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Abstract: Diatomite is an inorganic natural resource in large reserve. This study consists of two
phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized
the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution,
mesoporous distribution, morphology, and IR spectra. In the second phase, road performances,
referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures
with diatomite were investigated. The characterization of diatomite exhibits that it is a porous
material with high SiO2 content and large specific surface area. It contributes to asphalt absorption
and therefore leads to bonding enhancement between asphalt and aggregate. However, physical
absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of
asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of
the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue
resistance of asphalt mixture.

Keywords: diatomite; styrene–butadiene–styrene (SBS) modified bitumen; diatomite-modified
asphalt mixture

1. Introduction

Due to its good driving comfort, fast construction speed, convenient maintenance, and easy
recycling, asphalt pavement prevails in highway engineering [1,2]. The Chinese government has been
committed to developing fully the transportation industry in the past few decades. By the end of
2016, the mileage of expressways in China exceeded 130,000 km, of which more than 90% is asphalt
pavement [3].

But during service periods, major damage inevitably occurs in the asphalt pavement, including
rutting, cracking, and permanent deformation [4]. It is caused by the degradation of asphalt, including
bonding strength breaking, high-temperature softening, low-temperature embrittlement, and heat
aging [5].

In order to mitigate pavement damage, it is essential to improve the full temperature range
performance of asphalt during the service period [6]. In recent years, a variety of modifiers, including
organic and inorganic materials have been introduced. Researchers have conducted various studies
to investigate their effects on the improvement of road performance. Amir [7] investigated the effect
of temperature on the toughness index and fatigue properties of styrene–butadiene–styrene (SBS),
a styrene-butadiene block copolymer-modified asphalt mixture created by a Universal Test Machine
(UTM) apparatus. The results suggest that the SBS can increase the indirect tensile strength of an
asphalt mixture at high temperatures. Taher [8] evaluated the permanent deformation characteristics
of polyethylene terephthalate (PET)-modified asphalt mixtures. The results indicate that mixtures with
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PET modification have better resistance against permanent deformation. However, its price is too
high to promote. Mahyar [4] investigated the effects of rice husk ash (RHA) as an asphalt modifier
on binders and mixtures. The results suggest that the properties of the binders and mixtures were
enhanced remarkably with the addition of RHA; although, the preparation process of RHA-modified
asphalt is quite complex. Paravita [9] investigated the effect of crumb rubber on the properties of
asphalt mixtures. The crumb rubber-modified asphalt mixture exhibited better mechanical properties.
But, the modified mixture showed uncontrolled volume properties, which may affect durability.
Erol [10] evaluated the effect of nano-clay materials on the enhancement of the mechanical properties
of an asphalt mixture. The mixtures with nano-clay modification exhibit acceptable water damage
resistance and rutting resistance except for its fatigue performance.

Nowadays, the SBS-modified bitumen is widely used. But, as for the other modifiers, they are
either too expensive or show fewer improving effects according to the literature. New modifiers with
low prices, easy modification procedures, and good modification effects are still in urgent demand.

As a non-metallic mineral, diatomite is an inorganic natural resource in large reserve [11,12].
Researchers have tried to introduce it into asphalt mixtures for its rough surface, high hardness,
acid and alkali resistance, wear resistance, anti-skidding, porous structure, unique component activity,
stable properties, etc. [13,14]. Alejandra’s [15] research indicates that the fatigue resistance of a binder
with 4% diatomite content is improved. Cong [12] investigated the physical properties, dynamic
rheological behaviors, storage stability, and aging properties of different contents of modified asphalt
binders. The results suggest that both viscosity and complex modulus of binders increase rapidly at
high temperatures with the addition of diatomite. Compared with base asphalt binders, the resistance
of modified asphalt binders to high-temperature deformation and low-temperature cracking has been
greatly improved.

Meanwhile, the pavement performances of diatomite-modified asphalt mixtures have been
studied. Zhang [16] and Tan [17] evaluated the effect of diatomite on the low-temperature performance
of asphalt mixtures. The results indicate that the bending strain energy density of a mixture increases
with the addition of diatomite. Chen’s [18] research shows that the dynamic stability of an SBS-modified
asphalt mixture is the greatest, followed by the diatomite-modified asphalt mixture and the controlled
asphalt mixture. Wei [19] stated that the anti-icing performance of diatomite-modified asphalt mixtures
was improved. Chen [20] suggested that the fatigue life of modified asphalt mixtures with diatomite
was certainly improved under the same stress levels. Bao [21] indicates that diatomite can improve the
stability and splitting strength of an asphalt mixture.

Based on the findings mentioned above, it can be found that diatomite can improve the
performance of asphalt mixtures with respect to rutting resistance at high temperatures and splitting
or crack resistance at low temperatures. Nevertheless, the improving mechanism necessitates further
systematical research.

In this paper, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), particle-size and pore-size
analyzer, Scanning Electron Microscope (SEM), and Fourier-Transform Infrared Spectrometer (FTIR)
tests were employed to evaluate the characteristics of diatomite. The effects of diatomite on
the pavement performance of a modified asphalt mixture were also investigated. In particular,
low-temperature properties were given much importance, because inorganic fillers seldom have
significant effects on the low-temperature aspects. Based on the tests, we evaluated how diatomite
affects the performance of asphalt mixtures.

2. Materials

Base asphalt with 60–80 penetration was procured from Ezhou, China. Two SBS-modified bitumen
samples were procured from Ezhou (EZ) and Inner Mongolia (IM), China, respectively. Their properties
are presented in Tables 1 and 2, respectively. Basalt aggregate and limestone filler were also included
in the asphalt mixtures. The fundamental properties of diatomite and limestone powder are listed in
Table 3.
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Table 1. Measured values of base asphalt.

Indexes Measured Values Specification

Specific gravity 1.034 N/A
Penetration at 25 ◦C (0.1 mm) 63 60–80

Ductility, 5 cm/min, 15 ◦C (cm) >150 ≥100
Softening point (◦C) 48 ≥46

Apparent viscosity, 135 ◦C (Pa·s) 0.48 ≤1.5
Loss on heating (%) +0.09 ≤±0.8

Table 2. Measured values of styrene–butadiene–styrene (SBS)-modified bitumen.

Indexes
Measured Values

Specification
EZ IM

Specific gravity 1.032 1.039 N/A
Penetration at 25 ◦C (0.1 mm) 55 68 30–80
Ductility, 5 cm/min, 5 ◦C (cm) 56 49 ≥30

Softening point (◦C) 69 52 ≥50
Apparent viscosity, 135 ◦C (Pa·s) 0.95 1.23 ≤3

Loss on heating (%) +0.32 +0.56 ≤±1

Table 3. Fundamental properties of limestone powder and diatomite.

Indexes Diatomite Limestone Powder

Color light yellow white
Apparent density (g/cm3) 2.18 2.67

Water content (%) 1.81 0.55
Specific surface area (m2/g) 29.35 1.47

Hydrophilic coefficient 0.5 0.6

3. Experimental Methods

3.1. Characteristic Methods for Diatomite and Asphalt Binder

The mineralogy, chemical composition and microscopic surface characteristic of diatomite were
tested by D8 Advance X-ray Diffraction (XRD, Brooke AXS, Berlin, Germany), Axios X-ray Fluorescence
(XRF, PANalytical B.V., Amsterdam, The Netherlands), and JSM-IT300 Scanning Electron Microscope
(SEM, NEC Electronics Corporation, Tokyo, Japan), respectively. A Mastersizer 3000 laser particle
analyzer (Malvern Instruments, Malvern, UK) was used to determine the particle size distributions
of fillers.

A TriStarII3020 multi-channel ratio surface area and aperture analyzer (Micromeritics, Atlanta,
GA, USA) was applied to investigate surface area and mesoporous distribution. The specific surface
area was determined by the Brunauer–Emmett–Teller (BET) test method. Nitrogen was used as
adsorbent, and helium or hydrogen was used as a carrier gas. The two gases were mixed at a certain
proportion. When it achieved the specified relative pressure, the gas flowed through solid material.
The sample was adsorbed physically by nitrogen. When the liquid nitrogen was taken away, the
adsorbed nitrogen was desorbed, and a desorption peak appeared. Finally, calibration peaks were
obtained by injecting pure nitrogen of known volume into the mixture. According to the peak area of
the calibration peaks and desorption peaks, the adsorption amount under the relative pressure was
calculated. By changing the mixing ratio of the nitrogen and carrier gas, the adsorption capacity of
several nitrogen relative pressures could be determined. The specific surface area could be calculated
according to the following formula:

p
V(p0 − p)

=
1

VmC
+

(C− 1)
VmC

p
p0

(1)
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Sg =
VmNA Am

2240W
× 10−18 (2)

where p = partial pressure of nitrogen; p0 = saturated vapor pressure of liquid nitrogen; Vm = amount of
gas required to form a monolayer; V = total volume of adsorbed gas; C = constant; Sg = specific surface
area; NA = Avogadro constant; Am = cross-sectional area of adsorbed gas; and W = sample quality.

The Nicolet6700 Fourier-Transform Infrared Spectrometer (FTIR, Thermo Electron Scientific
Instruments, Columbia, IN, USA) was used to obtain the IR spectra of the base asphalt,
diatomite-modified asphalt binder, and diatomite. Binder specimens were made with base asphalt and
12% weight-based diatomite after constant stirring at 120 ◦C for 0.5 h. The test procedure was as follows:
The infrared light of a certain wavelength was irradiated to the measured substance. If the radiant
energy was equal to the energy level difference between the ground state and the excited state of the
molecular vibration, the molecule could absorb the infrared light energy. The vibration transitioned
from the ground state to the excited state. The instrument recorded the degree of infrared light
absorption with the wavelength of the change function to form the infrared spectrum. When detecting
the asphalt, it was dissolved in CS2 in a solution, and then, the KBr tablet method was used to prepare
the sample. Because of the high volatility of CS2, the solution should be equipped with the current test.
The scanning wave number range was 500~4000 cm−1, and the scanning frequency was 64 times.

3.2. Performance Evaluation of Mixtures

3.2.1. Preparation of Asphalt Mixture

Four mixtures—EZ-SBS-modified, IM-SBS-modified, diatomite-modified, and base asphalt—mixtures
were studied. All of them were prepared with the same gradation at optimum asphalt content.
The gradation was designed with 13.2-mm nominal maximum size. Figure 1 shows the gradation.
Two blending methods, namely direct and indirect blending methods, were used in the preparation of
the diatomite-modified asphalt mixture. When the direct blending method was used, the diatomite
was added to the mixture of asphalt and aggregate with mineral powder. When the indirect mixing
method was used, the diatomite-modified asphalt binder was prepared before the preparation of the
mixture [22]. Yin’s [23] research showed that the two blending methods led to approximately the
same mix effect. Chen [20] determined that the optimum amount of compound diatomite modifier
was 10%, while at this content, the Marshall specimens showed the best performances. Zhang [16]
concluded that the optimum dosage of diatomite was 13% through the analysis of the low-temperature
performance of binders and mixtures. Hence, 10–13% was a reasonable range of dosage. According to
the literature review, the direct blending method was chosen, with 12% (mass ratio of diatomite and
asphalt) diatomite content for the specimens’ preparation.
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3.2.2. Low-Temperature Performance

A three-points bending test is the common approach for evaluating low-temperature cracking
performance of asphalt mixtures. The test device is shown in Figure 2. Beam specimens with
250 ± 2.0 mm length, 30 ± 2.0 mm width, and 35 ± 2.0 mm height were used [24]. There were
five parallel specimens in each type of mixture. The test was carried out on a Universal Testing
Machine (UTM)-25 from Melbourne, Australia, and the experimental parameters were −10 ◦C of
temperature and a loading rate of 50 mm/min. The bending strain energy and bending strain energy
density in this study were used to evaluate the four mixtures [25], and formulas for the calculations
were as follows:

W =
∫ s0

s
Fds (3)

where W = bending strain energy; F = force; s = displacement; and s0 = critical displacement.

dw
dv

=
∫ ε0

0
σijdεij (4)

where dw/dv = bending strain energy density; σij = stress component, εij = strain component,
and ε0 = critical strain.

Materials 2018, 11, x FOR PEER REVIEW  5 of 15 

 

Figure 1. Asphalt concrete (AC)-13 gradation design used in this paper. 

3.2.2. Low-Temperature Performance  

A three-points bending test is the common approach for evaluating low-temperature cracking 
performance of asphalt mixtures. The test device is shown in Figure 2. Beam specimens with 250 ± 
2.0 mm length, 30 ± 2.0 mm width, and 35 ± 2.0 mm height were used [24]. There were five parallel 
specimens in each type of mixture. The test was carried out on a Universal Testing Machine (UTM)-
25 from Melbourne, Australia, and the experimental parameters were −10 °C of temperature and a 
loading rate of 50 mm/min. The bending strain energy and bending strain energy density in this study 
were used to evaluate the four mixtures [25], and formulas for the calculations were as follows: 

푊 = 퐹푑푠 (3) 

where W = bending strain energy; F = force; s = displacement; and s0 = critical displacement. 

푑푤
푑푣 = 휎푖푗

휀0

0
푑휀푖푗 (4) 

where dw/dv = bending strain energy density; σij = stress component, εij = strain component, and ε0 = 
critical strain.  

 
Figure 2. Three-points bending test set-up. 

3.3.3. High-Temperature Performance  

A rutting test is currently used to evaluate high-temperature stability. The size of the slab 
specimens was 300 × 300 × 50 mm. The rolling speed of the wheel was 42 times/min, and the load was 
0.7 MPa. The test time was 1 h, and the test temperature was 60 °C for a standard wheel tracking test. 

3.3.4. Fatigue Performance 

A four-points bending fatigue test was conducted by UTM-25 (IPC Global, Melbourne, Australia) 
as shown in Figure 3. The length, width, and height of the beam specimens were 380 ± 2.0 mm, 63.5 
± 2.0 mm, and 50 ± 2.0 mm, respectively. The test temperature was 15 °C. A haversine load pulse at 
10 Hz was used. In the fatigue test, strain control loading mode was adopted to study the fatigue life 
of the asphalt mixture under a microstrain, such as 500 με, 600 με, 700 με, and 800 με. 

Figure 2. Three-points bending test set-up.

3.2.3. High-Temperature Performance

A rutting test is currently used to evaluate high-temperature stability. The size of the slab
specimens was 300 × 300 × 50 mm. The rolling speed of the wheel was 42 times/min, and the
load was 0.7 MPa. The test time was 1 h, and the test temperature was 60 ◦C for a standard wheel
tracking test.

3.2.4. Fatigue Performance

A four-points bending fatigue test was conducted by UTM-25 (IPC Global, Melbourne, Australia)
as shown in Figure 3. The length, width, and height of the beam specimens were 380 ± 2.0 mm,
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63.5 ± 2.0 mm, and 50 ± 2.0 mm, respectively. The test temperature was 15 ◦C. A haversine load pulse
at 10 Hz was used. In the fatigue test, strain control loading mode was adopted to study the fatigue
life of the asphalt mixture under a microstrain, such as 500 µε, 600 µε, 700 µε, and 800 µε.Materials 2018, 11, x FOR PEER REVIEW  6 of 15 
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3.2.5. Water Stability

Water stability was used to evaluate the ability of asphalt to stripe from the aggregate surface
when the asphalt mixture was subjected to water erosion. In this paper, the Marshall stability test and
indirect tensile strength test were used to assess water stability.

4. Results and Discussion

4.1. Characteristics of Diatomite and Binder

4.1.1. Mineralogical Properties of Diatomite and Limestone Powder

Figure 4 shows the XRD patterns of diatomite and limestone powder. A strong diffraction peak
appears at 2θ = 26.66◦ in diatomite, which represents the mineral phase of SiO2. From the retrieved
mineral composition, it can be concluded that the group OH− is contained in diatomite. It is an
essential reason for the surface activity and absorptivity of diatomite [26]. For the XRD pattern for
limestone, there is a very strong diffraction peak of CaCO3 at 2θ = 29.43◦. It implies the extremely high
content of CaCO3.

Table 4 shows the chemical components of diatomite. Silicon (Si) displays the highest contributions,
followed by Al and Fe. The content of SiO2 is one of the most important parameters by which to
evaluate the quality of diatomite [27]. In particular, the surface of diatomite has very strong adhesion
and adhesive strength due to the presence of these amorphous SiO2. The inert nature of SiO2 can also
reduce the transmission speed in pavement and endow the pavement with heat insulation functions [6].
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Table 4. Chemical components of diatomite and limestone powder.

Compound SiO2 CaO Al2O3 Fe2O3 K2O MgO TiO2 Loss Others

Content (wt %)
Diatomite 62.21 0.36 12.07 4.52 1.53 1.10 0.70 15.89 1.62

Limestone powder 1.79 55.46 0.18 0.09 - 0.52 - 41.72 0.24Materials 2018, 11, x FOR PEER REVIEW  7 of 15 
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4.1.2. Particle Size Distribution of Diatomite

Figure 5 shows the particle size distributions of diatomite and limestone powder. From the
frequency distribution curve, it can be seen that the average particle size of diatomite is slightly bigger
than that of limestone powder. In addition, their particles mainly concentrate in between 5 µm and
50 µm. Cumulative distributions results show that the proportions of particle size of diatomite less than
14.48 µm and 36.52 µm reach 50% and 90%, respectively, and for limestone powder, it is 13.27 µm and
36.63 µm, respectively. The average particle size of diatomite and limestone powder is similar. Notably
the average particle size is the main factor affecting the dispersion and compatibility of filler in asphalt.
It is concluded that the use of diatomite contributes to the extension and filling of asphalt for its large
specific surface area. It further lays a foundation for improving the performance of the mixture.



Materials 2018, 11, 686 8 of 15
Materials 2018, 11, x FOR PEER REVIEW  8 of 15 

 

 
Figure 5. Particle size distributions of the diatomite and limestone powder. 

4.1.3. Mesoporous Distribution of Diatomite 

Figure 6 illustrates N2 adsorption isotherms for pore size analysis. The quantity of adsorbed N2 

increases with the increase of relative pressure, where p and p0 are equilibrium pressure and 
saturation pressure, respectively. Less adsorption in the low-pressure zone indicates that the force 
between the adsorbent and the adsorbate is quite weak. In the high p/p0 range, with the rise of 
pressure, the adsorption rate increases significantly. It can be observed that the desorption isotherm 
is above the adsorption isotherm when the relative pressure is between 0.6 and 1.0. In this interval, 
the adsorbate condenses in capillary, resulting in desorption hysteresis. This result confirms the 
conclusion made by Garderen [28], who found that diatomite is a layered structure with a narrow 
number of mesopores in it. The mesoporous distribution diagram is highlighted in Figure 6 by using 
the adsorption branch data. It can be seen that the pore size of diatomite mainly concentrates from 1 
nm to 8 nm. The average pore diameter is 5.4895 nm. The mesoporous structure can subsequently 
enhance the capability of the absorbing light components of asphalt, resulting in the improvement of 
viscosity and high-temperature performance of asphalt. 

 
Figure 6. Adsorption isotherm and mesoporous distribution of diatomite. 

Figure 5. Particle size distributions of the diatomite and limestone powder.

4.1.3. Mesoporous Distribution of Diatomite

Figure 6 illustrates N2 adsorption isotherms for pore size analysis. The quantity of adsorbed N2

increases with the increase of relative pressure, where p and p0 are equilibrium pressure and saturation
pressure, respectively. Less adsorption in the low-pressure zone indicates that the force between
the adsorbent and the adsorbate is quite weak. In the high p/p0 range, with the rise of pressure,
the adsorption rate increases significantly. It can be observed that the desorption isotherm is above the
adsorption isotherm when the relative pressure is between 0.6 and 1.0. In this interval, the adsorbate
condenses in capillary, resulting in desorption hysteresis. This result confirms the conclusion made by
Garderen [28], who found that diatomite is a layered structure with a narrow number of mesopores in
it. The mesoporous distribution diagram is highlighted in Figure 6 by using the adsorption branch
data. It can be seen that the pore size of diatomite mainly concentrates from 1 nm to 8 nm. The average
pore diameter is 5.4895 nm. The mesoporous structure can subsequently enhance the capability of the
absorbing light components of asphalt, resulting in the improvement of viscosity and high-temperature
performance of asphalt.
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4.1.4. SEM Results of Diatomite

It can be seen in the SEM images of Figure 7 that the shape of diatomite is a disc, believed to
belong to cyclotella and stephanodiscus [21]. The average diameter of diatomite particles is about
20 µm. Further observation shows that there are a variety of small opening holes in the outer layer
shell of diatomite. This specific structure of diatomite has certain influence on the asphalt mixture.
It not only results in the large surface area of diatomite, but also facilitates the adsorption and wetting
of asphalt.

Materials 2018, 11, x FOR PEER REVIEW  9 of 15 

 

4.1.4. SEM Results of Diatomite 

It can be seen in the SEM images of Figure 7 that the shape of diatomite is a disc, believed to 
belong to cyclotella and stephanodiscus [21]. The average diameter of diatomite particles is about 20 
μm. Further observation shows that there are a variety of small opening holes in the outer layer shell 
of diatomite. This specific structure of diatomite has certain influence on the asphalt mixture. It not 
only results in the large surface area of diatomite, but also facilitates the adsorption and wetting of 
asphalt. 

 
Figure 7. Surface microstructure of diatomite: (a) 2000×; (b) 5000×; (c) 10,000×. 

4.1.5. FTIR Test Results 

Figure 8 shows the FTIR patterns for asphalt, diatomite, and asphalt binder specimens. The 
results indicate that the peak at 2954 cm−1 is the asymmetric stretching vibrations in CH3. The two 
peaks at 2923 cm−1 and 2852 cm−1 are the asymmetric and symmetric stretching vibration in CH2. The 
peak at 2728 cm−1 is the C–H stretching vibration in saturated alkyl. Peak at 1602 cm−1 is due to the 
stretching vibration of the benzene ring skeleton. The peaks at 1457 cm−1 and 1376 cm−1 stand for the 
symmetric and asymmetric flexural vibrations in CH3. The absorption peaks of 873 cm−1 and 805 cm−1 
are the outer flexural vibration absorption peaks of the hydrocarbon covalent bond of substituted 
benzene. The absorption peak at 747 cm−1 is the result of the alkyl flexural vibration.  

There are three new peaks for diatomic modified asphalt, compared with base asphalt. They are 
the vibrational peaks of water at 3621 cm−1, the stretching vibrations of Si–O bonds at 1033 cm−1, and 
the vibrational bands of inorganic compounds near the 500 cm−1, respectively. These peaks are the 
characteristic absorbed peaks for diatomite. It is observed that no new absorption peak appears on 
the spectrum of asphalt binder. Hence, it is proven that mixing of diatomite and asphalt is a simple 
physical blend. No new functional groups appear in the modified asphalt on account of the addition 
of diatomite.  

Figure 7. Surface microstructure of diatomite: (a) 2000×; (b) 5000×; (c) 10,000×.

4.1.5. FTIR Test Results

Figure 8 shows the FTIR patterns for asphalt, diatomite, and asphalt binder specimens. The results
indicate that the peak at 2954 cm−1 is the asymmetric stretching vibrations in CH3. The two peaks at
2923 cm−1 and 2852 cm−1 are the asymmetric and symmetric stretching vibration in CH2. The peak at
2728 cm−1 is the C–H stretching vibration in saturated alkyl. Peak at 1602 cm−1 is due to the stretching
vibration of the benzene ring skeleton. The peaks at 1457 cm−1 and 1376 cm−1 stand for the symmetric
and asymmetric flexural vibrations in CH3. The absorption peaks of 873 cm−1 and 805 cm−1 are the
outer flexural vibration absorption peaks of the hydrocarbon covalent bond of substituted benzene.
The absorption peak at 747 cm−1 is the result of the alkyl flexural vibration.

There are three new peaks for diatomic modified asphalt, compared with base asphalt. They are
the vibrational peaks of water at 3621 cm−1, the stretching vibrations of Si–O bonds at 1033 cm−1, and
the vibrational bands of inorganic compounds near the 500 cm−1, respectively. These peaks are the
characteristic absorbed peaks for diatomite. It is observed that no new absorption peak appears on
the spectrum of asphalt binder. Hence, it is proven that mixing of diatomite and asphalt is a simple
physical blend. No new functional groups appear in the modified asphalt on account of the addition
of diatomite.
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4.2. Performance of Asphalt Mixtures

4.2.1. Results of the Three-Point Bending Test

The low-temperature performance of an asphalt mixture is determined by the tensile strength
of asphalt and its combination with the aggregate. Usually, inorganic filler can improve the rutting
performance of an asphalt mixture but has little effect on the improvement of the low-temperature
performance, because the addition of filler tends to enhance the hardness of asphalt and increase
the possibility of brittle fracture at low temperatures. Therefore, the focus falls on the influence of
diatomite on the anti-cracking performance of the asphalt mixture.

The test results are shown in Table 5 and Figure 9. It is seen that EZ-SBS-modified mixture shows
the maximum tensile strain, strain energy density, and bending strain energy, followed by IM-SBS- and
diatomite-modified mixtures. Compared with the base asphalt mixtures, the energy density and strain
energy of mixtures with diatomite are improved to a certain extent. It may be ascribed to the hardening
effects of asphalt adsorbed in the pores of diatomite at low temperatures, which enhanced the
mechanical combination of asphalt and diatomite, further improving the low-temperature performance
of diatomite asphalt mortar [29]. However, the extent of the improvement is not as great as that of
SBS-modified asphalt.

Some discussions in the literature show that low-temperature performance of diatomite-modified
asphalt mixture is comparable to or slightly lower than that of polymer-modified asphalt mixtures,
such as SBS [30,31]. However, the test results showed that diatomite has little effect on the improvement
of the low-temperature performance of an asphalt mixture. The reason is that an inorganic substance,
such as diatomite, has no cross-linking and vulcanization with asphalt, unlike the modification
mechanism of asphalt by SBS.
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Table 5. Low-temperature bending test results of the asphalt mixtures.

Mixtures Types Flexural Strength (MPa) Tensile Strain (µε) Bending Stiffness Modulus (MPa)

EZ-SBS-modified 10.127 2077.16 4996.93
IM-SBS-modified 10.481 1576.36 7229.83

Diatomite-modified 8.411 1352.72 6570.01
Base 7.910 1130.84 7333.69Materials 2018, 11, x FOR PEER REVIEW  11 of 15 
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4.2.2. Results of the Rutting Test

It can be seen from the rutting tests results in Table 6 that the EZ-SBS-modified asphalt mixture
has the highest dynamic stability. The dynamic stability of the diatomite-modified asphalt mixture is
larger than that of the IM-SBS-modified asphalt mixture and about 3.4 times that of the base asphalt
mixture. The reason is that diatomite, with its porous structure and large surface area, can absorb the
light content of asphalt, which increases the overall complex shear modulus of the asphalt mortar and
improves the rutting resistance of the mixture. In addition, diatomite is an inert substance with a high
content of SiO2, which is insensitive to the change of temperature [6]. Therefore, diatomite-modified
asphalt pavement has the functions of thermal insulation and heat resistance.

Table 6. Rutting experiment results of asphalt mixtures.

Mixtures Types 45 min d1 (mm) 60 min d2 (mm) Dynamic Stability (times/mm)

EZ-SBS-modified 1.229 1.295 9545
IM-SBS-modified 2.477 2.681 3088

Diatomite-modified 1.574 1.686 5625
Base 3.144 3.527 1645

4.2.3. Results of the Four-Point Bending Test

The fatigue lives of the three kinds of asphalt mixture beams specimens are shown in Figure 10.
There are four microstrain levels including 500 µε, 600 µε, 700 µε, and 800 µε. It appears that the
fatigue life of the IM-SBS-modified asphalt mixture is significantly greater than the other two kinds
of mixtures. Meanwhile, compared with the base asphalt mixture, the fatigue performance of the
asphalt mixture with diatomite is significantly improved. This is ascribed to the excellent compatibility
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between diatomite and asphalt, which can reduce mixing time, prevent aging of the modified asphalt,
and directly improve the durability of asphalt mixture [27].Materials 2018, 11, x FOR PEER REVIEW  12 of 15 
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4.2.4. Results of Marshall Stability and Indirect Tensile Strength Test

The results of Marshall stability (MS), immersion Marshall stability (MS1), and residual Marshall
stability (RMS) tests are shown in Figure 11. The results of the indirect tensile strength of normal
temperature group (RT1), indirect tensile strength of freezing and thawing group (RT2), and tensile
strength ratio (TSR) were shown in Figure 12.

It can be seen that although the MS and MS1 of the asphalt mixture with diatomite are lower
than those of the IM-SBS-modified asphalt mixture, their RMSs are approximately equal. The TSR of
the diatomite-modified asphalt mixture is slightly higher than that of the IM-SBS-modified asphalt
mixture. With the addition of diatomite, the parameter value of the asphalt mixture is higher than
that of base asphalt mixture, leading to the increase in the cohesive force between the asphalt and the
aggregate. It contributes to the increase in shear resistance and stability [32].
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5. Conclusions

This study investigated the characteristics of diatomite by various characterization methods.
The influence of diatomite as modifier on asphalt mixture was also studied by comparing the pavement
performance of SBS-modified, diatomite-modified, and base asphalt mixtures. According to the above
results, the following items can be concluded:

(1) The group OH– was contained in diatomite. It is an essential reason for the surface activity and
absorptivity of diatomite. The porous structure of diatomite improves its adhesion and wet ability
with asphalt. Small particle size, numerous mesopores, and large specific surface area enhance its
adsordability for the light components of asphalt. The characteristics of diatomite contribute to
its strong physical connection with asphalt. They provide a possible reason for its enhancement
of asphalt mixture performance.

(2) The addition of diatomite resulted in an increase in the high-temperature performance of the
asphalt mixture but resulted in little improvement of the low-temperature performance. Therefore,
in terms of its practical engineering application, diatomite-modified asphalt mixture is not suitable
for application in the upper layer of asphalt pavement in cold areas.

(3) Although it did not perform as well as the SBS-modified asphalt mixture, the asphalt mixture
with diatomite showed better fatigue performance and water stability than the base asphalt
mixture. In addition, due to its low cost and simple modification process, the economic benefits
of the diatomite-modified asphalt mixture have great advantages compared with the traditional
modified asphalt mixture.
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