
materials

Article

Surface Nanocrystallization and Amorphization of
Dual-Phase TC11 Titanium Alloys under Laser
Induced Ultrahigh Strain-Rate Plastic Deformation

Sihai Luo 1, Liucheng Zhou 1, Xuede Wang 1, Xin Cao 1, Xiangfan Nie 1,3,* and Weifeng He 1,2,* ID

1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University,
Xi’an 710038, China; luo_hai@126.com (S.L.); happyzlch@163.com (L.Z.); wangxuede@163.com (X.W.);
studentcaoxin@163.com (X.C.)

2 Institute of Aeronautics Engine, School of Mechanical Engineering, Xi’an Jiaotong University,
Xi’an 710049, China

3 School of Mechanical and Power Engineering, East China University of Science and Technology,
Shanghai 200237, China

* Correspondence: skingkgd@163.com (X.N.); hehe_coco@163.com (W.H.); Tel.: +86-029-8478-7537 (X.N.);
+86-029-8478-7537 (W.H.)

Received: 7 March 2018; Accepted: 3 April 2018; Published: 6 April 2018
����������
�������

Abstract: As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser
shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous
and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron
microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate
the microstructural evolution, and the deformation mechanism was discussed. The results showed
that a surface nanostructured surface layer was synthesized after LSP treatment with adequate
laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser
parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under
the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition,
a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the
formation mechanism was attributed to the local temperature rising to the melting point, followed by
its subsequent fast cooling.

Keywords: laser shock peening; dual-phase TC11 titanium alloy; ultrahigh strain-rate plastic
deformation; nanocrystallization; amorphization

1. Introduction

Titanium alloys are the most widely utilized alloy in the aero-engine industry. Due to their
high fatigue strength, low density, and high corrosion resistance, they are employed in components
such as disks, fans, and compressor blades. Nonetheless, the fatigue failure of titanium alloy blades,
especially those subjected to foreign object damage, has been a major concern [1,2]. In order to
improve the fatigue resistance, various surface modification techniques, such as mechanical attrition
treatment (SMAT), high-pressure torsion, and shot peening, have been proposed to improve the
mechanical properties and fatigue strength of titanium alloys [2–4]. One mechanism of fatigue
strength improvement is to induce surface nanocrystallization, the main reason is that nanocrystalline
materials have many exceptional physical, mechanical, and fatigue resistance properties, relative
to their coarse-grained counterparts [5–10]. However, the drawback of these proposed processing
techniques is that they are only suitable for the simple components, which restricted their industrial
application to aero-engine blades.
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Compared with other surface treatment technologies, laser shock peening (LSP) have the
remarkable advantages of not requiring contact with the substrate, of affecting a deep layer, and of
having an excellent controllability, which makes LSP very suitable for complex structures, for example,
aero-engine blades [11–13]. Similar to conventional shot peening, LSP is capable of refining grains and
producing a surface nanostructured layer [14–26]. Recently, LSP has been used on the aero-engine
components to improve the high cycle fatigue performance and to induce surface nanocrystallization of
stainless steels [18,19], titanium alloys [20–22], and nickel-based superalloys [23,24] has been reported.
Lu et al. [14–16] discussed, in detail, the mechanism of grain refinement induced by LSP on LY2
aluminum alloy, AISI 304 stainless steel, and commercially pure titanium. Luo et al. [25] further
analyzed the mechanism of surface nanocrystallization induced by LSP on the metallic alloys with
different stacking fault energies. Moreover, Lainé et al. [26] analyzed, in detail, the effects of metallic
shot peening (MSP) and LSP on the microstructure of Ti-6Al-4V. The results showed that the grain
refinement of MSP was the evolution of tangled dislocation structures and shear bands, whereas
that of LSP was the evolution of directional planar dislocations and networks of dislocation cells
and sub-grains. In addition, the formation of an amorphous structure was noticed on the NiTi shape
memory alloy and silicon after laser-induced shock wave compression [27,28]. To summarize, LSP is
beneficial to the microstructural change of the surface layer and thus, improves the fatigue strength.
Thus, it is of great interest to investigate the microstructural evolution mechanism of the TC11 titanium
alloy under LSP treatment.

In this work, the microstructures of dual-phase TC11 titanium alloys treated by LSP were
characterized by transmission electron microscopy (TEM). The microstructural evolution rule and
surface nanocrystallization mechanism were investigated. In addition, a special phenomenon of surface
amorphization on the top layer was observed by high-resolution transmission electron microscopy
(HRTEM), and the formation mechanism was also discussed.

2. Experimental Procedures

2.1. Materials

TC11 titanium alloy is typically employed for fan blades in the Chinese aero-engine industry.
The chemical composition (in wt %) is given in Table 1. The sample was an α + β type heat-resistant
titanium alloy, composed of a primary hexagonal close-packed (hcp) α phase and a lamellar
transformed bcc β phase. The equiaxial α-grains with an average size of 10 µm and the acicular
β-grains were observed by the optical microscopy, as shown in Figure 1. The alloy was subjected to a
double annealing heat treatment for 2 h at 950–980 ◦C followed by air cooling, and heating for 6 h at
530 ◦C, followed by 6 h of air cooling. The basic mechanical properties of these titanium alloys are
shown in Table 2.
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Table 1. The chemical composition of the TC11 titanium alloy.

Composition Al Mo Cr Zr Si Fe Sn Ti

Percentage (wt %) 5.8–7.0 2.8–3.8 – 0.8–2.0 0.15–0.40 0.2–0.7 – Bal

Table 2. The static tensile properties of the TC11 titanium alloy at room temperature.

Materials Yield Strength σ0.2 (MPa) Ultimate Tensile Strength σb (MPa) Elongation Rate δ (%)

TC11 titanium alloy 930 1030 9

2.2. Principle and Experimental Procedure of LSP

In the LSP process, a laser pulse with a short pulse width (ns) and a high power density (GW/cm2)
was placed on the workpiece surface. The workpiece to be laser peened was covered by two different
layers, namely an opaque ablating layer (Al foil/black paint) and a transparent confining layer
(water/glass), as shown in Figure 2. The laser pulse passed through the transparent confining medium
and struck the ablating layer. It was then absorbed by the ablating layer, which immediately vaporized
and formed plasmas of a high temperature and pressure. The expansion of the plasma detonation
wave led to the formation of a shock wave that propagated into the target with an intensity of
several GPa. When the shockwave pressure was larger than the material dynamic yield strength, a
plastic deformation was produced and resulted in the generation of compressive residual stresses and
microstructural changes in the material surface layer.

Before LSP treatment, the sample surface was polished with SiC paper with a grit number ranging
between 400 and 2000. An ultrasound ethanol bath was then used to clean the surface of the sample.
During the LSP experiment, the confining layer and ablating layers consisted of floating water with a
thickness of about 1–2 mm and a 0.1 mm-thick Al foil, respectively. The titanium alloys were machined
into square samples (40 mm × 40 mm × 4 mm) which were mounted on a five-coordinate robot arm.
The robot arm was controlled to move in the x-y direction in order to achieve the designed laser paths,
shown in Figure 2. The laser pulse with a wavelength of 1064 nm and a pulse of around 20 ns was
generated by a Q-switched self-designed Nd:YAG laser (SGR-EXTRA/25J). The laser spot diameter,
overlapping-rate, and repletion-rate were 3 mm, 50%, and 1 Hz, respectively. In order to investigate
the effect of laser parameters on the microstructural characteristics, different laser power densities
(2.83, 4.24, and 5.66 GW/cm2) at three impacts were adopted.
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Figure 2. Schematic illustrations of the laser shock peening process. (a) The plasma shock wave 
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Figure 2. Schematic illustrations of the laser shock peening process. (a) The plasma shock wave
generated by nanosecond pulse laser; (b) The LSP processed area of samples for microstructural
observation and laser shock paths (the LSP processed area had the dimensions of 25 × 20 mm).

2.3. Microstructural Observations

X-ray diffraction (XRD) analyses of the TC11 titanium alloy with and without LSP treatment
were conducted using an MFS-7000 X-ray diffractometer with Cu-Kα radiation (Shimadzu, Kyoto,
Japan). The take-off angle was 6◦ and the generator settings were 40 kV and 35 mA. The diffraction
data were collected for values of 2θ ranging from 30◦ to 80◦ at a step of 0.02◦ and a time step of 5 s.
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TEM HRTEM observations on the LSP-treated samples were performed using a JEM-2100F (Japan
Electron Optics Laboratory, Beijing, China) with the following experimental parameters: FEG (field
emission gun): 200 kV; point resolution: 0.23 nm; and line resolution: 0.14 nm. The TEM foils for the
surface layers of the samples were prepared by mechanically grinding the samples on the side that
had not been subjected to LSP in order to obtain thin plates with a thickness of about 50 µm. The thin
plates were then electro-polished using a twin-jet technique in a liquid solution consisting of 300 mL
of CH3OH, 175 mL of C4H9OH, and 30 mL of HClO4 (30% solubility). The grain size measurements
were made directly from the dark-field TEM images. In addition, the focused ion beam (FIB) lift-out
method was used to prepare the cross-sectional TEM samples from the top surface of the LSP-treated
sample in the FEI Helios NanoLabTM 600i system, and the HRTEM observation was used to analyze
the microstructural characteristics at different depths.

3. Results and Discussion

3.1. Microstructure Characterization on the Surface

Figure 3 shows the XRD patterns of the LSP-treated specimens with different laser power densities
at three impacts. After LSP treatment, the Bragg diffraction peak of the TC11 titanium alloy became
broader and decreased in intensity, which indicated that the grain refinement, lattice deformation, and
micro-strain increases had been induced on the surface layer of the alloy. It is worth noting that, as
the power density increased, the Bragg diffraction peaks broadened more significantly and eventually
flattened out. On the other hand, the XRD spectral peak and position remained virtually unchanged,
indicating that no phase change had occurred. The ultrahigh strain rate plastic deformation was
induced during the LSP process, which resulted in the generation of a non-uniform residual elastic
micro-strain in the materials and a microstructural change. This was the reason for the tendency of the
broadening of the diffraction peak to deviate towards low angles, as seen in the inset of Figure 3.
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Figure 3. The X-ray diffraction pattern of the surface microstructure with different laser power density
at three impacts. (a) original; (b) 2.83 GW/cm2; (c) 4.24 GW/cm2; (d) 5.66 GW/cm2. The inset shows
the XRD pattern for 2θ from 37.5◦ to 42◦.

The XRD patterns showed that the laser power density had a direct influence on the
microstructural change following LSP treatment. The XRD measurement results were relative to
the surface layer with a depth of about 1 µm (the penetrated depth of the X-ray). Thus, in order to
further confirm the grain refinement induced by the LSP treatment and to analyze the microstructural
evolution of the TC11 titanium alloy under ultrahigh strain-rate deformation, TEM observations were
carried out.

Figure 4 shows the TEM images obtained from the top surface layer after LSP treatment. The
original TC11 titanium alloy was composed of α and β phases and the phase boundary, as seen in
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Figure 4a. The greatest dimension of these phases reached several micrometers. After LSP with a low
laser power density (2.83 GW/cm2), high-density dislocation configurations (dislocation, dislocation
tangle, and dislocation cell) were generated near the grain boundaries, as shown in Figure 4b. When
the laser power density increased to 4.24 GW/cm2, many nanocrystalline artifacts were generated,
as shown in Figure 4c,d. The corresponding selected area electron diffraction (SAED) pattern was
dominated by circles, which indicated the random orientations of the nanocrystalline artifacts and
their high angle grain boundaries. When the power density was increased to 5.66 GW/cm2, the
surface nanocrystallization was completed, as shown in Figure 4e,f, and the grain size was refiner and
more uniform compared to that induced by lower laser power densities. The corresponding SAED
pattern presented continuous, homogeneous and broadened concentric rings, confirming the random
crystallographic orientation of the grains. In a previous work, we investigated the effect of multiple
LSP impacts on the TC11 titanium alloy at a power density of 4.24 GW/cm2 [29] and found that the
high-density dislocations and dislocation walls were formed after one impact, and the numerous
nanocrystalline artifacts were generated after three LSP impacts. When the number of LSP impacts
increased to five, the average grain size decreased to about 40 nm and the grain orientation of the
nanocrystalline artifacts became more random and uniform. Therefore, increasing either the laser
power density or the LSP impacts was effective in inducing surface nanocrystallization. In other words,
grain refinement increases with the amount of laser energy injected into the materials.
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the surface layer of the TC11 titanium alloy samples after LSP with different laser power densities at
three impacts. (a) without LSP; (b) 2.83 GW/cm2; (c) 4.24 GW/cm2, the inset is the corresponding SAED
pattern; (d) the corresponding dark-field image of (c); (e) 5.66 GW/cm2, the inset is the corresponding
SAED pattern; (f) the corresponding dark-field of (e).
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To investigate the microstructural characteristics at different depths of TC11 titanium alloys
after LSP treatment. The chosen sample was the one that had been subjected to LSP with a power
density of 4.24 GW/cm2 at three impacts. The cross-sectional microstructure of TC11 titanium alloy is
shown in Figure 5. The top region in Figure 5a was a carbon (C) deposition layer which was used to
protect the sample from the ion beam during the TEM sample preparation by FIB. The integrity of the
C deposition layer showed that the sample had not been damaged during the preparation process.
The SAED pattern in the selected region, A, showed that the nanostructure was produced after LSP
treatment, consistent with the results reported in Figure 5. Beneath the nanocrystalline layer, at a depth
of about 350 nm, the slight elongation of the corresponding SAED pattern points indicated to the
presence of high-density dislocations and sub-structures in the selected region, B. The microstructural
characteristics at different depths were consistent with the attenuation rule of the laser-induced shock
wave pressure in the materials. The SAED pattern of the top surface (region C) presented halo ring
characteristics, which may have been caused by the presence of either very fine grains or amorphous
phases. To clarify the microstructural morphology, HRTEM observations were carried out, as shown in
Figure 5b, which confirmed the amorphous structure of the material for 10 nm in thickness. For depths
greater than 10 nm, the microstructure was composed of both nanocrystalline and amorphous phases.
This was also confirmed by the corresponding SAED pattern of region C, in which both halo rings and
diffraction spots were presented.
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Figure 5. TEM photographs and selected diffraction patterns in cross-section and HRTEM photographs
on the top surface layer of TC11 titanium alloy treated by LSP with three impacts. (a) The cross-sectional
TEM image, and the plastic deformation layer is divided into three layers, typically regions, A, B and C).
(b) The HRTEM observation of region C in (a).

3.2. Surface Nanocrystallization

The results described in Section 3.1 show that different microstructures were generated after LSP
treatment with different laser parameters, including high-density dislocations, dislocation tangles,
dislocation cells, and nano-grains. Hence, the surface nanocrystallization process was similar to the
one caused by conventional severe plastic deformation methods, such as shot peening and surface
mechanical attrition treatment [3,6]. On the other hand, there are many differences in the surface
nanocrystallization mechanism between LSP and conventional shot peening.
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In conventional shot peening, the plastic deformation with a strain-rate of about 103 s−1

occurs in the contact region when the material surface is struck by hard particles, and the surface
nanocrystallization is a stepwise evolution process. As for LSP, when the shock wave pressure induced
by LSP was larger than the material dynamic yield strength, plastic deformation occurred and the
strain-rate of the plastic deformation reached 106 s−1. During the plastic deformation process, the
atoms were forced to move because of the laser-induced shock wave. According to the homogeneous
nucleation theory [30,31], the atoms usually moved in arrays at the shock wavefront, which led to
the formation of dislocations. Unlike the dislocation formation process during conventional shot
peening, these dislocations were generated at the shock wavefront in the direction of the shock wave
propagation. If dislocations were generated, the subsequent shock wave caused the dislocations to
ship; if the dislocations met each other or other crystal defects, the dislocation slipping ceased. The
dislocations, therefore, gather in correspondence of special locations, where there is a great resistance to
their movement, giving rise to the formation of two special statuses: dislocation tangles and dislocation
cells. The process of microstructural change was completed extremely rapidly, which was attributed
to the fact that the action of the shock wave lasted for only a few tens of nanoseconds. As shown
in Figure 4 and in the previous work [29], the surface nanocrystallization was realized when the
laser power density or the LSP impacts increased. An increase in the laser power density or LSP
impact corresponds to an increase in the laser energy injection into the materials, or an increase in
the dynamic plastic deformation time of the laser-induced shock wave, as described in Figure 6. The
injected laser energy was transformed into material plasticity energy by the action of the shock wave
and was stored in the crystal defects such as dislocations and grain boundaries. The degree of grain
refinement increases with the laser energy injected in the material. Therefore, when the dynamic
plastic deformation time of the shock wave increases, the dislocations were further driven to slip.
Lastly, the dislocation cells transformed into nano-grains, while the dislocation walls transformed
into nano-grain boundaries by the annihilation and rearrangement of dislocations. On the other hand,
due to the local temperature rising during the LSP process (detailed discussion in Section 3.3), the
dynamic recrystallization took place. Therefore, the surface nanocrystallization mechanism consisted
of three main steps: (i) the formation of high-density dislocations; (ii) the pileup of dislocation to
dislocation cells; (iii) the formation of sub-grain boundaries and of surface nanocrystalline artifacts
through continuous energy injection and dynamic recrystallization.
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3.3. Mechanism of Laser-Induced Amorphization

Amorphization is considered as an extreme case of grain refinement. There are two methods for
synthesizing amorphous structures in metallic materials [32,33]: (i) “freezing” the dynamic disorder of
a liquid using an extremely high cooling rate, that is, rapid quenching; (ii) destabilizing and “melting”
a solid to the amorphous state by introducing chemical and/or structural disorder, which is known
as solid-state amorphization. For example, Ye et al. [27] found that an amorphous phase could be
generated by LSP and discussed the formation mechanism based on the plasticity theory. Similar
results and formation mechanisms were reported by Wang et al. [34], who found that the threshold
peak pressure for amorphization of a NiTi alloy was about 3.3 GPa (the pressure is 4.4 GPa in this case).
Meyers [35,36] found that shear bands were generated in AISI 304 stainless steel and germanium
under shock loading conditions, and the formation of an amorphous phase was observed in these
shear bands. The liquid-solid structure induced by the local temperature rising and subsequent fast
cooling were the main reasons for the formation of an amorphous phase; however, the LSP-induced
surface amorphization of titanium alloys has not been reported in the literature so far. Therefore, it is
necessary to investigate the mechanism of surface amorphization by LSP on titanium alloys.

According to the results reported in References [34–37], the crystal-to-amorphous transition can be
attributed to the local temperature rising to the melting point of the material due to plastic deformation
and its subsequent fast cooling. Worswick and Yang [38] assumed that 5% of the plastic deformation
work was stored in the grain defects and 95% was transformed into heat. In addition, the duration of
the plastic deformation induced by LSP was only a few tens of nanoseconds. Thus, this thermodynamic
process at the shock wavefront was regarded as an adiabatic process. The adiabatic temperature rising
during the course of the dynamic loading could be calculated as [39] follows:

∆T =
β

ρCp

∫ ε f

0
σdε (1)

where β is the Taylor–Quinney coefficient which characterizes the portion of plastic deformation work
converted into heat (assumed to be 0.9 in this case), ρ is the density (4.48 g/cm3 for the present TC11
titanium alloy), Cp is the specific heat capacity (0.48 J/(g·K) for the present TC11 titanium alloy), σ is
the flow stress, and εf is the true strain in the final state. The dynamic mechanical behavior in the
plastic deformation process is usually described by the Johnson–Cook constitutive model and the
flow stress σ induced by LSP is expressed by Equation (2) [40]. Thus, the temperature rising could be
expressed by Equation (3) after substituting the Johnson–Cook constitutive equation.

σ = (σ0 + Bεn)

(
1 + C ln

.
ε
.

ε0

)
(2)

∆T =
0.9(1 + C ln

.
ε/

.
ε0)

ρCp
(σ0ε f +

Bε f
n+1

n + 1
) (3)

where σ0 and
.

ε0 are the initial field strength and reference strain-rate. B, C, and n are the constants of
the Johnson–Cook constitutive equation. For the titanium alloys, the relative constants are as follows:
σ0 is 1030 MPa (shown in Table 2),

.
ε0 is 10−2/s, and

.
ε is 107/s; B, C, and n are 1092 MPa, 0.014, and

0.93, respectively [41]; and εf is about 2 for the local strain. The local temperature rising ∆T was found
to be about 1990 K, which was higher than the melting temperature Tm (about 1800 K) of the TC11
titanium alloy.

During the LSP process, once the temperature in the material reached Tm, melting occurred
without consuming any enthalpy of fusion. The temperature rising in the melting region transited into
the neighboring regions to the melting point, until the heat flow from the melting zone was no longer
sufficient to raise the temperature of its neighbor to Tm. The cooling rate in the melting region was at
least of the order of 107 K/s [42], which resulted in the liquid-to-amorphous phase transformation. This
is why a 10 nm-thick of amorphous phase was observed by HRTEM in the present TC11 titanium alloy.
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3.4. Microhardness Distribution

To better characterize the base material behavior to LSP, changes in the properties were evaluated
via Vickers microhardness measurements. In this study, the microhardness of samples was tested by
the MVS-1000JMT2 microhardness tester (BAHENS, Shanghai, China), using an indentation load of
500 g with a dwell time of 15 s at the section. For each depth of the specimen, the hardness value was
regarded as an average of 5 measurement results and a confidence interval of 95%.

The cross-sectional microhardness curves of TC11 titanium alloy after LSP treatment is shown in
Figure 7. It is observed that the average value of surface microhardness of the original specimen is
approximately 351 HV0.5. After LSP treatment, the microhardness was effectively increased and the
maximum value was located at the surface at 424 HV0.5. The affected depth is about 500 µm and the
gradient change of the microhardness is consistent with the attenuation of the laser-induced shock
wave pressure. The microhardness improvement is attributed to the surface work hardening and
microstructural changes induced by LSP. The relationship between microhardness and microstructure
can be expressed by the Hall–Petch equation [43]:

Hv = H0 + kd−1/2 + αGbρ1/2 (4)

where Hv is the microhardness of the material, H0 is the original hardness of the material, k and α are
material constants, d is the grain size, G is the shear modulus of the material, b is the Burgers vector,
and ρ is the dislocation density. After multiple LSP treatments, the grain sizes in the surface layer
are refined and high-density dislocation is found in the substrate layer. According to the Hall–Petch
model, the microhardness increases after LSP treatment. Due to the thickness being only 10 nm, the
effect of the surface amorphousness on microhardness cannot be assessed.
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4. Conclusions

In this paper, the surface and cross-sectional microstructures of the TC11 titanium alloy
were characterized via transmission electron microscopy and high-resolution transmission electron
microscopy. According to the different microstructural features, the mechanisms of surface
nanocrystallization and amorphization after LSP treatment were discussed. The main conclusions
obtained in this work may be summarized as follows:

(1) Surface nanocrystallization was induced by LSP on the TC11 titanium alloy. In the LSP process,
the dislocations were generated at the shock wavefront. They then developed into dislocation
cells and finally formed the nano-grains by dislocation, slipping under the continuous shock
wave, and dynamic recrystallization.



Materials 2018, 11, 563 10 of 12

(2) More specially, an amorphous layer of about 10 nm thickness was generated on the top surface
above the nanostructured layer. The local temperature rising during the LSP process resulted from
the dynamic compression and ultrahigh strain-rate plastic deformation under the laser-induced
high-pressure shock wave. The combined effect of the temperature rising to the melting point
and the fast cooling caused the surface amorphization of the TC11 titanium alloy.
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