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Abstract: Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion
ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2.
The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical
microscopy showed significant structure changes of the surface. The analysis of an interface of PIII
treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint
fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII
treated rubber and the adhesive.

Keywords: ethylene-propylene diene monomer rubber EPDM; plasma immersion ion implantation;
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1. Introduction

Ethylene-propylene diene monomer rubber (EPDM) materials have a number of applications
in different fields of industry, for example, profiles, hoses, cable seals, roofing membranes, seal for
doors and windows in car and airplane, covering in irrigation systems, gaskets for water systems and
others [1,2]. With a low cost, high stability in harsh environment and wide temperature range with
suitable properties of elasticity and strength gives advantages for EPDM rubbers to be used in specific
fields such as cable transit seals for nuclear reactors [3].

Good thermo resistant and thermo protection properties of EPDM rubbers are used in solid rocket
engine as a thermo-protecting layer between a rocket wall and a propellant [4,5]. Recently, EPDM
rubber was considered as a prospective material for heat shielding materials for hypersonic flights in
the reentry part of trajectory [6,7].

However, high inertness and stability of the EPDM rubber is a disadvantage in low adhesion of
the rubber. Most reactive adhesives cannot provide sufficient adhesion strength to the EPDM rubber [8–11].
Under critical conditions of wide temperature range, the presence of plasticizer and a high mechanical
load, a surface modification of EPDM rubber is essential to get the sufficient adhesion [12].

One of the well-known and well-developed methods to improve the adhesion of the polyolefin
is plasma discharge [13,14]. Plasma methods are used for modification of the polyolefin surface for
improvement of wettability, painting, hardness, chemical activity and also to improve adhesion [15–19].
The plasma treatment of EPDM rubber was used to improve hydrophilicity [20] and to decrease
friction [21]. The plasma methods were used for improvement of adhesion of EPDM thermal protection
coating to polymeric binder of the propellant in solid fuel rocket engines [22,23]. The plasma treatment
of EPDM rubber causes oxidation and nitrization of the thin surface layer, improves the surface
wettability due to new carbonyl and carboxyl groups on the surface and increases the surface roughness.
These structure changes are considered a reason for improved adhesion [24–26]. A similar effect where
the surface structure changes in EPDM rubber was observed after plasma immersion ion implantation
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(PIII) [27]. The surface energy of EPDM rubber increases together with roughness of the surface,
and oxygen-containing groups appearing on the surface.

However, the structure of the EPDM after the plasma treatment is changed, due to free radical
reactions [28]. The free radicals are much more active with the hydrocarbon macromolecules.
The reactions of free radicals to the polymer binder leads to a formation of a covalent bond. This can
provide a strong adhesion under critical conditions of wide temperature range, presence of plasticizer,
high mechanical load and long storage time [29].

Plasma immersion ion implantation is a powerful method of surface modification of polymer
material [30]. The ions from a plasma cloud are accelerated towards a polymer surface. The kinetic
energy of ions exceeds the chemical bond energy of polymer macromolecule in some orders of magnitude.
As a consequence of the PIII, the surface layer is highly carbonized and reacts with oxygen and nitrogen
in open air. The thickness of the modified layer corresponds to the penetration depth of ions into
the polymer [30].

Using this method, the structure of materials in the thin surface layer had been changed
dramatically while the bulk structure was left intact. This is important in the various fields of
application, when the combination of opposite properties must be provided in one material. One of
these properties is adhesion of inert materials like polyethylene, polytetrafluorethylene and other
polymers in an aggressive environment. The stable adhesion of polymer materials under mechanical
stress requires a strong adhesion interaction based on a chemical mechanism of an interface formation,
which provides sufficient adhesion strength in wide temperature range of exploitation as well as
in aggressive media including strong swelling agents. At the same time, the modified materials
must provide required mechanical strength, elastic properties, thermostability, thermoelasticity,
thermodynamical compatibility and sometimes a number of exotic properties like predictable behavior
in ablation processes which are related to the volume properties of polymer.

In the present paper, we investigate the EPDM rubber without any additives, which are usually
used to achieve the required technological properties. The goal of this study is to observe an influence
of PIII treatment on EPDM rubber surface and interface in an adhesion joint with polyurethane binder.

2. Materials and Methods

EPDM rubber contained 59% of ethylene chains, 39% of propylene chains and 2% of
dicyclopentadiene chains was used for the 20 × 30 mm2 plates of 2 mm in thickness. The rubber did not
contain plastisizers, additives, vulcanizing agents, fillers and other components. The vulcanization was
done by γ-irradiation from 60Co source [31–33].

PIII treatment of EPDM rubber was done with using of nitrogen plasma generated by electron
cyclotron resonance source (Rossendorf Research Center, Dresden, Germany). The plasma density
measured by Langmuir probe was 1010 cm−3 and 9 eV electron temperature. The rubber samples were
placed on 60 × 100 mm2 high voltage electrode and covered with a metal grid electrically connected
to the electrode. The grid had 0.3 mm cell dimension and a wire thickness of 0.05 mm. The distance
between the grid and rubber surface was 20 mm. This scheme provided an absence of shadow effect of
the grid on the rubber surface. The high voltage pulse of 20 kV and duration of 5 µSec was applied.
The frequency of pule repetition was selected to avoid the sample overheating. The temperature of
the samples treated with the highest fluence of 1016 ions/cm2 didn’t exceed 30 ◦C. The ion fluence was
calculated from the amount of high voltage pulses multiplied on a fluence of one pulse. The one pulse
fluence was calculated by the method of UV spectra absorbance of polyethylene samples with known
fluence from ion beam source [30].

For a comparison, the PIII treatment of EPDM was done without the grid. In such a case, the EPDM
samples were placed on the electrode but not covered by the grid. The treatment was done at the same
parameters and time of the PIII treatment.

FTIR ATR spectra in a range of 400–4000 cm−1 was recorded after 30 days in storage in covered
boxes to avoid contamination and light illumination. The spectrometer Nicolet Magna 650 was used.
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ATR spectra were recorded with ATR crystal Ge, the angle of the beam incident was 45 degrees,
and number of scans was 100. The spectral resolution was 1 cm−1.

Microphotos of rubber surface were done with using of optical microscope MBS-10 attached
video camera.

AFM images were measured by using an atomic force microscope Rasterscope C-21
(DME, Herlev, Denmark) with software Dual Scope/Rasterscope SPM 1.3.2.

3. Theory

The theoretical calculations of ion penetration and atomic collisions in EPDM rubber were done
using a SRIM software code [34,35]. The calculations were based on a model of atomic and electronic
collisions of the target macromolecule with the penetrating ions. A kinetics energy of the penetrating ion
was high enough to recoil the electrons and atoms from the mother macromolecule and to transfer a part
of the kinetic energy to the recoiled particles in a such a way, that the recoiled particles can also travel
fast enough to collide and to recoil other electrons and atoms in the polymer target. With a number of
collisions and energy transfers the ion and recoiled electrons and atoms were stopped. These cascades
of collision and energy transfers were observed in a thin surface layer, which the depth depends on
the kind and the initial kinetic energy of the penetrating ion and the kind ad density of the polymer
target. The distribution of the electron collisions, atom recoiling and phonon energy transfer for EPDM
rubber is shown on Figure 1. The electron collisions dominated on the surface and decayed with the
penetration depth. The electron collisions mostly caused ionization of the macromolecules that did
not cause a structure transformation after it. While the electron with high energy can cause secondary
collisions with atoms, the probability of such processes is low in comparison with the atomic collisions
under considered conditions.
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Figure 1. Ionization, phonon and total vacancy profiles after nitrogen ion of 20 keV energy penetrating
into EPDM rubber. By SRIM calculations.

The atomic collisions can break the chemical bonds and release the atoms from the mother
macromolecule. The recoiled atom gets some kinetic energy and impulse. After a certain distance
from the mother macromolecule the recoiled atom stops due to interactions with other macromolecules.
The shift of the atom position for hydrogen and carbon atoms in EPDM rubber is presented in Figures 2
and 3. The thin surface layer about 70 nm thick becomes poor with these atoms. Due to recoiling the mother
macromolecule gets an unpaired electrons at left atoms called free radicals. Therefore, this surface layer
becomes porous and active with free radicals.
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Figure 2. Stopped nitrogen ion profile (black line, units are stopped nitrogen atoms/nm3 per
penetrated nitrogen ion/nm2) and hydrogen atoms balance (units are replaced hydrogen atoms/nm3

per penetrated nitrogen ion/nm2) with depth of EPDM rubber. By SRIM calculations.
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Figure 3. Stopped nitrogen ion profile (black line, units are stopped nitrogen atoms/nm3 per penetrated
nitrogen ion/nm2) and carbon atoms balance (units are replaced carbon atoms/nm3 per penetrated
nitrogen ion/nm2) with depth of EPDM rubber. By SRIM calculations.

The thicker layer between 70 and 130 nm where the recoiled atoms are stopped gets more
hydrogen and carbon atoms as well as stopped nitrogen ions (Figure 4). The stopped atoms have also
unpaired electrons: carbon has four, nitrogen has three and hydrogen has one. Therefore, this layer
becomes denser and active with free radicals. The stopped atoms with unpaired electrons can join
to each other and other local macromolecules on the way of the free radical reactions. A structure
like aromatic rings with nitrogen inclusions up to graphitic planes or carbon spheres like fullerene
structures can be expected there. A migration of free radicals along the EPDM backbone can be
expected as well as the effect of the macromolecules crosslinking in a deeper layer than calculated.

A positive balance of the atomic concentration in this layer can cause tensile force in the surface layer.
The stresses in thin surface layer with elastic underneath layer of the rubber can cause a deformation up
to folds or waves. The results of the theoretical consideration show that the treated surface layer should
have different structure and properties in comparison with the untreated one.
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Figure 4. The total atoms balance (nitrogen, carbon and hydrogen, units are replaced atoms/nm3 per
penetrated nitrogen ion/nm2) with depth of EPDM rubber. By SRIM calculations.

4. Results

The untreated EPDM rubber is light-brown color. After PIII treatment with low fluence, the color
does not change. At 1015 ions/cm2 and higher fluence the color in reflection light becomes silver-like
corresponding to the carbonized surface. The same effect of the color change was observed for other
polymers after ion beam treatment [30].

Optical microphotos of the EPDM samples show that the surface topography significantly changes
after PIII (Figure 5). The surface of untreated EPDM rubber is smooth (Figure A1). After PIII treatment
the surface becomes rough with different kinds of structures dependent on the fluence of the treatment
(Figures A2–A5).

The treated surface becomes to be covered by a net of folds and cracks. The cracks are viewed
as a hard thin surface layer on soft bulk substrate was deformed up to breaking. The reason of there
kinds of cracks is the carbonization of the surface of the thin layer under ion beam and formation
of brittle layer which is jointed to the elastic bulk layer of unchanged rubber. The reason of folds is
the stresses in the carbonized layer, which deform the surface layer at presence of elastic underneath
layer [36]. Similar surface topography changes were observed for elastic polymers after ion beam
treatment [27,37,38]. However, the observed topography of EPDM rubber after PIII is different in
comparison with the EPDM surface etched in low voltage plasma treatment [26].

At low fluence (5 × 1013 ions/cm2) the surface is changed minor (Figure A1b). Only some area is
observed different than the untreated surface. With fluence growing up to 1015 ions/cm2 the surface
becomes covered by cracks and folds (Figure 5a). The rough fields are distributed irregular on the surface:
some area is covered by ditches and hills while some area remains smooth. In microscope image, the folds
have silver-like color (Figures A1–A5) and in some places they are surrounded by areas with colorful
areas of interference light (Figure 5a). Other areas of the sample remain light-brown corresponding to
the color of unmodified rubber. The width of the folds is about 0.5–5 µm. With fluence increase the folds
become deeper and wider and the density of the folds increase. The whole surface becomes to be covered
by folds and cracks at fluence higher than 1015 ions/cm2.
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Figure 5. Optical microphotograph (a–c, 20 × 24 µm) and AFM image (d) of EPDM rubber after PIII:
(a) 1014 ions/cm2 PIII treated EPDM; (b) 1015 ions/cm2 PIII treated EPDM; (c) 1016 ions/cm2 PIII treated
EPDM; (d) AFM image of 1016 ions/cm2 PIII treated EPDM (7 × 7 µm with 244 nm height amplitude).

In some areas the cracks are locally oriented in parallel to each other and the folds are oriented to
perpendicular to the cracks forming a ladder structure (Figure 5b). The folds have an elongated form and
they are regularly arranged in parallel order to each other. In some areas, the folds form a worm-like
structures and completely disordered arrangement (Figure 5c). Such worm-like folds cover about 50%
of the rubber surface at 1016 ions/cm2 high fluence of PIII treatment (Figures A4c and A5a).

The cracks appear at low fluences and release the contracting stresses crossing the cracks.
The folds appear at higher fluence and release the stresses perpendicular to the cracks. In such areas,
the distributions of folds depend on the cracks. However, in other areas the worm-like structures show
only folds without cracks. Also some areas show only with cracks without folds (Figures A4d and A5d)
even at highest fluences.

Such different surface structures after the PIII and ion beam treatment were not observed in
polyethylene or other polymers with homogeneous composition [30]. The difference in the surface
structures can be caused by inhomogeneity of initial EPDM composition. Indirect evidence of such
reason is a distribution of the different structure near the inclusions of the EPDM samples. However,
the non-uniformity of the PIII fluence distribution could play a minor role due to homogeneous surface
structures near the edge of metal mask, which was applied to the EPDM samples at the same time of
treatment. The border between the untreated area covered by mask and the treated area is sufficiently
sharp and does not have a gradient of the structures (Figures A1d and A2a, Figures A3a and A4a).
Therefore, the formation of the different local surface structures like cracks and folds depends on the initial
EPDM rubber inhomogeneity.

FTIR ATR spectra of untreated EPDM rubber show lines attributed to ethylene and propylene
chains vibrations of macromolecules: symmetric and asymmetric stretch ν(C-H) vibration lines at 2923,
2852 cm−1 for -CH2- and 2950, 2870 cm−1 for -CH3 groups, deformation δ(C-H) vibrations in -CH2- and
-CH3 groups at 1462 and 1375 cm−1, skeletal complex shape of vibrations in 1305–1000 cm−1 region of
spectra (Figure 6). The spectral lines attributed to vibrations of dicyclopentadiene part of macromolecule
chain are observed at 3040, 1613, 1272, 948 and 925 cm−1. The lines in 1700–1750 cm−1 region are
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attributed to oxidized macromolecules of the rubber under environmental conditions (light, oxygen
and moisture) at storing after synthesis [29].
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These lines are also observed in spectra of PIII treated rubber after PIII, except lines at 3040, 1600,
1270, 943 and 917 cm−1 attributed to vibrations of the dicyclopentadiene part of macromolecule (Figure 6).
The intensity of these lines decreases in the spectra of PIII treated samples and these lines disappear
at high fluence of treatment. Additionally, the wide band in 1750–1600 cm−1 region is observed in
the spectra of PIII treated rubber. This band contains a number of overlapped lines, which are attributed
to ν(C=C) and ν(C=O) vibrations of diene and aromatic structures and carbonyl, carboxyl and aldehyde
groups in oxidized and carbonized surface layer of modified EPDM rubber. A contribution of C=N
vibrations can be expected too. The new lines observed at 1598 and 1498 cm−1 are attributed to vibrations
of aromatic rings appeared in surface layer of the rubber. In a region of wagging γ(C-H) vibrations,
three lines at 967 cm−1 (vinylene group), 909 cm−1 (vinyl group) and 887 cm−1 (vinylidene group)
are observed. These lines correspond to vibrations in unsaturated hydrocarbon groups appeared after
PIII treatment.

The intensity of these new lines is lower than the basic vibration lines of EPDM macromolecules.
It corresponds to the thin modified layer of the rubber (about 150 nm) in comparison with penetration
depth (400–800 nm) of infrared light from Ge ATR crystal into rubber sample at spectra recording.
With PIII fluence increase, the intensity of all new lines increases corresponding to the concentration of
such groups is growing with increase of number of bombarding ions.

For the quantitative analysis of rubber structure by spectra were normalized on the intensity
of 2960 and 1462 cm−1 lines related to vibrations of EPDM rubber macromolecules as the internal
standard. Such normalization is based on assumption, that the modified layer thickness is much
smaller than the depth penetration of infrared beam in ATR effect at spectra recording.

The normalized intensities of C=O and C=C groups vibration lines are presented on Figure 7.
The intensity of these lines grows with the PIII fluence. In the logarithm scale the increase is viewed sharp,
while in the linear scale the curves have saturation. The logarithm scale is used for a good view of the all
points. The increase corresponds to an appearance of new unsaturated and oxygen-containing groups in
the surface layer of EPDM after PIII. The same increase was observed for other polymers after PIII [30].
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Figure 7. Normalized absorbance of ν(C=C) = 1610 cm−1 line and ν(C=C) = 1610 cm−1 line in FTIR
ATR spectra of EPDM rubber with fluence of PIII.

The intensity of these group lines in the spectra of PIII treated EPDM at saturation (0.4) is significantly
higher than the spectra of the plasma treated EPDM rubber (0.12) [28]. Even with periodical treatment
the saturation level for plasma treated rubber is lower (0.19). The observed difference can be explained
with deeper modified layer of EPDM rubber treated by PIII. The energy of ions in PIII is 20 kV that gives
100–150 nm thickness of the modified layer. The average energy of ions in plasma treatment is in a range
of 0.01–0.1 eV that gives significantly lower thickness. However, a comparison of the depth based on
an average ion energy in plasma is not completely correct due to a wide distribution of the ion energy in
plasma discharge. Probably, the high energy tail of the energy distribution plays much significant role in
the depth of the modified layer in plasma.

The intensity of 967 cm−1 line of vinylene group, 887 cm−1 line of vinyliden group and 909 cm−1

line of vinyl group increased with lower fluence of the PIII treatment (Figure 8). Then the intensity of
967 cm−1 line of vinylene group and 887 cm−1 line of vinyliden group goes down with the lowest values
at the 1016 ions/cm2 fluence. The intensity of 909 cm−1 line of vinyl group grows up to maximum
value at 1015 ions/cm2 fluence and then goes down with the lowest value at 1016 ions/cm2 fluence.

The PIII treatment without the grid increases the intensity of of C=O and C=C groups vibration lines
significantly smaller than with the grid (Figures A6 and A7). The intensity of 967 cm−1 line of vinylene
group, 887 cm−1 line of vinyliden group and 909 cm−1 line of vinyl group increases gradually with
the PIII fluence, as it was observed for PIII treatment of polyethylene without the grid [39]. These results
are consistent with an explanation of the electrical charge on the isolator surface at PIII treatment [30].

The EPDM surface treated by PIII becomes active to polyurethane binder. The spectra of adhesion
joint fracture surface for untreated EPDM rubber published before [40,41] showed an adhesive character
of the fracture. The spectra of adhesion joint fracture surface for PIII treated EPDM rubber is presented in
Figure 9. The spectrum of the surface fracture from adhesive site contains the lines of polyurethane
adhesive at 3295 cm−1 (Amid A), 2942 cm−1 and 2857 cm−1 (stretching vibrations in CH2 group),
2273 cm−1 (residual NCO group), 1732 cm−1 (Amid I), 1602 cm−1 (aromatic ring), 1539 cm−1 (Amide II)
and some lines of the EPDM rubber at 1462 cm−1 and 1372 cm−1 (bending vibrations in CH2 and CH3

groups). The spectrum of the surface fracture from EPDM side shows a similar spectra with higher
intensity of EPDM lines and additional lines in the 1750–1600 cm−1 region attributed to ν(C=C) and
ν(C=O) vibrations of the PIII modified layer. Therefore, the spectra of the fracture surface show that
the fracture of the adhesion joint at the presence of solvent is cohesive in polyurethane binder and in
EPDM rubber. The adhesive character of the fracture is not observed.
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Figure 8. Normalized absorbance at 967 cm−1 line of vinylene group, at 887 cm−1 line of vinyliden
group and at 909 cm−1 line of vinyl group in FTIR ATR spectra of EPDM rubber with fluence of PIII.
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Figure 9. FTIR ATR spectra of peeled of adhesion joint: (a) initial PIII treated EPDM rubber; (b) PIII
treated EPDM rubber peeled off from PU; (c) PU peeled off from PIII treated EPDM rubber; (d) initial
PU surface.

5. Discussion

An adhesion of thermo-resistant rubber coating with the propellant is one of the key problems of
solid fuel engine. A strong adhesion must be provided at a presence of high concentration plasticizer,
in wide temperature range and high mechanical stresses during the engine operation. A failure of
the adhesion can be a fatal event for the engine and for whole mission as it was observed in Space Shuttle
Challenger disaster.

Improving the adhesion in rubber-like materials to a polymer adhesive can be achieved by a high
surface energy and wettability, developed roughness and chemical crosslinking of the polymer networks
of rubber and adhesive. The last factor is critical for a good adhesion of polymer joints at the presence
of high concentration of plasticizer, which can destroy all kinds of intermolecular interactions between
macromolecules, except the chemical bonds. The achievement of the chemical crosslinking in the interface
between two materials needs an activation of the rubber surface to specific groups of the adhesive during
curing of the adhesive. However, the inertness of the rubber materials usually is associated with other
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technological properties. The example is EPDM rubber which thermo-resistant properties in combination
with density, stability and mechanical strength make this candidate is one of the best materials for
thermo-resistant coating. However, the EPDM rubber is a very inert material to all known adhesives of
a polycondensation reaction of curing. The sufficient adhesion of the EPDM rubber requires a surface
modification in such a way, that the surface layer of EPDM rubber could provide reaction centers for
the same polycondensation reaction of curing.

An effect of ion implantation into a polymer causes a deep structure transformations based on
high energy processes at high density of defects in treated material. The high energy ion flies into
polymer, collides electrons and atoms of macromolecules and transfers them the energy much higher
than the covalent bond. The collided atoms fly deeper into the polymer, collide other electrons and
atoms of other macromolecules and stopped when the kinetics energy is completely transferred and
dissipated. As the result, the surface layer of polymer has a large number of disjoined atoms and
electrons embedded into the polymer structure.

The PIII treatment under investigated conditions causes the significant transformation of the EPDM
surface layer structure in depth of 100–150 nm. The EPDM rubber contains only carbon and hydrogen
atoms in the macromolecules. The hydrogen atoms have high volatility and likely are released from
the surface layer as hydrogen gas. The surface becomes rich with carbon atoms. The carbon atoms with
dangled bonds form new carbon structures. Following minimization of energy, the carbon structures,
such as graphite plane and fullerene spheres are expected mostly to form in a short time after the ion
penetration. Such carbon structures are observed in all carbon-base polymers. The appearance of
the carbonized structures is observed in EPDM after PIII treatment.

The graphitic-like structure is characterized by a presence of π-electron clouds. Aromatic-like
structures are an excellent trapper of unpaired electrons, which can be stabilized for a long time in
the structure due to delocalization effect. Such unpaired electrons belonging to the carbon atoms called
free radicals are active to find a pair from any molecule with hydrogen or a weak chemical bond like
epoxy ring, diene group or similar. The effect of chemical activity is observed by oxidation of the EPDM
surface after PIII treatment. The free radicals have very universal character of the chemical activity.
A combination of prolonged activity of the free radicals on p-electron clouds with high chemical activity
makes them very efficient to bond any organic molecule from adhesive.

The carbonized layer on PIII treated EPDM rubber provided sufficient activity of the EPDM surface
to polyurethane with formation of covalent bonds between polymer networks. As a result, the mixture
fraction of the adhesion joint is observed under high concentration of the solvent. Such a PIII treatment
is a prospective method to provide the sufficient adhesion of the EPDM rubber to a polymer binder.

6. Conclusions

The EPDM rubber was treated by nitrogen ions of 20 keV energy. The surface topology becomes
developed with folds and cracks. The surface layer becomes carbonized and oxidized. The adhesion
interface of EPDM rubber with polyurethane binder was improved up to the point where a covalent
bond network was formed between the EPDM rubber and the polyurethane binder.
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Figure A5. Optical microphotograph (2 × 1.5 mm) of EPDM rubber after 1015 ions/cm2 PIII. (a–d) are
in a center of the treated area.

Materials 2018, 11, x FOR PEER REVIEW  13 of 15 

 

  
(a) (b) 

  
(c) (d) 

Figure A5. Optical microphotograph (2 × 1.5 mm) of EPDM rubber after 1015 ions/cm2 PIII. (a–d) are 
in a center of the treated area. 

 

Figure A6. Normalized absorbance of ν(C=C) = 1610 cm−1 line and ν(C=C) = 1610 cm−1 line in FTIR 
ATR spectra of EPDM rubber with fluence of PIII without grid. 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.0001 0.001 0.01 0.1 1 10 

Ab
so

rb
an

ce
, a

.u
. 

Fluence, *1015 ion/cm2 

1610 cm-1 

1705 cm-1 

Untreated 

Figure A6. Normalized absorbance of ν(C=C) = 1610 cm−1 line and ν(C=C) = 1610 cm−1 line in FTIR
ATR spectra of EPDM rubber with fluence of PIII without grid.
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