I)
was recorded after applying the DC voltage for 10 min. For accuracy, multiple samples were employed
to ensure repeatability, and the average values were considered.

(b) Dielectric spectrum: The dielectric spectrum of the pure LSR and SiC/LSR samples was
tested using a broadband dielectric/impedance spectrometer (Concept 80, Novocontrol Technologies,
Montabaur, Germany). The test frequency range was 10−1–107 Hz. The samples were deposited on
both sides of a gold electrode, and the diameter of the test specimen was 20 mm.

(c) Dielectric strength: The DC breakdown electric field strength of the samples was measured
with a two-electrode system, and the entire testing system was placed in an epoxy resin drum with
transformer oil (as shown in Figure 2). The test was based on Standardization Administration of China
(SAC) Publication No. GB/T 1408.2-2006, which is equivalent to standard IEC 60243. The Weibull
distribution was used to characterize the DC breakdown strength after discarding the maximum and
minimum values.
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Figure 2. Direct-current (DC) breakdown electric field strength test system.

(d) Thermal stimulated current (TSC) test: The SiC/LSR samples was polarized under an electric
field of 10 kV/mm at 333 K for 10 min to characterize their trap parameters. Afterwards, the temperature
was decreased to 273 K quickly using liquid nitrogen until the depolarization current of sample was
less than 1 pA. Then, the temperature was linearly increased to 393 K at 3 K/min and the TSC of the
sample was measured. The TSC measurement system included a Keithley 6517B electrometer, a DC
high voltage generator, vacuum equipment, and heating and cooling systems. The setup of the TSC
measurement system and test conditions are shown in Figures 3 and 4, respectively.
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Figure 4. Curves of temperature and electric field stress versus time of TSC test. 
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3. Results and Discussion

3.1. Microstructure

The micro morphology of the pure LSR and SiC/LSR nanocomposites with different SiC
concentrations was observed using scanning electron microscopy (SEM, SU8020 Hitachi High
Technologies Corp., Tokyo, Japan). The central area of observation and the cross-sectional SEM
photographs are shown in Figure 5. In the figure, we can observe that the dispersion of the SiC
nanoparticles in the matrix decreased with increasing SiC concentration because high concentrations
made the nanocomposite prone to agglomeration.
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Figure 5. Cross-sectional SEM photographs of pure LSR and SiC/LSR nanocomposites with different
SiC concentrations.

3.2. Conductivity

The curve of conductivity vs. temperature of the pure LSR and SiC/LSR nanocomposites
with different SiC concentrations at 20 kV/mm is shown in Figure 6. The relationship between
the conductivity (γ) and temperature of polymers can be expressed by the following equation:

γ = γ0Eα (1)

where γ0 is a polymer-related constant and α is the temperature coefficient.
Using Equation (1) for experimental data fitting calculations, the temperature coefficient of pure

LSR was 0.12, indicating that the conductivity of pure LSR showed little change with increasing
temperature, while the conductivity of XLPE increased by two orders of magnitude with increasing
temperature, which would lead to severe electric field distribution distortion and interface space
charge accumulation. The temperature coefficient of the SiC/LSR nanocomposites was 0.6. The SEM
results showed that agglomeration could occur when the nanoparticles had a higher concentration
of SiC; therefore, the 3 wt % SiC/LSR nanocomposites showed highest conductivity and the value
increased by more than one order of magnitude with increasing temperature. This indicated that the
SiC nanoparticles doping could effectively improve the nonlinear conductivity of LSR by varying the
temperature. Thus, the electric field distribution in cable accessories using SiC/LSR nanocomposites is
better than that using pure LSR.

The plot of conductivity vs. electric field strength at 70 ◦C for the pure LSR and SiC/LSR samples
with different SiC concentrations is shown in Figure 7.
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The relationship between conductivity and electric field stress can be obtained by the
following equation:

γ = AEβ (2)

By logarithmic transformation of Equation (2), we get

lgγ = lgA + βlgE (3)

where A is a constant related to properties of the material and β is the nonlinear coefficient. Thus,
there is a linear relationship between lgγ and lgE, and the slope of the changing curve β represents the
degree of nonlinear characteristics [27]. Using linear fitting for the two segments, the threshold electric
field, the electric filed stress at which nonlinear conductivity is observed, is represented as Ec and the
nonlinear coefficient β are shown in Table 1.
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Table 1. Nonlinear parameters of pure LSR and SiC/LSR nanocomposite samples.

Sample Ec (kV/mm) β

LSR 12 0.32
1 wt % SiC/LSR 10 0.58
3 wt % SiC/LSR 7 1.63
5 wt % SiC/LSR 8 1.21

As shown in Table 1 and Figure 7, the nonlinear coefficient of pure LSR was small and the
conductivity showed little change with increasing electric field stress. Further, the nonlinear coefficient
of the SiC/LSR samples was several times greater than that of pure LSR, and the value for the sample
containing 3 wt % SiC was the highest. As shown in Figure 7, the conductivity of the SiC/LSR samples
reached an inflection point at which nonlinear conductivity was observed. The electric field stress
value corresponding to this inflection point was called the threshold electric field. The SiC/LSR
samples with different SiC concentrations showed different values for the threshold electric field.
The 3 wt % SiC/LSR sample exhibited the best nonlinear conductivity and the lowest threshold electric
field (about 7 kV/mm). The nonlinear conductivity of pure LSR could be considered insignificant,
and its threshold electric field was 12 kV/mm. This indicated that the SiC nanoparticles doping could
improve the nonlinear conductivity of LSR and lower its threshold electric field.

The conductivity of insulation material was depended on the concentration of charge carriers,
the charge of the charge carriers, and charge mobility. The doping of nanoparticles has a great
influence on the charge mobility, while the charge of charge carriers is basically unchanged and the
concentration of charger carriers was determined by matrix material. The charge mobility is related to
temperature and the jump barrier height needed overcome. In the presence of an external electric field,
the jump barrier height could be decreased. When the threshold electric field was reached, the jump
barrier height obviously decreased. At this moment, the numbers of carriers increased greatly and
rapidly [28,29]. Therefore, a substantial increase in conductivity and polymers showed a nonlinear
relationship with the electric field. In addition, the SiC nanoparticles doping led to the overlapping of
the interface between adjacent nanoparticles. It is generally considered that the interface has a higher
conductivity than the nanoparticles and matrix. In the presence of an external electric field, many
charge carriers absorb sufficient energy to cross the potential barrier and participate in the conduction.

The conductivity of the SiC/LSR nanocomposites was higher than that of pure LSR by more
than one order of magnitude under the same electric field stress and this difference in conductivity
increased with increasing electric field stress. This showed that the addition of the SiC nanoparticles
could increase the sensitivity of LSR to electric field stress and reduce the conductivity mismatch
between the insulation of the cables and of the cable accessories caused by electric field stress changes,
thus improving the electric field distribution within the cable accessories.

3.3. Relative Permittivity and Dielectric Loss Factor

The relationship between relative permittivity/dielectric loss factor and frequency of the LSR and
SiC/LSR nanocomposites with different SiC concentrations is shown in Figure 8.

In Figure 8, the relative permittivity of the SiC/LSR nanocomposites was higher than that of pure
LSR in the given frequency range. Moreover, the SiC/LSR samples with higher SiC concentrations
showed a larger relative permittivity. The relative permittivity of the pure LSR and SiC/LSR samples
was both a fixed value with the increase of frequency.

The dielectric loss factor of the pure LSR and SiC/LSR nanocomposites showed the same trend in
the given frequency range, and the value of dielectric loss increased with increasing SiC concentration.
Both displacement and relaxation polarizations could be established in detail from these results.
The dielectric loss factor was high at low frequency (<1 Hz). As the relaxation polarization is
too difficult to build, the loss factor decreased and gradually stabilized with increasing frequency
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(10 Hz < f < 104 Hz). Then, because of the increased displacement polarization, the dielectric loss factor
increased at high frequency (105 Hz < f < 107 Hz).Materials 2018, 11, x FOR PEER REVIEW  8 of 11 
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3.4. DC Breakdown Strength

The Weibull distribution of the DC breakdown strength of the pure LSR and SiC/LSR samples
is shown in Figure 9. It could be seen the breakdown strength of pure LSR was higher than that
of the 3 wt% SiC/LSR sample. Because the SiC nanoparticles are semi-conductive, the increased
conductivity due to increased carrier mobility led to the formation of an internal discharge path in the
presence of an external electric field, which in turn resulted in the decreased breakdown strength of
the polymer dielectric.
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3.5. TSC

TSC tests were conducted to represent the trap parameters of the LSR nanocomposites. The TSC
curves of the pure LSR and 3 wt % SiC/LSR nanocomposites are shown in Figure 10.
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Under high temperature and DC electric field, the migrated carriers of the sample were easily
trapped by the polymer. On decreasing the temperature to 273 K rapidly using liquid nitrogen,
the trapped carriers were “frozen”. During the subsequent slow warming process, the trapped carriers
were able to “escape” because of thermal excitation, and the weak currents were recorded by the 6517B
electrometer (Keithley, Cleveland, OH, USA). By analyzing the TSC curve in Figure 10, trapped charge
could be obtained by the following equation:

QTSC =
∫ t1

t2

I(t)dt =
60
β

∫ T1

T2

I(T) dT (4)

where I(T) is the TSC current value; T1 and T2 are the initial and end temperatures, respectively; and β

is the temperature increase rate (3 K/min).
Meanwhile, the trap level could be calculated according to the half-width method by the

following equation:

E =
2.47T2

mk
∆T

(5)

where Tm is the temperature corresponding to the peak current, ∆T is the temperature difference
between the two half-peak values, and k is the Boltzmann constant [30]. The trap parameters of the
pure LSR and SiC/LSR samples are shown in Table 2.
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Table 2. Trap parameters of pure LSR and 3 wt % SiC/LSR samples.

Sample Peak Value
Current (pA)

Peak Value
Temperature (K)

Trap Charge
Quantity (nC)

Trap Level
(eV)

LSR 82.9 360 80.78 0.614
3 wt % SiC/LSR 65.9 339 59.80 0.583

As shown in Table 2 and Figure 9, the trap charge quantity and trap level of the SiC/LSR
nanocomposites were lower than those of pure LSR. The trap density and charge trap depth were also
decreased due to SiC nanoparticles provide the shallow traps. The trap parameters of the polymer
were closely related to their macroscopic dielectric properties [31]. The charge trap depth, which
controls the charge mobility, represents the required energy for carriers to jump from the trap energy
level to the specific energy level in which they can participate in electric conduction in nanocomposite.
Therefore, the probability of the charge carriers trapping of the SiC/LSR nanocomposites was reduced,
making more carriers participate in the conduction easily, thereby increasing the charge mobility.
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Thus, the SiC/LSR nanocomposites have better nonlinear conductivity and the reduction in energy
required corresponds to the lower threshold electric field of SiC/LSR nanocomposites. Specifically,
the DC conductivity was inversely proportional to the trap charge and the breakdown strength was
directly proportional to the trap level. Thus, the results of this study are in complete agreement with
previous results [32]. In summary, SiC nanoparticles doping could improve the sensitive dependence
of LSR to electric field stress and temperature changes while lowering the trap level and decreasing the
number of carriers trapped. As a result, the number of charge carriers involved in electric conduction
substantially increased microscopically and the conductivity of SiC/LSR nanocomposites significantly
increased macroscopically. This was beneficial for current matching with XLPE cable insulation and
uniformly improved the electric field distribution in cable accessories, thus improving their safety
and reliability.

4. Conclusions

Based on the experimental study of the dielectric properties of SiC/LSR nanocomposites,
the following conclusions can be drawn:

(1) SiC nanoparticles doping decreases the breakdown strength of LSR, greatly increases its
conductivity, and increases its relative permittivity and dielectric loss factor.

(2) SiC/LSR nanocomposites have better nonlinear conductivity characteristics than pure LSR,
as their temperature coefficient and nonlinear coefficients are greatly improved, which in turn
makes the distribution of the electric field more uniform in HVDC cable accessories.

(3) The introduction of SiC nanoparticles leads to the decrease in the trap level and trap charge of
LSR, which affects the transport of carriers in the polymers. The TSC test verifies that the trap
parameters have an important effect on the macroscopic dielectric properties of the polymer.
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