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Abstract: In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by
combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and
the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force
using the properties of the metal particles. Herein, we investigate the characteristic changes in
actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed
flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with
increasing input voltage. We found that the actuator can move well at metal particle concentrations
>2.5%. We also studied the changes in actuation behavior, depending on the portion of the
Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly
proposed metal particle-silicone composite actuators.

Keywords: soft active materials; flexible actuator; electrostatic force

1. Introduction

Flexible actuators are usually made of flexible materials such as polymers [1]. Thus, such actuators
have various functional advantages, including their light weight and flexibility. Further, flexible
actuators have a high strain density and are easy to fabricate to desired shape [2,3].

Flexible actuators can deform and move in response to external stimuli [4]. During operation,
flexible actuators exhibit a large macroscopic actuation with little stimulation [1,5]. They allow straight
axial and curved movements in one or more planes. Further, they compromise to achieve complex
motions and serve in diverse movement-related platforms [1,6]. In particular, flexible actuators with
relatively simple mechanisms perform complex motions that can be handled by complicated control
systems and large-scale components of hard machines [5,6]. Thus, flexible actuators have been utilized
in various fields, including medical and wearable applications. Specifically, flexible actuators are
excellent for rehabilitation and restoring a patient’s movements [3,7,8]. Furthermore, flexible actuators
may be necessary for soft robot parts, such as soft robotic hands, in multi-segment continuum robots,
and miniaturized drilling devices [9,10]. To satisfy these needs, various materials have been adapted
to develop flexible actuators.

In general, flexible actuators can be divided into two main categories: actuators driven by an
electric field, called electroactive polymer (EAP) actuator, and those driven by other stimuli, including
optical, thermal, and chemical stimuli [4]. In addition, EAP actuators can be generally divided into
two main classes: dielectric and ionic [11]. In dielectric elastomer actuators, a field-induced activation
reaction is triggered by electrostatic attraction between the two charged conductive layers applied
to the surfaces of the polymer membrane [12]. A voltage potential difference is applied between the
two compliant electrodes, causing reduction of thickness and increase of area of the polymer film.
Ionic EAP actuators work by migration of mobile ions within the polymer [4,13,14]. They exhibit
discontinuous changes due to small changes in the external variables such as electric and magnetic
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fields, temperature, solvent quality, and pH. Examples of ionic EAPs include polymer electrolyte gels,
ionic polymer–metal composites (IPMCs), conductive polymers, and bucky gel actuators [4].

Although all flexible actuators have different operating methods and material properties, all of
them exhibit a high degree of flexibility. Furthermore, research on novel materials and fabrication
techniques is continuously being undertaken [5]. Recent advancements in materials have enabled the
development of high reliability and performance actuators [15]. For example, a study was conducted to
improve the thermal stability and mechanical performance of actuator materials [16]. A recent research
also suggests new process methods for reproducible and fast actuators with long life spans [17].
With such researches, new types of actuators have been reported. For instance, multilayer dielectric
elastomer actuators based on silicone materials and elastomer electrodes have been studied with many
advantages in terms of thickness and manufacturing [18]. In addition, millimeter-scale cylindrical
actuators have been developed with silicone polymer, liquid metal (LM) alloy (eutectic gallium indium,
EGaIn), and magnetic (NdFeB) powder [19]. Also, actuators with carbon nanotube network in silicone
elastomer showed excellent performance under low voltage range [20,21]. Likewise, in this study, we
introduce new flexible actuators based on composite structures comprising highly elastomeric siloxane
(Ecoflex) and iron oxide.

Silicone rubber has an average modulus of elasticity of several hundred KPa, a Poisson’s ratio of
0.49–0.50, and a shear modulus of several tens kPa [22,23]. In case of Ecoflex, a commercial silicone
rubber, its elastic modulus is 125 kPa [22]. In addition, because silicone is harmless to the human body,
soft silicone or porous silicone is used as a surgical material and in daily life [24]. However, silicone does
not actuate by electrical stimulation. Herein, we added iron oxide particles to silicone rubber to control
it as an actuator with electric input. Iron oxides are common and easily synthesized compounds [25].
Among the various types of iron oxide available, Fe3O4 is a strong electrical conductor with a higher
conductivity than Fe2O3 at temperatures above 120 K (102 to 103 Ω−1·cm−1) [26]. In composites
consisting of a polymer, heterophasic polypropylene copolymer, polypropylene block copolymer, and
polyamide 6, which are considered as insulators, and Fe3O4 particles, electrical conductivity can be
varied by more than seven orders depending on the mixing ratio [27].

We experimentally demonstrate how the beam type of the Fe3O4-silicone composite actuator reacts
to high-voltage input. Further, frequency resonance with respect to the largest motion is experimentally
studied. In addition, we try to understand the changes in actuation performance with an increase in
the concentration of metal particles and attempt to understand the principle behind actuation.

2. Materials and Methods

2.1. Beam Shape Mold Fabrication Using 3D Printer

A mold for beam-shaped specimens (50 mm length × 5 mm width × 1 mm thickness) was designed
using Solidworks software (Dassault Systems Solidworks Corp., Waltham, MA, USA). Specifically, the
mold was made using a 3D printer (ProJet HD3500, 3D Systems Inc., Rock Hill, SC, USA). The designed
mold was made of part (VisiJet M3 Crystal, 3D Systems Inc., USA) and supporter (VisiJet S300, 3D Systems
Inc., USA) materials. After printing, the mold was heated in a convection oven (DCF-31-N, Dae Heung
Science, Incheon, Korea) for melting the supporter. Lastly, the supporter was completely removed from the
mold in an oil bath in an ultrasonic cleaner (Sae Han Ultrasonic Co., Seoul, Korea). After washing and
drying, a release agent (Ease release 200, Smooth-On, Inc., Macungie, PA, USA) was sprayed on the mold
surface to prevent the silicone from sticking to the surface of the mold.

2.2. Iron Oxide-Silicone Composite Beam Fabrication

The basic fabrication method of Fe3O4-silicone composite actuators is similar to the general
method used for the fabrication of platinum-catalyzed silicones rubbers. Firstly, Ecoflex 0030 part
A (Smooth-On, Inc., USA), Ecoflex 0030 part B (Smooth-On, Inc., USA), and platinum silicone cure
accelerator (Plat-cat, Smooth-On, Inc., USA) were mixed at a ratio of 1:1:0.04 for 3 min. Extra pure
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tri-iron tetra-oxide powder (Daejung Chemical & Metal Co., Ltd., Siheung, Korea) was added to
this mixture (in this study, as much as 1–20% of the total weight) and mixed. The well-mixed and
homogeneous mixture was then poured into the fabricated mold and cured at room temperature for
2 h. The actuator specimens thus fabricated were in the shape of a beam of dimensions of 50 mm
length × 5 mm width × 1 mm thickness; the specimens were carefully separated from the mold using
tweezers after they were fully cured.

2.3. SEM Images and Microanalysis

To observe the details of the microstructure of the actuators in terms of the iron oxide concentration
and distribution, field-emission scanning electron microscopy (FE-SEM, Inspect F50, FEI, Hillsboro,
OR, USA) was carried out. The samples were immersed in liquid nitrogen to preserve the internal
structure without crushing the cross section. The ends of the instantly frozen samples were held with
tweezers and the samples were broken in two. The samples were fixed with a carbon tape to the SEM
sample holder and observed in back-scattered electrons (BSE) mode to analyze the distribution of iron
oxide. Further, microanalysis was carried out to analyze the type of metal represented by the bright
points seen in the SEM images.

2.4. Circuit Configuration and Setup

A high-voltage converter (AG 50P-5, XP Power, Singapore) was supplied from a power supply
(MK3003P, MK Power, Seoul, Korea) and controlled as a sinewave function using a waveform generator
(33500Bseries, Keysight Technologies, Santa Rosa, CA, USA), from DC 3 kV ± AC 1 kV to DC 3 kV ± AC
2 kV. A thick film resistor (50 M ohms, Ohmite, Warrenville, IL, USA) was also connected to the output
of the converters for electric charge release.

An aluminum plate with the same surface area (50 mm × 5 mm) as the composite actuator
was prepared. A polyethylene terephthalate (PET) film (Toray, Seoul, Korea), 100 µm thick, was
attached to the overall surface of the aluminum plate to prevent electric shorting during actuator
operation. The aluminum plate and the actuator were positioned 1 cm away from each other in a
parallel configuration. Copper tape (1181, 3M, Saint Paul, MN, USA) with a soldering wire was utilized
to form the electrodes. They were connected to the output of the converter ((+port): Fe3O4-silicone
composite actuator, (−port): aluminum plate).

2.5. Motion Tracing of the Silicone Composite Actuator

Positional changes in the Fe3O4-silicone composite actuator were detected using a point laser
sensor (IL-100 Intelligent Laser sensor, Keyence Corp., Osaka, Japan). The laser sensor data was
amplified using an IL-1000 amplifier unit (Keyence Corp., Japan). The detecting point of the sensor
was located 3 mm above the tip of the actuator. The output of the laser sensor was measured at
a sampling frequency of 1000 Hz using a data acquisition board (USB-6343, National Instruments,
Austin, TX, USA). In addition, the motion of the Fe3O4-silicone composite actuator was monitored using a
4 K camera (DSC RX10M3, Sony, Tokyo, Japan with a Vario-Sonnar T* lens, Zeiss, Oberkochen, Germany)
at a framerate of 240 in high framerate (HFR) mode. The generated series of photographs was analyzed
using the Image J software (National Institutes of Health, Bethesda, MD, USA).

3. Results

3.1. Material Properties of the Fe3O4-Silicone Composite Actuators

Silicone rubber is a translucent material [28]. When it is mixed with iron oxide particles, as the
concentration of the iron oxide particles increases, the color of the material gradually becomes darker
(Figure 1a). Numerous nano-sized iron oxide particles are scattered in silicone rubber. At low iron
oxide concentrations, the material appears spotted. At concentrations greater 2.5%, the iron oxide
particles are well distributed and the actuator looks like a black beam. We fabricated seven samples
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with varying iron oxide concentration from 1% to 20%. In preliminary testing, it was found that when
the concentration of iron oxide is greater than 25%, they can no longer be mixed with silicone.

We observed an enlarged cross-section in the BSE mode of SEM analysis (Figure 1b,c). Shiny lumps,
a few micrometers to several hundred micrometers in size, are positioned in the silicone matrix. In the
actuator with a low iron oxide concentration of 1%, iron oxide lumps are observed only on some sides,
but in an actuator with a high iron oxide concentration of 20%, lumps are distributed evenly on most
parts. The higher the concentration of iron oxide particles, the greater the distribution of iron oxide
masses. Microanalysis confirmed that the shiny bright spots between the silicone chains corresponded
to iron (Figure 1d).
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Figure 1. Characteristics of Fe3O4-silicone composite actuator depending on iron oxide concentration.
(a) Fe3O4-silicone composite actuator beams with 1% to 20% iron oxide concentration (from left to right:
1%, 1.5%, 2%, 2.5%, 5%, 10%, and 20%). SEM images of Fe3O4-silicone composite actuators: (b) 1%
and (c) 20%. The dark gray wrinkled structures represent silicone, while the bright dots represent iron
oxide particles. (d) Microanalysis results show that the bright dots correspond to iron oxide.

3.2. Motion of Fe3O4-Silicone Composite Actuators

3.2.1. Actuation by High-Voltage Input

The fabricated actuator was placed in parallel to an aluminum plate of the same size (Figure 2) and
they were connected to each other through different ports of the high voltage output ((+): Fe3O4-silicone
actuator, (−): aluminum plate). When a voltage potential was supplied to the actuator and aluminum
plate, the actuator started moving towards the aluminum plate (Figure 3a,b).
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Figure 2. Schematic of the circuit configuration and experimental set up. A high voltage is supplied to
Fe3O4-silicone composite actuators and controlled using a waveform generator. The + and − ports of
the high voltage output are connected to the actuator and aluminum plate, respectively. The distances
moved by the actuator are measured using a point laser sensor.
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Figure 3. Motion of a Fe3O4-silicone composite actuator with an iron oxide concentration of 10%
(240 fps). (a) Off-state and (b) on-state.

3.2.2. Frequency Response and Effect of Voltage input

Actuators with iron oxide concentration in the range of 1% to 20% were tested. Figure 4
illustrates how the peak-to-peak amplitudes change with frequency when the input voltage is varied.
All actuators show a peak corresponding to their resonance frequency.

Additionally, we varied the magnitude of the applied voltage input at the resonant frequencies
of the fabricated composite actuators. As the voltage increases, the peak-to-peak amplitudes of all
the actuators tended to increase gradually (Figure 5). The slope of the actuator with an iron oxide
concentration of 2.5% is the steepest.

In terms of the frequency response, all actuators show a constant frequency resonance of 3 Hz ± 0.1 Hz,
regardless of the iron oxide concentration (Figure 6a). In the concentration range of 1% to 2.5%, the
peak-to-peak amplitudes increased (Figure 6b). However, when the iron oxide concentration was over
2.5%, the peak-to-peak amplitude saturated. At an iron oxide concentration of 5%, the highest peak-to-peak
value of 5.19 mm was observed. After this point, the peak-to-peak value decreased slightly.
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The Young’s modulus of the actuators can be calculated as follows [29],

E = 38.3 × ρ × fr
2 × Lm

4

T2 (1)

where ρ is the mass density (kg/m3); fr is the resonant frequency (Hz); Lm is the movable length of
the beam (m); and T is the thickness of beam (m). The movable length is 4.5 × 10−2 m because the
clamped distance of the actuator is 5 × 10−3 m. The elastic modulus can be calculated by substituting
the measured parameters (ρ = 1240 kg/m3) and the experimental results in Figure 6. The calculated
elastic modulus of the actuators is 1.75 MPa ± 0.11 MPa. This is presumably because the iron oxide
concentration ranges from 1% to 20% (by weight) and corresponds to 1.11% in volume. This does not
have a huge impact on Young’s modulus.

4. Discussion

In this study, we fabricated composite actuators by combining silicone and iron oxide particles
and investigated their characteristics. The actuators were very active at their resonant frequencies.

Herein, we discuss the operation principle of the developed Fe3O4-silicone composite actuators.
The iron oxide particles are not regularly arranged in the actuator, but are actually scattered as lumps
(Figure 1b,c). Particularly in the case of the actuator with 1% iron oxide, the lumps are barely noticeable
(Figure 1b). Further, when we tried to measure its resistance using a multimeter, it was beyond the
measurement range. Therefore, it is suggested that the iron oxide particles inside the actuator are not
connected to each other, and it is difficult for them to be electrically connected to the tip of the actuator.
Thus, the motion can be explained by the concept of an internal field between the electrode and the
adjacent particles [30]. The concept of internal fields links molecular and macroscopic characteristics.
The difficulty in determining the electric field acting on a single dipole in the dielectric can be attributed
to its dependence on the polarization of neighboring molecules. Therefore, the basic concept is to
consider spherical regions containing dipoles in the dielectric. In a ferroelectric polymer, dipoles can
be randomly oriented, but the application of a high electric field causes the dipoles to align and thus
exhibit a ferroelectric behavior [4,31]. Spheroidal iron oxide particles contain dipoles and the dielectric
polarization direction is parallel to the external electric field. Polarization occurs in the vicinity of the
top region, which is close to the positive potential electrode (Figure 7). At the tip of the composite
beam, it is difficult to induce polarization due to discontinuous conductivity along the length axis.
Therefore, the polarized conductive masses in the top region tend to adhere to the aluminum plate,
which has opposite polarity. In terms of beam actuation, the electrostatic force in the top region is the
reason for motion. The bottom region of the actuator follows the motion of the top region.
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Figure 7. Surface of the aluminum plate (where the negative potential is applied) is conducted to the
negative electrode. On the other hand, when a positive potential is applied to the actuator, the iron
oxide particles near the top are conducted to the positive electrode. Thus, electrostatic attraction is
generated, and the actuator moves.
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In other words, even if there are no iron oxide particles at the bottom of the actuator, it functions as
an actuator. Additional experiments were conducted to demonstrate this phenomenon. Actuators with
partially compound Fe3O4-silicone with 10% iron oxide concentration were fabricated (Figure 8a).
Parts (80%, 50%, and 40%) of the total length of these samples were occupied by pure silicone.
Experimental results show that the actuators are actively driven by the Fe3O4 and silicone mixture
mixed in proportions of not only 50% but also 20% (Figure 8b). Further, the peak-to-peak amplitude
changes with increasing voltage input and exhibits a similar trend (Figure 8c). We observe that there is
no significant difference between the samples in which iron oxide is partially occupied and the sample
in which Fe3O4 and silicone mixture is uniformly distributed throughout (Figures 4f and 5).
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Figure 8. (a) Composite actuators with pure silicone-Fe3O4 and silicone mixture. From top to bottom:
2:8, 5:5, and 6:4. (b) Frequency responses of pure silicone-Fe3O4 and silicone mixture composite
actuators with different Fe3O4 and silicone mixture portions. (c) Peak-to-peak amplitude changes
observed at different voltage input peak-to-peak values from 2 to 4 kV in pure silicone-Fe3O4 and
silicone mixture composite actuators with different Fe3O4 and silicone mixture portions.

5. Conclusions

In this study, we fabricated flexible actuators using combinations of silicone rubber and iron oxide
particles. Specifically, the metal oxide particles exhibit a ferroelectric behavior and generate movements
in the composite in the vicinity of the electrode. We analyzed the effect of the concentration of iron
oxide particles by a series of experiments and found that the actuation performance is improved up to
a concentration of 2.5%; there is no significant effect of iron oxide particles beyond this concentration.
In addition, we tested the actuators with partial compositions of metal oxide particles and silicone.
We observed that the actuator moves well even if only 20% of the total length is occupied with Fe3O4

and silicone mixture.
The developed actuators and their fabrication methods can be employed in various ways. Due to

the inherent flexible and moldable nature of silicone, it is easy to manufacture it in various shapes.
Moreover, it is possible to generate actuation with a small amount of metal particles. Flexibility and
the strength of being able to make it in any form can be applied in various fields. It can be used as
valves in microchannels and various medical devices including robotic grippers. Additionally, it can
be utilized in industrial fields including robot manipulators and weighting machines. In addition, as
iron oxide is mixed, it can be used for developing actuators stimulated by both electric and magnetic
fields [32].
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