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Abstract: This study demonstrated facile synthesis of silver phosphate (Ag3PO4) photocatalysts
for the degradation of organic contaminants. Ag3PO4 microparticles from different concentrations
of precursor, AgNO3, were produced and characterized by scanning electron microscopy, powder
X-ray diffraction, and UV–visible diffuse reflectance spectroscopy. Degradation rates of methylene
blue (MB) and phenol were measured in the presence of microparticles under low-power
white-light light-emitting-diode (LED) irradiation and the reaction rate followed pseudo-first-order
kinetics. The prepared Ag3PO4 microparticles displayed considerably high photocatalytic activity
(>99.8% degradation within 10 min). This can be attributed to the microparticles’ large surface
area, the low recombination rate of electron–hole pairs and the higher charge separation efficiency.
The practicality of the Ag3PO4 microparticles was validated by the degradation of MB, methyl red,
acid blue 1 and rhodamine B under sunlight in environmental water samples, demonstrating the
benefit of the high photocatalytic activity from Ag3PO4 microparticles.

Keywords: hydrothermal synthesis; silver phosphate; degradation; low power white-light LED irradiation

1. Introduction

Advanced oxidation processes (AOPs) have gained considerable attention for the treatment
of organic dyestuffs polluted environmental water matrices [1–4]. Among the various AOPs,
heterogeneous photocatalysis, which employs semiconductor-based photocatalysts, has been the
subject of numerous studies on due to its ability to decompose organic compounds under solar
light irradiation [5–9]. For example, the heterogeneous photocatalyst TiO2 is considered an excellent
material for water treatment because it is cheap, nontoxic and abundant in nature [5,6,10,11]. However,
its inefficient photocatalytic degradation and antibacterial activity render it non-ideal for practical
applications because of the rapid recombination of its photogenerated electron–hole pairs leading
to high operating costs [12]. Furthermore, as a material with wide band gap, the absorption peak
of TiO2 is in the ultraviolet (UV) region (3.2 eV), inferring that TiO2 utilizes only a small proportion
of solar energy. To overcome the limitation of TiO2, two synthetic strategies have been proposed.
One is to modify the narrow the wide band gap of TiO2 by doping it with other materials, but this
method often requires complicated synthetic procedure [13–15]. The other is to synthesize novel
semiconductor-based photocatalysts, other than TiO2, capable of absorbing visible light with relative
simple synthetic route.
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In 2010, Yi et al. synthesized Ag3PO4 with high photo-oxidative activity for O2 evolution from
water and the decomposition of organic dyes under visible-light irradiation [16]. The photodegradation
rate of organic dyes using this novel photocatalyst is 10 folds higher than that using other
visible-light-responsive photocatalysts such as BiVO4 and N-doped TiO2. Since 2010, studies have
focused on the synthesis of different-morphology Ag3PO4 photocatalysts and the evaluation of their
photocatalytic activity [17–26]. For example, Hsieh et al. proposed shape-controllable synthesis of
Ag3PO4 crystals and examined their facet-dependent optical properties, photocatalytic activity and
electrical conductivity [27]. Ag3PO4 cubes have shown more photocatalytically active than rhombic
dodecahedra at degrading methyl orange whereas tetrahedral Ag3PO4 is inactive. Furthermore,
the effects that synthesis temperature has on the morphology and photocatalytic performance of
Ag3PO4 were demonstrated by Song [28]. They concluded that increasing the synthesis temperature to
120 ◦C increased the ratio of exposed (110) facets and produced crystals with higher photocatalytic
efficiency over rhodamine B under visible-light irradiation. Another study focused on the effects of
annealing temperature and time on the structure, morphology and photocatalytic activity of Ag3PO4

microparticles [29]. The results revealed that neither the crystalline phase nor photocatalytic activity
decreased with annealing temperature, even when the Ag3PO4 powders were annealed at 400 ◦C for
30 min. The excellent photocatalytic activity of the sintered samples in that study were speculated to
arise from high crystal quality. Although Ag3PO4 is a promising candidate for use in environmental
remediation, the large amount of Ag required to produce it and its low structural stability strongly
limit its practical applications [30–32].

In the present study, we examined the photocatalytic activity of Ag3PO4 with different amounts
of AgNO3 through a sonochemical (20 kHz, 600 W for 30 min) and hydrothermal method (180 ◦C for
24 h). The photocatalytic degradation activity of the as-prepared Ag3PO4 microparticles was evaluated
according to their degradation of methylene blue (MB) and phenol under low-power white-light
light-emitting-diode (LED) irradiation (5 W). Finally, we propose the possible photodegradation
mechanism by using the Ag3PO4 microparticles.

2. Materials and Methods

2.1. Chemicals

All chemicals were of analytical grade and the highest purity available. AgNO3, Na3PO4, HNO3,
phenol, p-benzoquinone, tert-butanol (t-BuOH), and ethylenediamine tetraacetate (EDTA) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). MB, methyl red (MR), acid blue 1, and rhodamine
B (RhB) were purchased from Invitrogen (Eugene, OR, USA). Milli-Q deionized water was used to
prepare all solutions in all experiments.

2.2. Preparation

Ag3PO4 microparticles (S1–S4) were prepared through a sonochemical and hydrothermal method.
In a typical synthesis procedure, AgNO3 (S1: 1.25, S2: 7.5, S3: 12.5, and S4: 25.0 mmol) was dissolved
in 45 mL of deionized water. The prepared Na3PO4 solution (2.50 mmol, 5 mL) was then added to
the preceding solution under ultrasonic irradiation at room temperature. After 30 min of ultrasonic
irradiation (Misonix, Inc., Farmingdale, NY, USA: XL-2020, 20 kHz, 600 W), the mixture was transferred
into a Teflon-lined stainless steel autoclave. The autoclave was sealed and heated in an electric oven
at 180 ◦C for 24 h. After the autoclave naturally cooled to room temperature, the precipitates were
centrifuged and washed three times with ethanol and deionized water, and then dried in vacuum at
50 ◦C for 8 h.

2.3. Characterization

The crystalline phases of the Ag3PO4 microparticles were determined through X-ray diffraction
(XRD) using a SMART APEX II X-ray diffractometer (Bruker AXS, Billerica, MA, USA) with
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Cu Kα radiation (λ = 0.15418 nm). The morphologies of the Ag3PO4 microparticles were observed
through a HITACHI S-4800 scanning electron microscope (SEM) (Hitachi high technologies corporation,
Tokyo, Japan) operating at 15 kV. UV–visible diffuse reflectance spectra (UV-Vis-DRS) of the Ag3PO4

microparticles were collected from an Evolution 2000 UV–Vis spectrometer (Thermo Fisher Scientific Inc.,
Madison, WI, USA) with BaSO4 employed as the reference. The Brunauer–Emmett–Teller (BET)
specific surface area of the Ag3PO4 microparticles was characterized using a PMI C-BET 201A system
(Porous Materials Inc., Ithaca, NY, USA).

2.4. Photocatalytic Degradation Activity

The Ag3PO4 microparticles (S1–S4) were used to degrade MB and phenol under white-light
LED irradiation (5 W, PCX-50C, Beijing perfectlight technology co. LTD, Beijing, China), and their
photocatalytic activity was evaluated based on our earlier reports with modifications [33–37]. Prior
to irradiation, 50 mL of 5 mg/L MB aqueous solution or 10 mg/L phenol solution containing
50 mg of photocatalyst was stirred in the dark for 30 min. During irradiation from the bottom
with constant magnetic stirring, 3 mL of suspension was taken and centrifuged to remove the
photocatalyst. The MB or phenol content in the filtrate was determined colorimetrically at 665 nm and
270 nm, respectively, by using a using a Synergy H1 Hybrid Multi-Mode Microplate Reader (Biotek
Instruments, Inc., Winooski, VT, USA). Furthermore, the amount of total organic carbon was measured
during degradation using an elementar Acquray TOC analyzer (Elementar Analysensysteme GmbH,
Langenselbold, Germany). Similar procedures were performed for various dyestuffs (MR, RhB and
acid blue 1) and environmental water samples (lake water and pond water), except for the use of
solar irradiation.

2.5. Study of Recombination Rate of Electron–Hole Pairs and Charge Separation Efficiency

The recombination rate of the electron–hole pairs and charge separation efficiency for the Ag3PO4

microparticles (S1–S4) were evaluated based on our earlier reports [33–37]. For determination
of recombination rate of electron–hole pairs, photoluminescence spectra were produced using
a Varian Cary Eclipse fluorescence spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA).
A slurry containing a photocatalyst (5 mg) and methanol (5 mL) was coated on the indium tin oxide
(ITO) glass. The coated ITO glass was then heated on the hotplate at 50 ◦C for 30 min to completely
remove the methanol. This coated ITO glass was used as an anode electrode, a platinum foil was
used as a cathode electrode, and 0.1 M aqueous Na2SO4 solution was used as a supporting electrolyte.
Photocurrents, which used to evaluate the charge separation efficiency, were measured using
a CHI-6122E electrochemical analyzer (CH instruments, Inc., Austin, TX, USA) at room temperature.

2.6. Scavenger Test

The scavenger test was used to determine the major reactive species involved in the MB
degradation. The procedure was similar to that the photocatalytic activity procedure [33–37]. Prior to
adding a photocatalyst, hole-, oxygen radical- and hydroxyl radical- scavengers (each 10.0 µM) were
added to the MB solution.

3. Results and Discussion

3.1. Crystalline Phase and Morphology

Different concentration effect on silver nitrate was examined by XRD and SEM to reveal their
influence on crystalline phase and morphology of the Ag3PO4 microparticles. The XRD patterns of the
various Ag3PO4 microparticles prepared from varying AgNO3 concentration are presented in Figure 1.

The main diffraction peaks for all the types of Ag3PO4 microparticle can be indexed to
a body-centered cubic structure (Joint Committee on Powder Diffraction Standards 06-0505), indicating
that the AgNO3 concentration have no influence on the crystalline phase of the Ag3PO4 microparticles.
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Figure 1. XRD patterns of the materials synthesized from different AgNO3 concentrations (S1: 1.25 mmol,
S2: 7.5 mmol, S3: 12.5 mmol, and S4: 25.0 mmol of AgNO3.) under sonochemical process (600 W) at
25 kHz for 30 min with the hydrothermal process at 180 ◦C for 24 h.

Figure 2 shows SEM images of the Ag3PO4 microparticles, which reveal clear differences in the
morphology and size of particles. The Ag3PO4 microparticle (S1), which was prepared by mixing
1.25 mmol of AgNO3 with 2.5 mmol of Na3PO4 in 40.0 mL DI-water through the sonochemical
and hydrothermal process, was constructed from spherical particles with a diameter of 4.5 ± 1.7 µm
(Figure 1a). As the AgNO3 content was increased gradually (7.50, 12.5 and then 25.0 mmol), the Ag3PO4

microparticles became irregular in shape and increased in size (Figure 1b: 7.3 ± 4.3 µm; Figure 1c:
11.3 ± 2.9 µm; and Figure 1d: 13.6 ± 5.0 µm). Because AgNO3 was the precursor, a high concentration
of AgNO3 enhanced the growth rate of the Ag3PO4 particles; thus, the morphology changed from
spherical to irregular, dependent on the AgNO3 content.
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Figure 2. SEM images of the Ag3PO4 microparticles synthesized from different AgNO3 concentrations under
sonochemical (600 W) at 25 kHz for 30 min and hydrothermal process at 180 ◦C for 24 h: (a) 1.25 mmoL (S1),
(b) 7.5 mmol (S2), (c) 12.5 mmol (S3), and (d) 25.0 mmol (S4) of AgNO3. Scale bar: 20 µm.



Materials 2018, 11, 708 5 of 14

3.2. Photophysical Properties and Specific Surface Area

Figure 3A displays the UV-Vis-DRS spectra of the Ag3PO4 microparticles, which clearly reveal
that the yellow Ag3PO4 microparticles absorbed from UV to visible light range. The square root of
the absorption coefficient was linearly correlated with energy, signifying that the absorption edges
of all the Ag3PO4 microparticles were due to indirect transitions (Figure 3B). The energy bandgaps
(Eg) of the microparticles were determined according to Tauc Plots [38]. Given that n for Ag3PO4

is 4 because of indirect transitions, the corresponding Eg of the Ag3PO4 microparticles were found
from the x-axis intercept of the curve tangent in the plot of (αhν)0.5 versus hν (Figure 3B) [37].
The estimated band gaps of the Ag3PO4 microparticles were approximately in the range 2.32–2.41 eV
(Table 1) [27]. The difference in band gap of microspheres generated from various AgNO3 concentration
may have caused different charge separation efficiency and recombination rate of the photogenerated
electron–hole pairs, influencing photocatalytic activities of microspheres. The conduction band (CB)
and valence band (VB) positions in the Ag3PO4 microparticles were determined according to the
following equation: EVB = 1.46 + 0.5Eg, where Eg is the band gap [27,38]. Through this equation, EVB
and ECB for the Ag3PO4 microparticles were calculated (Table 1).
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Figure 3. (A) UV–visible diffuse reflectance spectra (UV-Vis-DRS) and (B) (αhν)0.5 versus hν curves of
Ag3PO4 (a) S1, (b) S2, (c) S3, and (d) S4. Inset: photographs of the corresponding materials.

Table 1. Measured band gap (Eg), conduction-band (ECB) edge, valence-band (EVB) edge, and specific
surface area (SBET) for the Ag3PO4 catalysts.

Series Eg (eV) ECB (eV) EVB (eV) SBET (m2·g−1)

S1 2.36 0.28 2.64 0.65
S2 2.38 0.27 2.65 0.55
S3 2.39 0.27 2.66 0.48
S4 2.41 0.26 2.67 0.36
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The BET specific surface area of the Ag3PO4 microparticles was determined using nitrogen
adsorption–desorption measurements; the corresponding values are listed in Table 1. Apparently,
BET-determined surface area decreased with an increase in AgNO3 concentration. This result is
consistent with the size of the Ag3PO4 microparticles from SEM images. It is noteworthy to learn the
difference in surface area may affect the extent of interaction between the photocatalyst and an organic
pollutant, which may also cause different photocatalytic level.

3.3. Photocatalytic Degradation, Mechanism and Applications

The photocatalytic efficiency of the Ag3PO4 microparticles during MB degradation under
white-light LED irradiation (5 W) was evaluated. Figure 4A plots the MB concentration ratio
(C/C0, where C0 represents initial concentration and C represents concentration at time t) with
irradiation time when different photocatalyst sample, S1–S4, was used. To make sure the Ag3PO4

microparticles were photocatalytically active, an experiment of direct MB photolysis in the absence of
photocatalyst was performed under the same conditions. The MB concentration barely changed in the
control experiment as the irradiation time increased (cyan curve). Under white-light LED irradiation
for 10 min, S1 was clearly the most photocatalytically active (>99% degradation) among all other
samples, S2–S4. Interestingly, Ag3PO4 microparticles prepared without hydrothermal process also
exhibited >99% degradation within 10 min. However, they were not stable during the photocatalytic
process (discussion later) because of photocorrosion [31,32,39]. In this study, S1 was the optimal
candidate for MB degradation. According to the data in Figure 4A, the MB degradation was fitted as
a pseudo-first-order reaction (Figure 4B). The rate constant and the half-life for MB degradation by
the Ag3PO4 microparticles were determined (the corresponding values are listed in Table 2). Notably,
S1 resulted in the highest rate constant and the shortest half-life for MB degradation. This may be
because S1 possessed a large specific surface area, which resulted in high photodegradation activity.Materials 2018, 11, x FOR PEER REVIEW  7 of 14 
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Table 2. Pseudo-first-order rate constants and half-life for photocatalytic decoloration of MB by various
Ag3PO4 photocatalysts.

Series First-Order Kinetic Equation k (min−1) R2 Half-Life (min)

S1 y = 0.478x + 0.100 0.478 0.9932 1.45
S2 y = 0.203x − 0.087 0.203 0.9978 3.41
S3 y = 0.200x − 0.147 0.200 0.9931 3.47
S4 y = 0.100x − 0.224 0.100 0.9783 6.93

Figure 5A shows the temporal evolution of the spectrum with MB degradation by S1. According to
the literature, chromophore cleavage is analogous to the competitive photodegradation reaction
involved in the organic pollutants decomposition [37]. In this study, the MB absorption at 665 nm
decreased with an increase in the irradiation time. Moreover, a slight hypochromic shift was found in
the characteristic absorption of MB in the presence of S1. Thus, the cleavage of the MB chromophore
appears to predominate in Ag3PO4-photocatalytic decomposition systems, supported by the results
from Figure 5B, which plots the temporal evolution of the total organic carbon content with MB
degradation over S1. Although the colour of the MB solution disappeared under white-light LED
irradiation for 10 min, the total organic carbon content only decreased to 1.39 mg/L (approximately
decomposition 54.7% of original concentration). The photocatalytic decomposition of MB by S1 was
increased as high as 71.0% (0.89 mg/L) under white-light LED irradiation for 120 min.Materials 2018, 11, x FOR PEER REVIEW  8 of 14 
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In order to exclude the MB sensitization under white-light LED irradiation, the photocatalytic
activity of S1 was also evaluated by degradation of colorless phenol. The change in phenol
concentration with irradiation time when S1 was used as shown in Figure 6. It is found that the
concentration of phenol decreases with the irradiation time. The rate constant for degradation of
phenol by S1 was 0.540 min−1.
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Figure 6. Reduction of the concentration of phenol (C/C0) with time and the corresponding rate
constant of phenol degradation by Ag3PO4 (S1) under white-light LED irradiation (5 W).

Besides the specific surface area of microparticles, the recombination rate of photogenerated
electron–hole pairs and charge separation efficiency can affect the photocatalytic activity.
Recombination of electron–hole pairs can release energy in the form of luminescence; thus, a low
recombination rate suggests a lower luminescence intensity in the photoluminescence measurement
and can correlate to higher photocatalytic activity of microspheres. Therefore, the luminescence spectra
of the Ag3PO4 microparticles were measured at an excitation wavelength of 365 nm (Figure 7A).
The luminescence intensity of S1 was the lowest among all samples (S1–S4), implying that the
electron–hole pairs in S1 recombined the slowest. This may be because the lowest AgNO3 concentration
made Ag atoms on the Ag3PO4 microparticles surface coordinatively unsaturated (three-coordinated
sites with one dangling bond) [40], inhibiting the recombination of photogenerated electrons and holes,
and thus enhanced photocatalytic activity. The charge separation efficiency was evaluated through
photocurrent measurements. Generally, a larger photocurrent implies higher separation efficiency
and higher photocatalytic activity. The photocurrent of S1 was higher than those of other samples
(Figure 7B), indicating enhanced separation of photogenerated electrons and holes. Therefore, the high
photocatalytic activity of S1 was due to its large specific surface area, the low recombination rate of the
photogenerated electron–hole pairs and the higher charge separation efficiency.

To resolve the mechanism responsible for the degradation of MB, radical- and hole-scavenger
tests were implemented to identify the main active species in the photocatalytic degradation process
when S1 was used. Under white-light LED irradiation, MB degradation was deceased upon the
addition of a hole scavenger (EDTA) and an oxygen radical scavenger (p-benzoquinone), as illustrated
in Figure 8. This indicates that hole and oxygen radicals are the major reactive species involved in the
MB decomposition.
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A possible degradation mechanism is proposed in Scheme 1. When Ag3PO4 was illuminated
under white-light LED irradiation, electrons in the VB were promoted to the CB, with an equal number
of holes produced in the VB (Equation (1)). Then, the electrons in the CB were transferred to the
(111) surface of the Ag3PO4 microparticles, which decreased the electron–hole recombination rate.
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The electrons on the (111) surface were unstable and could react with oxygen to produce oxygen
radicals (Equations (2) and (3)) [17,20,22–25]. Therefore, holes in the VB and oxygen radicals were the
major reactive species in the degradation of MB (Equations (4) and (5)).
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Scheme 1. Illustration of the photocatalytic degradation mechanism of the Ag3PO4 microparticles
under white-light LED irradiation.

Ag3PO4 + hν→ Ag3PO4 (h+ + e−) (1)

Ag3PO4 (h+ + e−)→ Ag3PO4 (h+
VB) + Ag3PO4 (e−CB) (2)

Ag3PO4 (e−CB) + O2 → •O2
− (3)

•O2
− + MB→ oxidized products (4)

Ag3PO4 (h+
VB) + MB→ oxidized products (5)

In addition to the photocatalytic efficiency of the photocatalyst, the stability of Ag3PO4 (S1) is
vital for practical applications. To assess the stability and efficiency of the Ag3PO4 microparticles,
a prolonged run of MB degradation was performed. After three cycles for 10 min in each cycle, a
decrease in the photodegradation rate was observed when the Ag3PO4 microparticles prepared without
hydrothermal process was employed (black curve in Figure 9A) while the MB photodegradation
activity of S1 remained constant even after five cycles (red curve in Figure 9A), maintaining 98.7% of
activity within 10 min after five cycles. This indicated that S1 had an excellent stability, which was
proved by the lack of change in the XRD pattern after five photolysis cycles (Figure 9B). This may be
because the hydrothermal procedure enhanced the degree of crystallinity in the microparticles [29].

To assess the practical applications of S1, various dyestuffs (MB, MR, RhB and acid blue 1) in
environmental water samples (lake water and pond water) were degraded under sunlight (Figure 10).
S1 exhibited excellent photocatalytic activity under sunlight for the degradation of all dyestuffs,
with nearly 90% degradation within 50 min. A remarkable difference in the degradation time for
all dyestuffs was observed for the environmental water samples (90% degradation within 50 min)
compared with the deionized water sample (100% degradation within 10 min). This may be because the
presence of anions or radical scavengers in the environmental water samples reduced the photocatalytic
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activity of S1. Further research on the enhancing photocatalytic activity of Ag3PO4 composites, such as
those wrapped by reduced graphene oxide and g-C3N4, is underway in our laboratory.
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4. Conclusions

The Ag3PO4 microparticles were synthesized using a combination of sonochemical and
hydrothermal processes from various concentrations of AgNO3. The photocatalytic activity of the
Ag3PO4 microparticles was evaluated through the degradation of MB under low-power white-light
LED irradiation. The results reveal that S1 synthesized from 1.25 mmol AgNO3 in 40.0 mL DI-water
displayed remarkably higher photocatalytic degradation activity (>99.8%) within 10 min than other
microparticle types (S2–S4). This can be attributed to its large specific surface area, the low
recombination rate of its photogenerated electron–hole pairs and the higher charge separation
efficiency. This study shows that the strong photocatalytic activity of the Ag3PO4 microparticles
(S1) was considered to be possible for its applications toward photodegradation of organic pollutes in
environmental water samples.
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