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Abstract: This study evaluates the fracture properties and rear-face strain distribution of nonreinforced
and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes:
sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the
concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations.
The penetration based on different projectile nose shapes is directly related to the impact force transmitted
to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of
concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced
by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress
transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete
according to the projectile nose shape was confirmed.
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1. Introduction

Front-side failure is obtained when a projectile strikes concrete. At this point, a compressive stress
wave is generated and radially transmitted to the rear face of the concrete. This compressive stress
wave is reflected as a tensile stress wave when it reaches the rear face. This action causes a decrease in
the magnitude of the compressive wave and an increase in the magnitude of the tensile wave. Cracks
and fractures will occur if the generated tensile stress exceeds the dynamic tensile strength of the
concrete and the strain limits at any point in the concrete matrix (Figure 1) [1]. Prior research classified
the local fracture modes of concrete as penetration, scabbing, and perforation failure [1–4].

The suppression of a missile perforation failure is generally considered a priority in the protective
design of military facilities. In civilian applications, maximizing human safety and minimizing
property damage in the event of concrete scabbing are a priority for general infrastructure design.
Therefore, a concrete specimen thickness that can prevent scabbing and perforation by projectile impact
is considered fundamental in protection design.

Various empirical formulae have been proposed by researchers to predict the penetration depth,
scabbing limit thickness, and perforation limit thickness of concrete based on various impact conditions.
Table 1 presents the modified National Defense Research Committee (NDRC), Hughes, Haldar and Hamieh,
and United Kingdom Atomic Energy Authority (UKAEA) prediction formulae for concrete penetration
depth and scabbing limit thickness. The local fracture of the concrete caused by a projectile impact is
primarily affected by two factors: (1) impact conditions (i.e., projectile diameter and mass, projectile nose
shape, and impact velocity) and (2) material properties of concrete (i.e., compressive strength, flexural
tensile strength, and specimen thickness). The existing empirical formulae focus on these two factors in
predicting the penetration depth and the limit thickness, as shown in Figure 2 [5–10].
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G: G-function, x: penetration depth (m), D, d: projectile diameter (m), M: projectile mass (kg), V, V0: projectile
impact velocity (m/s), fc: compressive strength (Pa), ft: tensile strength (Pa), s: scabbing limit thickness (m),
S: dynamic increased factor, I: impact factor, N: nose shape factor (Flat: 0.72, Blunt: 0.84, Spherical: 1.0, Sharp nose:
1.14), Nh: nose shape factor of Hughes formula (Flat: 1.0, Blunt: 1.12, Spherical: 1.26, Sharp nose: 1.39).
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The application ranges of these empirical formulae are limited by the data ranges associated
with their derivation. Regression techniques were applied to the development of equations for
calculating the scabbing and perforation limit thicknesses based on the penetration depth [11,12].
The accuracy of these empirical formula was recently improved, and research was conducted to widen
their application range.

Expanded applications include considering different projectile nose shapes (e.g., flat, blunt,
spherical, sharp, etc.) in predicting local fracture. Several researchers applied nose shape considerations
to the penetration depth calculations. Almusallam et al. [13] used a biconical projectile to determine
the impact resistance of a fiber-reinforced concrete (RC) composite slab based on the blending ratio
of steel and plastic fiber. The highest front- and rear-face failure areas and crack reduction effects
were observed when the steel-to-plastic fiber ratio was 2:1. Tai [14] conducted an impact test using
a flat projectile to evaluate the flexural tensile performance and impact resistance after steel fiber
reinforcement in normal concrete (NC) and reactive-powder concrete (RPC). The RPC showed a much
greater improvement in flexural tensile performance and impact resistance compared with the NC
following steel fiber reinforcement. Siddiqui et al. [15] performed impact tests using ogive and
biconical projectiles striking a steel-plate-reinforced RC slab. The perforation limit velocity for the
ogive projectile was lower than that of the biconical projectile.

Focusing more on formulation, Wen et al. [16] proposed a penetration depth equation (i.e.,
the University of Manchester Institute of Science and Technology (UMIST) formula) that included
quasi-static and dynamic resistance parameters and was appropriate for various projectile nose shapes
and a wide velocity range. In a subsequent study, Wen et al. [17] compared the UMIST formula,
which was derived using a flat projectile, with external experimental data to develop an advanced
UMIST formula that yielded reduced margins of error in the UMIST formula through variable
segmentation. Shiu et al. [12] performed an impact analysis using conical and flat projectiles and
discrete element methods (DEM). The predicted results obtained were consistent with the experimental
results, thereby confirming the applicability of DEM to penetration depth prediction based on the
projectile nose shape.

Thus, the empirical formulae for the concrete subjected to projectile impact predicts the penetration
depth according to the projectile nose shape, and the scabbing depth is predicted by the predicted value
of the penetration depth. Prior studies mainly investigated the improvement of the prediction accuracy
concerning normal concrete without fiber reinforcement according to the projectile nose shape and analyzed
the fracture properties of concrete, which were not present in the empirical formula, using the projectile
nose shape.
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However, the behavior of the fracture on the rear face of the concrete caused by the projectile impact
is affected by the stress wave transmitted to the rear face of the concrete. Therefore, the generation
and transfer distribution of the impact stress wave differ depending on the projectile nose shape and
considerably influence the fracture on the rear face of the concrete.

In addition, fiber-reinforced concrete restrains the fracture on the rear face of the concrete by the
offset of the impact stress wave and the reduction in the tensile strain caused by the improvement of
the flexural tensile performance and toughness (energy-absorbing capacity) [18,19].

In this study, the fracture pattern and the crack distribution on the cross section of the concrete
were observed after impact by three types of projectile (i.e., sharp, hemispherical, and flat nose shape)
on nonreinforced and hooked steel fiber-reinforced concrete. The fracture depth and the crater diameter
were evaluated. Furthermore, an analysis of the strain behavior on the rear face of the concrete and the
distribution of the impact stress according to the projectile nose shape was performed.

2. Experimental Program

Table 2 shows the experimental design, and Figure 3 shows the configuration of projectile nose
shapes used in this study. The sharp projectile from the carrier had a diameter of 25 mm, a nose length
of 15 mm, and a nose angle of 64.6◦. In addition, the hemispherical and flat projectiles had a diameter
of 25 mm. The mass of each projectile including the carrier was 66.8 g. The projectiles were made
of SKD11 (tensile strength: 820–850 σb/MPa, yield strength: 815–875 σb/MPa). The impact velocity
was controlled at 170 m/s, and the carrier was detached right before impact. The fabricated concrete
panel had a 700 mm width, 600 mm length, and 50 and 60 mm thicknesses. Rebar was not used in the
concrete panel.

Table 2. Experimental design.

Impact Condition Specimen Dimensions

Projectile Nose
Shape

Projectile
Diameter (mm)

Projectile
Weight (g)

Velocity
(m/s) Size (mm) Thickness

(mm)

Sharp
25

66.8
(including carrier) 170 700 × 600 (W × H) 50, 60Hemispherical

Flat
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of NC. This seems to have been due to the constraining effect of the reinforced fibers. 

Figure 3. Configuration of projectile nose shapes.

Table 3 gives the mix proportions of concrete. Nonreinforced concrete (NC) and hooked steel
fiber-reinforced concrete (HSFRC) panels, which were subjected only to hemispherical projectile impact
in a previous study, were fabricated [20,21]. The fiber volume fraction was 1.0%. A 0.40 water/binder
(W/B) ratio was used to achieve a compressive strength of 50 MPa (design compressive strength) at the
age of 28 days. Table 4 presents the mechanical properties of the materials. Ordinary Portland cement
and fly ash were used in the study. River sand with a density of 2.61 g/cm3 and a water absorption of
0.81% was used as the fine aggregate. Crushed gravel with a density of 2.65 g/cm3, a water absorption
of 0.76%, and a maximum size of 20 mm was used as the coarse aggregate. A polycarboxylic acid-based
superplasticizer was used to achieve sufficient concrete slump. The hooked steel fiber had a length
of 30 mm, a diameter of 0.5 mm, an aspect ratio of 60, and a tensile strength of 1140 MPa. Figure 4
illustrates the shape of the hooked steel fiber. Table 5 summarizes the details regarding the compressive,
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flexural, and split tensile strengths of the concrete. In addition, each value is an average value for three
tests. For the compressive strength, that of HSFRC was higher than that of NC. This seems to have
been due to the constraining effect of the reinforced fibers.

Table 3. Details of concrete mixes.

ID Fck (MPa) W/B S/a
Quantity of Materials (kg/m3) Fiber

W C FA S G Vf (%) (kg)

NC
50 0.4 0.55 220 440 110 774 655

- 0
HSFRC 1.0 78

NC: nonreinforced concrete, HSFRC: hooked steel fiber-reinforced concrete; Fck: design compressive strength of
concrete; W/B: water to binder ratio; S/a: the ratio of the fine aggregate volume to the total aggregate volume;
W: water, C: cement, FA: fly ash, S: fine aggregate, G: coarse aggregate; Vf: volume fraction.

Table 4. Mechanical properties of materials.

Materials Mechanical Properties

Cement Ordinary Portland cement, Density: 3.15 g/cm3, Fineness: 3200 cm2/g
Fly ash Density: 2.20 g/cm3, Fineness: 3000 cm2/g

River sand Density: 2.61 g/cm3, Water absorption: 0.81%
Gravel Crushed gravel, Maximum size: 20 mm, Density: 2.65 g/cm3, Water absorption: 0.76%

Superplasticizer Polycarboxylic acid type
Hooked steel fiber Length: 30 mm, Diameter: 0.5 mm, Aspect ratio: 60, Density: 7.80 g/cm3, Tensile strength: 1140 MPa

Table 5. Compressive, flexural, split tensile strength of concrete at the age of 28 days.

ID Compressive Strength (MPa) Flexural Strength (MPa) Split Tensile Strength (MPa)

NC 55.69 6.42 5.62
HSFRC 64.91 12.32 6.62
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Figure 4. Shape of the hooked steel fiber.

A twin-shaft mixer was used for concrete mixing. After dry mixing for 30 s with aggregate and binder,
the process was finished by dry mixing for 90 s with the hooked steel fibers. Final mixing was then carried
out for 300 s with admixture and water. Concrete compaction was performed by a vibrator. A slump value
of approximately 150 mm was secured in all fresh concrete. Segregation was not observed.

Figure 5 shows the high-velocity projectile impact test device (gas pressure type, R&D Support
Co., Ltd., Tokyo, Japan) used in this study. This device used a temporary spray method. Figure 5a,b
show the overall composition of the device and machine exterior. The gas chamber shown in Figure 5c
was filled with nitrogen gas at a pressure of 1.5 MPa. The specimen was fixed using clamps on the
specimen support, and the projectile was launched with a velocity of 170 m/s. The impact velocity
was measured using the velocity measurement system shown in Figure 5d. The residual velocity was
not measured because the experiments were planned for “no perforation”. Figure 5e illustrates the
support and clamp.
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Figure 6 depicts the measurement methods used to determine the failure mode, fracture depth,
and crater diameter. The crater diameter was determined as the average of the maximum and minimum
diameters (D1 and D2, respectively).

Figure 7 presents the position of the strain gauge (PL-60, Tokyo Sokki Kenkyujo Co., Ltd., Tokyo,
Japan) used to measure the rear-face strain. One gauge was attached at the projectile impact point (S0)
on the front face of the concrete panel to check the initial impact time. Seven additional gauges (S1–S7)
were attached to the rear face of the concrete panel at distances of 0–285 mm from the center of the rear
face. The sampling rate for the strain measurements was set to 200,000 Hz.
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3. Results and Discussion

3.1. Appearance of Fracture on Concrete

Figure 8 shows the impact fracture on the front face of the concrete panels by each projectile
nose shape.
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Figure 8. Impact fracture on the front face.

The sharp nose shape caused the deepest penetration because of its sharp tip and small surface
area. Conversely, the flat nose shape caused the shallowest penetration. The penetration depth for the
hemispherical nose shape was between the sharp and flat penetration depths. Each projectile nose
shape produced a similarly shaped indentation in the concrete.

Table 6 lists the impact fracture on the rear face of the concrete panels following the projectile
impact. For the 50 mm thick specimens, scabbing occurred in all the NC and HSFRC panels impacted
by the sharp, hemispherical, and flat projectiles. Although both concrete types showed scabbing,
the fiber-reinforced concrete had a smaller affected area. The fragment delamination was suppressed
by the fiber–matrix interaction [22–26].

For the 60 mm thick specimens, scabbing occurred in the NC panels impacted by the hemispherical
and flat projectile impacts. Scabbing did not occur following the sharp projectile impact. The impact by
the hemispherical nose shape resulted in a scabbing area larger than that caused by the flat nose shape.
Scabbing did not occur in the HSFRC panels because of the higher flexural tensile strength [27–29].
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Table 6. Impact fracture on rear face.

Projectile
Nose Shape

Thickness 50 mm Thickness 60 mm

NC HSFRC NC HSFRC

Sharp
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Figure 9 shows the cross section of the 50 mm thick concrete panel. For the sharp nose projectile
in the NC, cracks with a small slope were developed, and scabbing was small because the impact stress
was concentrated on the center of the cross section of the concrete panel. Meanwhile, scabbing for the
flat nose projectile was small because of the impact stress dispersion. In contrast, for the hemispherical
nose projectile, the region where scabbing occurred was the largest because of the large slope crack.
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The cracks inside the HSFRC, which were caused by the projectile impact, were reduced because
the flexural tensile performance was improved by the reinforcing fibers. In the case of the hemispherical
nose projectile, scabbing was restrained because the large slope crack could not reach the backside.

3.2. Fracture Depth and Crater Diameter

The measured penetration depths for the various projectile nose shapes were compared with the
values predicted using the modified NDRC and UKAEA formulae (Figure 10). As presented in Table 1,
the modified NDRC and UKAEA formulae predicted the local fracture based on a projectile nose shape
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factor. According to these relationships, the penetration depth increased as the projectile nose shape
factor increased. An impact by a sharp projectile, which had the highest nose shape factor, caused
the deepest penetration. The impact force was concentrated during collision and the penetration
depth increased because the impact area of a sharp projectile was small owing to the sharp nose shape.
The penetration depth tended to decrease as the nose shape factor decreased. The impact by the flat
projectile caused a shallower penetration because the large impact area distributed the impact force
more. The penetration depths measured in this study were similar to those predicted by the modified
NDRC formula. The penetration trend according to the projectile nose shape was similar to the results
predicted by both NC and HSFRC. However, the penetration depth values were slightly shallower
in HSFRC.
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Figure 10. The experimentally observed and predicted penetration depths.

Figure 11 illustrates the front- and rear-face fracture depths as a proportion of the specimen
thickness for the various projectile nose shapes. The penetration ratio increased as the projectile nose
shape factor increased. Although the sharp nose shape produced a higher penetration ratio than
did either the hemispherical or flat projectile nose shape, it did not result in significant scabbing.
The hemispherical nose shape, which caused a penetration shallower than that of the sharp nose shape,
resulted in the deepest scabbing.
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Figure 12 shows the front- and rear-face crater diameters. The values from the modified NDRC
formula were used as the projectile nose shape factors. The largest front-face crater diameter was
produced by the flat nose shape projectile with the smallest nose shape factor and increased as the
concrete thickness increased. Smaller projectile nose shape factors were thought to cause larger
front-face crater diameters because of the large shock area to the front face.
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The hemispherical projectile nose shape generated the largest rear-face crater diameter. Given its
large impact area and shallower penetration, the rear-face crater diameter generated by the flat nose
shape was thought to be smaller because the impact force transmitted to the rear face was distributed
over a larger area. Conversely, the rear-face crater diameter generated by the sharp nose shape was
thought to be the smallest because the impact force was concentrated in a smaller area, given its small
impact area and deep penetration.

Irrespective of the projectile nose shape, the front- and rear-face crater diameters were smaller
for the HSFRC panels than for the NC panels. This result was attributed to the higher flexural tensile
strength and the lower potential for scabbing in the fiber-reinforced concrete.

3.3. Rear-Face Strain Behavior

Figure 13 presents the rear-face strain for the 50 mm thick concrete specimens because of the projectile
impact. The gauge on the front face was broken by the projectile impact. Thus, the impact start time was
set to 1 ms. In addition, for the fracture behavior on the rear face of the concrete subjected to the projectile
impact, a compressive stress wave was transmitted to the rear face when the concrete was impacted by
a projectile, where it was transformed into a tensile stress wave. The rear-face compressive strain at the
initial stage of impact was converted into tensile strain over time. The gauges on the rear face were broken
as the concrete began to crack and fracture.

Figure 14 shows the relationship between the cracks on the cross section of the concrete and the
peak tensile strain on the rear face from the time–strain history curve for the 60 mm thick concrete
at the various gauge positions. Following the sharp projectile impact, the S1 gauge (0 mm from the
specimen center) was broken by concrete cracking. Cracking occurred inside the specimen near the
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S2–S3 gauges (50–95 mm from the specimen center), and the tensile strain was minimal near the S5–S7

gauges (190–285 mm from the specimen center). Similar to that of NC, the tensile strain of the S1 gauge
for the HSFRC was high because of the occurrence of cracks from the concentrated impact stress at the
center on the rear face of the concrete. However, the tensile strain sharply decreased after the S1 gauge.

Following the hemispherical projectile impact, the S1–S3 gauges (0–95 mm from the specimen
center) were broken by the large tensile strain, and the scabbing area was the largest. Compared to
that of NC, the tensile strain for the HSFRC was observed in a narrow area because the impact stress
affecting the center on the rear face of the concrete was reduced by the fiber reinforcement.

The tensile strain caused by the flat projectile impact at S3 and S4 (95 and 145 mm from the
specimen center, respectively) was lower than the strains owing to the sharp and hemispherical
projectile impacts, but higher for S5–S7 (190–285 mm from the specimen center). The peak tensile
strain caused by the flat projectile impact in S5–S7 was relatively higher than that of the sharp and
hemispherical projectile impacts because the impact stress was dispersed in a wide range owing to the
large impact area of the flat projectile. For the HSFRC, a tensile strain relatively higher than those of
the sharp and hemispherical nose projectiles occurred at the S3 gauge.

The impact force for the sharp nose shape was concentrated at the middle of the rear face,
but scabbing did not occur because the concentrated area of the impact stress was lower in the 60 mm
thick specimens compared to that in the 50 mm thick specimens. The impact force for the hemispherical
nose shape was also concentrated at the middle, but over a larger area than in the sharp impact case.
Meanwhile, the impact stress for the flat nose shape was distributed to the edges of the specimens.

The strain behavior and the stress wave transmitted to the rear face varied based on the projectile
nose shape and were thought to have a significant effect on the crack distribution of the cross section
of the concrete panel and the crater diameter on the rear face of the concrete. Irrespective of the
projectile nose shape, the overall tensile strain magnitude was lower for the HSFRC than for the NC
panel. The reinforcing fibers were thought to absorb the impact force, thereby reducing the overall
tensile strain.



Materials 2018, 11, 409 12 of 15Materials 2018, 11, x FOR PEER REVIEW  12 of 15 

 

  

 

Figure 13. Rear-face strain curve of NC. Figure 13. Rear-face strain curve of NC.



Materials 2018, 11, 409 13 of 15

Materials 2018, 11, x FOR PEER REVIEW  13 of 15 

 

(a) NC (b) HSFRC 

Figure 14. Relationship between cracks on the cross section and peak tensile strain on the rear face. 

4. Conclusions 

This study evaluated the influence of projectile nose shape on the strain behavior and fracture 
properties of fiber-reinforced concrete panels due to projectile impact. The following conclusions can 
be drawn: 

• The sharp projectile nose resulted in a deeper penetration than hemispherical and flat projectile 
nose by up to about 36% because of the concentration of the impact force. Conversely, the flat 
projectile nose resulted in shallower penetrations because of the distribution of the impact force. 
In addition, the scabbing depth and crater diameter on the rear face of the concrete were larger 

Figure 14. Relationship between cracks on the cross section and peak tensile strain on the rear face.

4. Conclusions

This study evaluated the influence of projectile nose shape on the strain behavior and fracture
properties of fiber-reinforced concrete panels due to projectile impact. The following conclusions can
be drawn:

• The sharp projectile nose resulted in a deeper penetration than hemispherical and flat projectile
nose by up to about 36% because of the concentration of the impact force. Conversely, the flat
projectile nose resulted in shallower penetrations because of the distribution of the impact force.
In addition, the scabbing depth and crater diameter on the rear face of the concrete were larger
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for hemispherical projectile impact than for other projectiles. Therefore, if the scabbing occurs in
concrete due to projectile impact, it is expected that the amount of the fragment by hemispherical
projectiles will be greatest.

• The tensile strain on the rear face obtained from the experimental result was widely distributed
as the projectile nose shape became blunter. The strain history on the rear face also differed in
each projectile impact because the propagation path of the impact stress that transmitted to the
rear face of the concrete was changed by the projectile nose shape. Therefore, the projectile nose
shape had a significant effect on the crack distribution and the crater diameter on the rear face of
the concrete.

• The penetration based on different projectile nose shapes was directly related to the impact force
transmitted to the rear face. Considering the additional effect of the tensile strain on the rear face
in predicting the fracture behavior, the scabbing caused by the projectile nose shape can more
accurately be predicted. Furthermore, the crater diameter on the rear face of the concrete can
be predicted.

• The tensile strain on the rear face of the concrete was reduced by the reinforcement of the hooked
steel fiber because of the absorption of the impact stress transmitted to the rear face of the concrete
by the hooked steel fiber. Furthermore, the strain history on the rear face is thought to more
effectively reflect the deformability of the fiber-reinforced concrete owing to the impact load.
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