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Abstract: The potential of graphene–multi-walled-carbon nanotube (G-M) hybrids prepared by
the one-pot modified Hummers method followed by thermal annealing has been demonstrated
by employing one as an electrocatalyst support for oxygen reduction reaction (ORR). N doping
effectively modified the electronic structure of the G-M hybrid support, which was beneficial for
the uniform distribution of Pt nanoparticles, and ORR activities were further improved. The newly
prepared Pt/N-G-M catalyst demonstrated higher electrochemical activity than Pt/G-M and Pt/G
catalysts. Even compared with commercial 20 wt % Pt/C (JM20), Pt/N-G-M delivered a better
half-wave potential and mass activity. In terms of the durability test, Pt/N-G-M maintained 72.7%
of its initial electrochemical active surface area (ECSA) after 2000 repeated potential cycles between
0 and 1.2 V in acidic media in relation to the 44.4% retention for JM20. Moreover, the half-wave
potential for Pt/N-G-M showed only a minimal change, significantly superior to the 139 mV of loss
for JM20. It is expected that Pt/N-G-M can be the potential candidate as a highly efficient and durable
catalyst if utilized in proton exchange membrane fuel cells (PEMFCs).

Keywords: oxygen reduction reaction; graphene–multi-walled carbon nanotubes; N doping; proton
exchange membrane fuel cells

1. Introduction

In the context of increasing worldwide energy demand and environmental pollution, fuel
cells are an eye-catching arena owing to their exciting performance for power generation with low
emission [1,2]. Among the multitude of fuel cell technologies available, proton exchange membrane
fuel cells (PEMFCs) have recently received extensive attention owing to their high efficiency and
power density [3], appealing for automotive and portable electronic applications [2]. Nevertheless,
challenging issues including the high cost, insufficient oxygen reduction reaction (ORR) activity,
and durability of the cathode catalysts are critical obstacles that hinder their practical commercial
viability [4,5]. Precious metals such as Pt or Pt-based alloys are routinely utilized as cathode catalysts
due to their high catalytic performance towards ORR [6]. To fully use these precious metal catalysts in
fuel cells cost-effectively, they have been supported on nanostructrured carbonaceous materials [7].
State-of-the-art commercial catalysts in PEMFCs are still based on platinum nanoparticles dispersed
on carbon black (CB). Problems plaguing such Pt/C catalysts, including the degradation of carbon [8]
and the agglomeration and dissolution of Pt nanoparticles [9,10] lead to the deactivation of catalysts.
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Recently, carbon nanotubes [11,12], carbon nanofibers [13–15], and mesoporous carbon [16–18] have
been systematically exploited as the substitutes of CB in ORR catalysts. As a new star member
of carbon materials, graphene (G) has attracted worldwide attention since its rise [19]. The high
theoretical specific surface area, ultrahigh electrical conductivity, fast available electron transfer, and
high durability to electrochemical corrosion of G open new avenues for electrocatalyst supports [20].
Thus, a substantial research effort has been put into G-based metal catalysts towards ORR, and great
strides have been reported [21,22].

Despite the known advantages, graphene materials are susceptible to aggregation and/or
restacking to form graphite because of the strong π–π interactions and interlayer Van der Waals forces,
which limit the optimization of the electrocatalytic performance of graphene [23]. The agglomerate
structure results in a significant decrease in supporting area and mass transfer, inevitably retarding
the utilization of catalysts [24]. In spite of the tremendous research on the promising approach of
incorporating spacers into graphene nanosheets [25,26], they often involve in multistep procedures
and the interactions between them are not that satisfactory. So far, the effective and facile methods to
prevent the restacking of graphene sheets are still underway.

In addition, it is well-recognized that introducing heteroatom N into the graphitic carbon structure
contributes to tailoring the underlying catalyst–support interactions to boost the electrocatalytic activity
and stability [27]. There have been extensive reports on nitrogen-doped graphene-supported catalysts,
the results of which all demonstrate improved ORR activity and durability, or higher membrane
electrode assembly (MEA) performance [28–32]. For example, He et al. [29] obtained nitrogen-doped
reduced graphene oxide (NRGO) with a nitrogen content of 5.06%, revealing a higher ORR performance.
Vinayan et al. [30] proved that the power density of MEA for Pt3Co/N-HEG catalyst increases by four
times compared with commercial Pt/C catalyst.

Inspired by the above, herein, a novel multi-walled carbon nanotube (MWCNT) and graphene
(G-M) hybrid support was constructed through the one-pot modified Hummers method, which was
followed by carbonization [33]. The MWCNT increased the basal spacing between graphene sheets,
providing a high specific surface area. Heteroatom N was then doped into the hybrid support through
a facile approach using dicyandiamide (DCDA) as the N-containing precursor. Pt nanoparticles were
deposited on different supports via a facile ethylene glycol reduction technique, and the electrocatalytic
performance was investigated and is discussed here in detail.

2. Experimental

2.1. Material Synthesis

As described previously, a modified Hummers method was used to synthesize graphene oxide
(GO) from the 325 mesh graphite (Aladdin, Shanghai, China) [34]. The typical procedure of preparing
a G-M hybrid and depositing Pt nanoparticles is depicted in Figure 1. In a typical synthesis, flaky
graphite and commercially available MWCNTs (Chengdu Organic Chemicals Co. Ltd., Chengdu,
China; with a diameter of 10–20 nm and a Brunauer–Emmett–Teller (BET) surface area of ~200 m2·g−1)
were mixed together in a 4:1 mass ratio through a one-pot modified Hummers method followed by
carbonization at 1000 ◦C for 1 h in an N2 atmosphere [33]. For comparison, G was also thermally
reduced under identical conditions as a benchmark and N-modification of the G-M (N-G-M) was
performed by grinding G-M and dicyandiamide (DCDA) (mass ratio m/m = 1:12) and subsequent
calcination at 900 ◦C for 2 h.

Pt nanoparticles were supported on the as-obtained support materials by an ethylene glycol
reduction method [35]. Briefly, 40 mg of carbon support materials were added into the ethylene glycol
and water (v/v = 3:1) solution, and a certain amount of H2PtCl6·6H2O was then added to ensure a
Pt content of 20 wt %. The slurry was refluxed at 140 ◦C and maintained for 4 h under magnetic stirring
with the protection of N2 atmosphere. After centrifuging with water and acetone, drying in a vacuum
oven overnight, the obtained samples were collected. They were named as Pt/M, Pt/G, Pt/G-M,
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and Pt/N-G-M, corresponding to the MWCNT, G, G-M, and N-G-M supports, respectively. In the
meantime, commercial 20 wt % Pt/C noted as JM20 purchased from the Johnson Matthey Company
(Royston, UK) was employed as the control sample.
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2.2. Structural Characterization

The morphologies of carbon supports were observed with a field-emitting scanning electron
microscope (FESEM, Hitachi SU-8010, Hitachi, Tokyo, Japan). Transmission electron microscopy
(TEM, JEOL-2100F, JEOL Ltd., Tokyo, Japan) was carried out to observe the morphologies of the
supports and for Pt nanoparticle size and distribution. Nitrogen adsorption–desorption isotherm was
collected on an ASAP2020 volumetric adsorption analyzer (Micromeritics, Norcross, GA, USA) at
–196 ◦C. Raman spectra of the supports were obtained on a Via-Reflex microscopic confocal Raman
spectrometer (Renishaw, Wotton-under-Edge, UK). Wide powder X-ray diffraction (XRD, Bruker,
Billerica, MA, USA) patterns of all catalysts were determined on a Bruker-D8-AXS diffractometer with
Cu Kα radiation. X-ray photoelectron spectrometry (XPS, Rbd Instruments, Bend, OR, USA) studies
were measured on a PHI-5400 spectrometer equipped with Mg Ka (hν = 1253.6 eV) to evaluate the
chemical states of the surface elements in the catalysts. The Pt content was tested via inductively
coupled plasma-atomic emission spectroscopy (ICP-AES, Prodigy, Teledyne Leeman Labs, Hudson,
NH, USA). The Pt loadings for the Pt/M, Pt/G, Pt/G-M, and Pt/N-G-M catalysts were about 19.3,
20.8, 21.2, and 20.4 wt %, respectively.

2.3. Electrochemical Measurements

The electrochemical performance of the as-prepared catalysts was examined by the cyclic
voltammetry (CV) and linear sweep voltammogram (LSV) measurements on a CHI760E
Electrochemical Analyzer (CH Instruments Inc., Shanghai, China) coupled with a Pine Modulated
Speed Rotator. A traditional three-electrode system was used, in which a graphite rod and saturated
Hg/HgO electrode were the counter electrode and the reference electrode, respectively, and a glassy
carbon rotating disk electrode (RDE, Pine Research Instrumentation, Durham, NC, USA) was the
working electrode. For convenience, the potentials refer to the reversible hydrogen electrode (RHE)
in this study. The uniform catalyst ink (JM20, Pt/M, Pt/G, Pt/G-M, and Pt/N-G-M) was fabricated
by adding 4 mg of the catalyst into 2 mL of the methanol/Nafion solution (50:1 in weight) followed
by ultrasonication for 1 h. Then, 20 µL of ink was deposited onto the RDE to get a Pt loading of
32.39 µgPt·cm−2. CV measurements were performed in 0.1 M HClO4 at a potential scan rate of
50 mV·s−1 between 0 and 1.2 V, and the HClO4 solution was before saturated with high pure N2. LSV
measurements for the ORR polarization were tested by the RDE technique in O2-saturated 0.1 M HClO4

electrolyte with an electrode rotating speed of 1600 rpm at 5 mV·s−1. For the test of methanol tolerance,
0.1 M CH3OH was added into the 0.1 M HClO4 solution. To evaluate the long-term stabilization of the
catalysts, accelerated durability tests (ADTs) were carried out in an N2-saturated 0.1 M HClO4 solution
by cycling in a potential range from 0 to 1.2 V versus RHE at 100 mV·s−1 for 2000 cycles. All the tests
were carried out at room temperature.
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3. Results and Discussion

As illustrated in Figure 1, the G-M hybrid support was synthesized via a one-pot modified
Hummers method and subsequent calcination. N-modification was conducted by carbonization of the
mixture of G-M and DCDA. Successful preparation of G-M and N-G-M hybrid supports was confirmed
by SEM, TEM, and XRD. In comparison to the simple mixing of GO and spacer [36,37] or with the
help of dispersing agent [38], we creatively involved MWCNTs and graphite in the Hummers method.
In the synthesis of hybrid supports, the functionalization of MWCNTs by strong oxidants to form
various hydrophilic moieties accompanied by partial unzipping and peeling (Figure S1) enables its
incorporation with GO. Even after carbonization, the three-dimensional (3D) structure remained, with
MWCNT still inserted into the G sheets. MWCNT is well-distributed between the G layers without
obvious aggregation. Figure 2a–c clearly displays the 3D interconnected structure of G-M composed of
wrinkled G and 1D MWCNTs, which may be a promising support for ORR catalysts [39,40]. Figure 2d
shows the XRD patterns of G, G-M, and N-G-M supports compared with GO. The diffraction peak
at 26.0◦ for G, G-M, and N-G-M is indexed to the C (002) reflection of carbon and the disappearance
of peak at 10◦ suggests the reduction of GO. The same peak for G-M and N-G-M with that of G
suggests that the insertion of MWCNT does not affect the diffraction peak of G. After the introduction
of MWCNT into G layers, the BET specific surface area increases from 442 m2·g−1 for G to 567 m2·g−1

for G-M (Figure 2e). When the G-M is doped with nitrogen, the BET specific surface area shows
no obvious change. This means that MWCNTs indeed decrease the restacking of graphene layers,
harvesting higher specific surface area for the uniform dispersion of Pt nanoparticles. The pore size
distributions (Figure S2) were measured by the Barrett–Joyner–Halenda (BJH) model. It is obvious
that three kinds of graphene supports demonstrate hierarchical porous structures, which favor better
dispersion of Pt nanoparticles and rapid diffusion path for mass transfer [41]. Identical pore size
distributions notwithstanding, the total pore volume for G-M and N-G-M is 2.61 and 2.52 cm3·g−1,
larger than that of G (1.97 cm3·g−1). The Raman scattering studies further confirm the degree of
defects in the graphene structure. As shown in Figure 2f, the D-band located at 1332 cm–1 originates
from the disordered structure and defects, while the G-band located at 1580 cm–1 is ascribed to the
vibration of sp2-bonded carbon atoms. The ratios between the D band and G band (ID/IG) for the
MWCNT, G, G-M, and N-G-M supports are estimated to be 1.10, 1.21, 1.31, and 1.39, respectively. The
N-G-M support exhibits the highest ID/IG, which is mainly related with more defective sites affected
by N doping and an increase in disordered structures from the incorporation of MWCNTs within
graphene layers.

Figure 3, Figures S3 and S4 reveal the morphologies and nanostructure of Pt/M, Pt/G, Pt/G-M,
and Pt/N-G-M catalysts synthesized by means of the polyol reduction method along with the
JM20 catalyst. Pt nanoparticles are uniformly distributed on G-M and N-G-M hybrid supports
without noticeable aggregations in the low magnification TEM images (Figure S4). High-resolution
TEM analysis (Figure 3a–c insets) further demonstrates the highly crystalline features of Pt with
well-resolved lattice fringes corresponding to the inter-plane spacing of 0.23 nm, which is assigned
to the (111) plane of Pt. Due to the synergistic interactions between G and MWCNTs, the hybrid 3D
support provides higher specific surface area for the uniform dispersion of Pt nanoparticles. As the
bridge to prevent the stacking of graphene layers, Pt nanoparticles can also be deposited on the surface
of MWCNTs to be the center of active sites. The histograms of the Pt nanoparticle size distributions,
obtained by determining the size of about 100 randomly statistic Pt nanoparticles, are presented
(Figure 3d–f). The Pt/G-M and Pt/N-G-M catalysts have a narrower and smaller distribution of Pt
size than that of Pt/G, indicating the advantages of hybrid supports, which benefit the uniform and
narrow deposition of Pt nanoparticles. Furthermore, Pt/N-G-M displays a smaller average size and a
better dispersion of Pt nanoparticles than Pt/G-M (Figure S4). These results prove that the heteroatom
N in the carbon structure of hybrid supports is beneficial for the nucleation and dispersion of Pt
nanoparticles [29].
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Figure 3. TEM images for (a) Pt/G, (b) Pt/G-M, and (c) Pt/N-G-M catalysts, and the corresponding
particle size distribution curves for (d) Pt/G, (e) Pt/G-M, and (f) Pt/N-G-M catalysts. Insets show the
corresponding HRTEM images.
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To obtain the crystalline structure of as-synthesized catalysts, XRD measurements were performed
and the corresponding patterns are shown in Figure 4. The peaks at approximately 39.8◦, 46.4◦, 67.6◦,
and 81.8◦ correspond to the (111), (200), (220) and (311) planes of Pt (JCPDS 04-0802), respectively, which
are the characteristic peaks of face-centered cubic (fcc) crystalline Pt, indicating that Pt nanoparticles
are in the form of a fcc-structure on different kinds of supports.
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XPS was further conducted to reveal the surface chemical states of catalysts, with the results
presented in Figure 5. The wide scan spectra of Pt/N-G-M (Figure 5a) confirm that Pt, C, and N
elements are existent, and the N content was recorded to be 2.87 atom %. The high-resolution N 1s
spectrum for Pt/N-G-M is shown in Figure 5a inset, which can be deconvoluted into four nitrogen
functional groups: pyridinic N (398.6 eV), pyrrolic N (400.3 eV), graphitic N (401.4 eV), and pyridine-N
oxide (403.3 eV) [42]. It has been well-documented that pyridinic N is capable of improving the
ORR activity in the N-doped non-noble carbon materials [43,44]. In this study, it is expected that the
principle pyridinic N content can improve the metal–carbon interactions and benefit the ORR activity.
Pt 4f spectra for Pt/G, Pt/G-M, and Pt/N-G-M are presented in Figure 5b, which can be split into
4f7/2 and 4f5/2 states due to spin orbital splitting. The Pt0 at 71.4 eV (4f7/2) and 74.7 eV (4f5/2) are the
predominant peaks, while the peaks at 72.4 eV and 75.8 eV as well as 75.2 eV and 78.6 eV are assigned
to Pt in the 2+ and 4+ states, respectively. Table S1 shows the percentage of three Pt species calculated
from the peak fitting. It is noteworthy that Pt/G-M and Pt/N-G-M have higher Pt0 concentrations than
Pt/G, which may be beneficial for electrochemical activity [45]. Furthermore, Pt/G-M and Pt/N-G-M
exhibit a negative shift of binding energy compared to Pt/G (Figure 5b), indicating the synergistic
effect between G and MWCNTs, as well as the specific interactions between N-doped graphene hybrid
and Pt nanoparticles because of electron donation transferred from N to Pt [46]. The negative shift for
binding energy weakens the –OH adsorption species owing to the downshift of the D-band center,
resulting in increased electrocatalytic performance of Pt nanoparticles towards ORR [47].
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Figure 5. XPS spectra of Pt/N-G-M (a), the corresponding N 1s spectrum (inset); (b) the comparison of
the Pt 4f binding energy of Pt/G, Pt/G-M, and Pt/N-G-M.

Figure 6a illustrates the typical CVs of commercial JM20, Pt/M, Pt/G, Pt/G-M, and Pt/N-G-M
catalysts. It can be observed that all the catalysts demonstrate three distinct characteristic
potential regions, namely a hydrogen adsorption/desorption region, a double-layer region, and
a Pt oxidation/reduction region (three regions marked by the dotted lines). Notably, Pt/G-M and
Pt/N-G-M show higher hydrogen adsorption/desorption than Pt/G and Pt/M, highlighting the
positive effect of the insertion of MWCNTs into graphene layers. When the G nanosheets are
intercalated by MWCNTs as the hybrid support for Pt, the hydrogen adsorption/desorption area of
Pt/G-M and Pt/N-G-M catalysts improves owing to the boosted utilization of catalytic Pt nanoparticles.
The coulombic charge for hydrogen desorption (QH) in the potential range of 0–0.4 V was used to
calculate the ECSA of the catalysts on the electrodes. After correcting for the double-layer charging
current from the CV curves, the values of ECSA for JM20, Pt/M, Pt/G, Pt/G-M, and Pt/N-G-M are
86.6, 62.3, 55.3, 91.5, and 90.1 m2·g−1, respectively. Pt/G-M and Pt/N-G-M catalysts exhibit the highest
ECSA, though G and MWCNT utilized as the sole support do not perform well in the CV. The increased
ECSA for Pt/G-M and Pt/N-G-M catalysts is attributed to the intercalation of MWCNTs into graphene
layers, exposing more uniform and narrowly sized Pt nanoparticles in the electrochemical reactions.
Even compared to the benchmark JM20 catalyst, Pt/G-M and Pt/N-G-M are superior, suggesting the
superiority of hybrid supports for depositing Pt nanoparticles compared with CB.

The ORR activity polarization curves for all the catalysts were measured by RDE in the
O2-saturated electrolyte, and the LSV results are shown in Figure 6b. The pure G as a support
for Pt nanoparticles displays inferior ORR performance, especially for the mixed kinetic-diffusion
region and diffusion-limiting currents, which is attributed to the fact that the pure G-based catalysts
inhibit the oxygen reduction rate, the results of which are concordant with our previous research [33]
and other research [22]. This is partly originating from the aggregation of 2D planar structure of
graphene and the aggregated film structure formed in the synthesis process of graphene, both of which
hinder the mass transfer process [48]. Interestingly, when MWCNT is intercalated into G-based Pt
catalysts, the mixed kinetic-diffusion region and diffusion-limiting currents of Pt/G-M and Pt/N-G-M
catalysts are dramatically improved, indicating that the ORR activity recovers in a way. The observed
improvement is ascribed to the fact that the inserted MWCNTs not only enlarge the gaps between
graphene sheets but also facilitate the electron transfer, providing accessibility for the reactant to
Pt nanoparticles and accelerating the oxygen reduction rate during the triple-phase reactions. The
intrinsic ORR activity can be evaluated from the mass activity (MA) and specific activity (SA) calculated
based on the Koutecky–Levich equation: 1/i = 1/ik + 1/id, where ik is the kinetic current, and id
is the diffusion-limiting current [49]. Figure 6c,d show the results of different catalysts. The ORR
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activity increases in the order of Pt/M<Pt/G<JM20<Pt/G-M<Pt/N-G-M, illustrating coincident results
with the CV results. Pt/G-M and Pt/N-G-M exhibit higher onset potentials and half-wave potentials
than that of Pt/G because of the intercalation of MWCNTs into graphene nanosheets. The half-wave
potentials for Pt/G-M and Pt/N-G-M are 0.799 and 0.780 V, 46 and 27 mV higher than that of JM20
catalyst, respectively. With regard to the mass activity, Pt/G-M and Pt/N-G-M are 2.1 and 3.4 times
higher than JM20, indicating the better performance of G-M hybrid-supported Pt catalysts. Compared
with Pt/G-M, the ORR activity of Pt/N-G-M could be further improved by the doping of N into
the G-M hybrid, indicating that the modified electron structure of N-G remarkably improves the
Pt–graphene interactions. The electrochemical impendence spectra (Figure S5) demonstrate that the
values for charge transfer resistance of JM20, Pt/G, Pt/G-M, and Pt/N-G-M are 30.3, 37.5, 25.7, and
24.2 Ω, respectively. The lower charge transfer resistance for Pt/G-M and Pt/N-G-M is beneficial for
the charge transfer process, which is derived from the advantage of the 3D interconnected structure
and better electrical conductivity. On the other hand, the methanol tolerance of the catalysts is of great
importance for the ideal ORR catalysts applied in practical fuel cells. The ORR activities of Pt/N-G-M
and JM20 are further tested in the saturated 0.1 M HClO4 and 0.1 M CH3OH electrolyte. As shown in
Figure S6, the large current peak for JM20 at 0.67 V suggest the ORR current is greatly affected by the
methanol [50]. In a striking contrast, Pt/N-G-M only shows a small negative shift for the half-wave
potential, which proves the excellent catalytic selectivity for ORR against the methanol oxidation of
Pt/N-G-M.
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Figure 6. CV curves for (a) JM20, Pt/M, Pt/G, Pt/G-M, and Pt/N-G-M in 0.1 M HClO4 with a potential
scan rate of 50 mV·s−1; (b) LSV curves at 5 mV·s−1; (c) MA for the ORR of JM20, Pt/M, Pt/G, Pt/G-M,
and Pt/N-G-M catalysts; (d) MA and SA calculated at 0.80 V.

The ADT tests were employed to evaluate the long-term stability of the as-prepared catalysts, in
which the potential was cycled ranging from 0 to 1.2 V in 0.1 M N2-saturated electrolyte at 100 mV·s−1.
The changes for the CV and LSV curves are shown in Figure 7. Continuous cycles lead to the
deactivation of the catalysts because of the aggregation and dissolution of Pt nanoparticles, which
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can be gleaned from the ORR performance. When the ECSA values of catalysts are normalized to
the respective initial value, Pt/G-M and Pt/N-G-M show a loss of 31.2% and 27.3%, superior to the
55.6% loss for JM20 catalyst, indicating that the prepared Pt/G-M and Pt/N-G-M manifest much better
durability than JM20. In addition, LSV cycling stabilities of JM20, Pt/G-M, and Pt/N-G-M catalysts
in the ORR were also examined. As displayed in Figure 7b,d,f, the JM20 catalyst has a noteworthy
139 mV negative shift for the half-wave potential after ADT, whereas only 10 and 5 mV losses are
shown for Pt/G-M and Pt/N-G-M, respectively. The results are expected because the G-based catalysts
can withstand the extreme electrochemical circumstance, rendering Pt nanoparticles to maintain their
activity. It is noteworthy that Pt/N-G-M performs better than Pt/G-M in the ADT, further proving that
the heteroatom N modifies the metal–support interactions, which effectively strengthen the binding
of Pt with the hybrid support. This mitigates the dissolution, aggregation, and detachment of the
Pt nanoparticles. The remarkable retention for ORR is meaningful for the long-term use of catalysts
in PEMFCs.
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Figure 7. CV curves of (a) JM20, (c) Pt/G-M, and (e) Pt/N-G-M before and after ADT, CV recorded at
a scan rate of 100 mV·s−1 in 0.1 M HClO4. LSV curves for (b) JM20, (d) Pt/G-M, and (f) Pt/N-G-M
before and after ADT, LSV recorded at a scan rate of 5 mV·s−1 in 0.1 M HClO4.
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With the aim to well explain the superb electrocatalytic activity of Pt/N-G-M catalyst for ORR,
several reasons are proposed according to the above results (Figure 8). Firstly, MWCNTs can be well
inserted into the graphene sheets through the one-pot Hummers method, rendering graphene with
higher specific surface area, which is beneficial for the deposition and exposure of Pt nanoparticles.
Moreover, the hierarchical porous structure and higher specific surface area can provide fast mass
transfer and electron transport kinetics, which make the reactant molecules more accessible to catalysts.
Lastly, the heteroatom N can modify the electron structure of graphene, being an anchoring site for
Pt nanoparticles. The strongly coupled interactions between Pt and N-G-M effectively promote the
electrocatalytic activity and durability on account of the changed electron configuration. As a result of
integrating these advantages above, the resultant Pt/N-G-M catalyst with unique multi-component
3D interconnected network structure possesses remarkably prominent catalytic activity, which may be
a potential electrocatalyst in fuel cells.
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4. Conclusions

In conclusion, a novel nitrogen-doped G-M hybrid support has been uniquely designed for the
deposition of uniform and narrowly sized Pt nanoparticles. The MWCNTs, as the spacer of graphene
sheets, increase the specific surface area, facilitating the utilization of Pt, which is beneficial for the
improvement of ORR performance. The as-fabricated Pt/G-M and Pt/N-G-M perform better than
Pt/G and Pt/M, evidenced by the half-cell tests. Notably, Pt/N-G-M exhibits superior ORR activity
and durability as compared to the commercial JM20 catalyst, indicating that the N-G-M support is an
alternative to commercial carbon black. The highly efficient and durable Pt/N-G-M electrocatalyst
paves the way for the potential application in PEMFCs.
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