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Abstract: The aim of this study was to clarify the effects of micro surface defects introduced by the
focused ion beam (FIB) technique on the fracture strength of ceramics. Three-point bending tests
on alumina-silicon carbide (Al2O3/SiC) ceramic composites containing crack-like surface defects
introduced by FIB were carried out. A surface defect with

√
area in the range 19 to 35 µm was

introduced at the center of each specimen. Test results showed that the fracture strengths of the
FIB-defect specimens depended on

√
area. The test results were evaluated using the evaluation

equation of fracture strength based on the process zone size failure criterion and the
√

area parameter
model. The experimental results indicate that FIB-induced defects can be used as small initial cracks
for the fracture strength evaluation of ceramics. Moreover, the proposed equation was useful for the
fracture strength evaluation of ceramics containing micro surface defects introduced by FIB.

Keywords: Al2O3/SiC; focused ion beam; surface defect; fracture strength; process zone size failure
criterion;

√
area parameter model

1. Introduction

Ceramics have excellent mechanical, tribological, and thermal properties in comparison with
metallic materials. However, there is a risk that failure initiates from defects due to the low fracture
toughness of ceramics. Therefore, it is very important to quantitatively evaluate the influence of defects
on fracture strength for maintenance management of ceramic components.

It is reported that the fracture toughness for small flaws is lower than that for large cracks. Thus,
conventional linear elastic fracture mechanics (LEFM) is not applicable for predicting the fracture
strength of ceramics containing small flaws [1]. Many authors have proposed various models for
the relationship between defect size and fracture strength [2–6]. Ando et al. proposed the process
zone size failure criterion and reported that the fracture strength of ceramics containing small surface
cracks could be evaluated by this criterion [7]. This model can predict the fracture strength of a
material having a semicircular crack introduced perpendicular to the tensile stress. Murakami and
Endo proposed the

√
area parameter model to predict the fatigue limit of metals having a surface crack

with arbitrary shape [8]. Here, the
√

area is the square root of the area of a surface defect projected
onto the direction of the maximum tensile stress. The

√
area parameter model is widely applied to

evaluate the fatigue limit of metals [9,10]. In a previous study, we proposed a new evaluation equation
for the fracture strength of ceramics combining the process zone size failure criterion and the

√
area

parameter model [11]. This equation is useful for the evaluation of fracture strength of ceramics having
a surface crack with arbitrary shape and orientation introduced by the indentation method.
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However, it is known that tensile residual stress is generated around the indentation when a
pre-crack is introduced on the surface of a ceramic material by the indentation method [12]. Therefore,
elimination of the tensile residual stress by surface polishing or annealing in inert gas is necessary [13].
If the tensile residual stress is not eliminated, the influence of residual stress on the fracture strength
should be considered to predict the fracture strength with high accuracy [13]. The dimensions of a
defect at the origin of a fracture in an actual ceramic material are equivalent to the grain size, which is
less than 20 µm in a typical ceramic. However, the dimensions of defects introduced in most of the
previous studies were larger than 20 µm because it is difficult to introduce small surface cracks by the
indentation method [14–16].

In this study, we introduced crack-like surface defects on the surface of ceramics by the focused
ion beam (FIB) technique. The FIB technique is a high-precision working method that uses the effect of
sputtering by ion beam scanning on the surface of a material. Sakamoto et al. reported that the fatigue
limits of FIB-notched specimens were equivalent to the fatigue limits of annealed fatigue-cracked
specimens of carbon steel [17]. Rokio and Solin evaluated small crack initiation and propagation from
small FIB-defect in high strength steel and reported that a FIB notch to initiate small cracks is a useful
way to test small crack growth in high strength steels [18]. However, to our knowledge, the influence
of FIB-introduced surface defects on the fracture strength of ceramics has not yet been studied. In this
paper, the effects of microscopic surface defects introduced by FIB on the fracture strength of an
Al2O3/SiC composite are clarified. Regarding the relationship between fracture strength and defect
size, the consistencies of the test results and the values predicted by the proposed evaluation equation
were verified.

2. Evaluation Equation of Fracture Strength

In this section, an outline of the proposed equation for fracture strength evaluation is
described [11]. The equation is based on the process zone size failure criterion [7] and the

√
area

parameter model [8,19].
Ando et al. proposed the following equation to predict the fracture strength (σC) of ceramics with

a small surface crack focusing on the process zone size at the crack tip and [7]

π

8

(
KIC

σ0

)2
= ae

{
sec
(

πσC
2σ0

)
− 1
}

, (1)

where KIC (MPa·m1/2) is the fracture toughness, and σ0 (MPa) is the fracture strength of a smooth
specimen assuming a defect is sufficiently small, and σC (MPa) is the fracture strength of a specimen
containing a surface crack. The equivalent crack length, ae (µm) is defined as

ae =
1
π

(
KIC

σc

)2
, (2)

On the other hand, Murakami showed that the maximum stress intensity factor (Kmax) at the edge
of a surface crack with arbitrary shape under tensile stress (σ∞) could be approximated within 10%
error by [19]

Kmax ∼= 0.650σ∞

√
π
√

area, (3)

where
√

area is the square root of the area of a surface defect projected onto the direction of the
maximum tensile stress. When σC is applied to a surface crack, the Kmax value reaches KIC. Equation (3)
leads to

KIC = 0.650σC

√
π
√

area . (4)
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The relationship between fracture strength σC and the crack size
√

area is expressed as follows
based on Equations (1), (2) and (4)

σC = cos−1
(

3.38σ0
2√area

π·KIC
2 + 3.38σ02

√
area

)
·2σ0

π
. (5)

This is the equation to evaluate the fracture strength of a ceramic material containing a surface
defect with arbitrary shape. Figure 1 shows the relationship between σC and

√
area of alumina

reinforced by silicon carbide (Al2O3/SiC) [11]. The dotted line indicates the σC predicted based on
conventional LEFM. The predicted values of σC based on LEFM are overestimate for

√
area less than

20 µm. Thus, conventional LEFM is not applicable to ceramics with small cracks. On the other hand,
the solid line indicates the σC predicted based on Equation (5). Although the σC predicted based on
Equation (5) were slightly smaller than those of the experimental results, they agreed relatively well
with the experimental results in the range of 5–20 µm. In this study, the relationship between

√
area of

an FIB defect and fracture strength was evaluated using KIC and σ0 as the basic mechanical properties
of the sample material.
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3. Experimental Procedures

3.1. Test Specimen

Alumina reinforced by silicon carbide (Al2O3/SiC) was selected as a test material in this study.
The Al2O3 powder (AKP-50, Sumitomo Chemical Industry Co. Ltd., Tokyo, Japan) used in this study
had a mean particle size of 0.2 µm. The SiC powder (ultrafine grade, Ibiden Co. Ltd., Gifu, Japan) used
had a mean particle size of 0.27 µm. The samples were prepared using a mixture of Al2O3 with 15 vol %
SiC powder. To this mixture, isopropanol was added, and the mixture was blended thoroughly for 24 h
by ball milling. After drying and comminution, the mixture was hot-pressed at 1973 K and 35 MPa for
2 h in an N2 atmosphere [20]. The hot-pressed plates were cut into bending test specimens measuring
3 × 4 × 20 mm. The surface of each specimen was polished to a mirror-like finish.

3.2. Specimen Preparations

To heal surface cracks induced during machining, all the bending test specimens were heat-treated
at 1573 K for 1 h in air, which are the optimum healing conditions for surface cracks in Al2O3/SiC [20].
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These specimens are called “smooth” specimens. The σ0 value was evaluated by the strength
distribution of the smooth specimens.

An FIB defect was introduced at the center of each smooth specimen by using a multi beam
SEM-FIB system JIB-4501 (by JEOL Ltd., Tokyo, Japan). These specimens are called the “FIB-defect”
specimens. Figure 2 shows the detail of the FIB technique process. A test specimen was fixed on a jig
with carbon tape. The FIB defect was processed while monitoring the processing state using the SEM.
Figure 3a schematically shows the shape of an FIB defect. The surface lengths (2c) ranged from 20 to
60 µm and the depths (d) ranged from 19 to 24 µm. The conditions of the FIB technique are presented
in Table 1. The area of a defect was evaluated based on the fracture surface observation.

For comparison, “pre-crack + polished” specimens were prepared in the following procedure.
First, a Knoop indentation was made at the center of each smooth specimen. Figure 3b shows the shape
of a Knoop pre-crack. The indentation loads ranged from 9.8 to 49 N. Next, these specimens were
polished using a 1-µm diamond slurry to eliminate the tensile residual stress around the indentations.
The amount of material removed from the surface was 4 to 6 times the indentation depth. The ASTM
standard C1421 suggests removing 4.5 to 5 times the indentation depth [21]. Thus, the removed depth
in this study almost met the standard.
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Figure 3. Schematic illustrations of surface defects: (a) FIB-defect specimen; (b) pre-crack +
polished specimen.

Table 1. FIB processing conditions.

Ion Source Ga Liquid Metal Ions

Accelerating voltage 30 kV
Prove current 3000 pA

Dose 190–280 nC/µm2
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3.3. Measurement of Fracture Toughness

The fracture toughness KIC value was evaluated by the indentation fracture (IF) method. Vickers
indentations were made on the polished surface of a bending test specimen by the application of an
indentation load of 49 N for 15 s. Then, KIC (Pa·m1/2) was calculated using the following equation in
accordance with the Japan Industrial Standards [22]

KIC = 0.026
E

1
2 P

1
2 a

c
3
2

, (6)

where E (Pa) is the Young’s modulus, P (N) is the indentation load, a (m) is half the diagonal length
of the indentation, and c (m) is half the surface crack length. The units of calculated values of KIC

were converted into “MPa·m1/2”. Crack length was measured using an optical microscope with total
magnifications of 580× and higher to avoid the measurement error of KIC values [23].

3.4. Measurement of Fracture Strength

The σC values of each specimen were measured by a three-point bending test, as shown in Figure 4,
at room temperature in air. The span length was 16 mm, and the crosshead speed was 0.5 mm/min.
After the bending test, the fracture surfaces were observed by laser microscopy, and the size of the
defects at the fracture origins was measured.
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test specimen.

4. Results and Evaluation of Fracture Strength

4.1. Mechanical Properties of the Sample Material

In this section, the calculated results of KIC and σ0 are presented. An average and a standard
deviation of the KIC value of four samples measured by the IF method were 3.50 ± 0.05 MPa·m1/2.
The scatter of the KIC value is quite small.

The σ0 value of the sample material was estimated using the strength distribution of the smooth
specimens. The two-parameter Weibull function is expressed by

F(σC) = 1− exp
{
−
(

σC
β

)α}
, (7)

where F(σC) is the cumulative failure probability based on the median rank method, α is the scale
parameter, and β is the shape parameter. Figure 5 shows the two-parameter Weibull distribution
of the smooth specimens. The test results were plotted as the relationship between ln (σC) and
ln{ln(1/(1 − F)} led by Equation (7). The second horizontal and vertical axis show σC and F values,
respectively. Two parameters were determined using the maximum likelihood method based on JIS
R1625 [24]. The α value was 8.81, and the β value was 871 MPa. In Figure 5, a thick solid line and
thin solid lines show the approximation line and the 90% confidence interval, respectively. The 90%
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confidence interval values of α and β are (αL, αU) = (6.72, 11.6), (βL, βU) = (838, 910). In the Weibull
distribution, the F(σC) value increased as the defect dimensions in the specimens decreased. Because
the size of defects in a smooth the specimen with F(σC) = 99% considered to be sufficiently small,
the σC value at F(σC) = 99% is regarded as σ0. This evaluation method of σ0 showed a good estimation
results of σC as shown in Figure 1 [11]. Substituting the values of α and β of the smooth specimen and
F(σC) = 99% in Equation (7), σ0 = 1036 MPa was calculated.
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4.2. Fracture Strength of FIB-Defect Specimens

All specimens containing FIB-induced surface defects fractured at the FIB-defect area as a result
of the three-point bending tests. Figure 6a,b show laser microscope images of fractured surfaces of a
FIB-defect specimen and a pre-crack + polished specimen, respectively. The surface length 2c, the depth
d, and the

√
area of the FIB-defects and pre-cracks after polishing were measured by these observations.

Table 2 shows the results of the bending tests for the FIB-defect specimens and the pre-crack + polished
specimens. The sizes of the FIB defects were in the following range:

√
area = 19–35 µm. The σC value

of the FIB-defect specimens decreased with increasing
√

area. Similar to the pre-crack + polished
specimens, σC showed strong

√
area-dependency in the FIB-defect specimens.
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Table 2. Bending test results.

Type of Defect Surface Length 2c
(µm) Depth d (µm)

√
area (µm) Fracture Strength

σC (Mpa)

FIB-defect test
specimen

20.8 19.4 19.1 687
20.0 23.2 20.4 715
33.4 21.1 25.3 597
32.3 22.5 26.2 557
32.8 23.8 27.4 592
46.2 24.1 32.6 530
60.1 21.3 35.2 508

Pre-crack +
polished test

specimen

121 44.0 64.6 400
124 47.5 68.0 322
228 106 137 253

4.3. Comparison Between Predicted Fracture Strength and Test Results

The σC of the sample material was predicted substituting KIC = 3.50 MPa·m1/2 and σ0 = 1036 MPa
into Equation (5). Figure 7 shows the predicted σC values and the bending test results.
For the pre-crack + polished specimens, the predicted σC values matched the experimental results.
Thus, the usefulness of this equation was confirmed. The errors between the experimental and
predicted results were generally within±15%. It is thought that the prediction errors are mainly caused
by the approximation errors of Kmax by Equation (3). For the FIB-defect specimens, the experimental
σC are between the predicted σC based on LEFM and Equation (5). The predicted values of σC based
on LEFM and Equation (5) give the upper and lower limit, respectively. Similar tendency that Equation
(5) gives lower σC was observed in the results shown in Figure 1. The results indicate that a FIB-defect
can be used as a small initial crack for fracture strength evaluation of ceramics. It was found that the
evaluation equation was useful for evaluating the fracture strengths of ceramics containing micro
surface defects introduced by FIB.
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5. Conclusions

This study investigated the fracture strengths of Al2O3/SiC samples in which micro surface
defects had been introduced by the FIB technique. The test results were evaluated using the proposed
evaluation equation of fracture strength. The results are summarized as follows:
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(1) The micro surface defects in the size range of
√

area = 19–35 µm were introduced on the surface
of Al2O3/SiC by the FIB technique.

(2) The fracture strengths of the FIB-defect specimens showed
√

area dependency. This result is
similar to that obtained for the pre-crack + polished specimens.

(3) FIB-defect can be used as a small initial crack for fracture strength evaluation of ceramics.
(4) The fracture strengths of the FIB-defect specimens predicted by the evaluation equation matched

the test results. It was confirmed that the proposed equation for fracture strength evaluation was
useful for ceramics containing micro surface defects introduced by FIB.
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