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Abstract: The results of analytical and numerical studies of the buckling behavior of laminated
multilayered tensioned sheets with circular and elliptical openings are presented. The analysis shows
the significant influence of stress concentration effects on buckling modes and loads, particularly
taking into consideration variations in the E1/E2 and E1/G12 ratios. The results of finite element
(FE) computations prove that the buckling mode cannot be described by a single buckle localized
at the apex of the hole. The optimal design of such structures seems to be much more complicated
than classical buckling problems of compressed laminated panels without holes. However, the
obtained results indicate that the optimal laminate configurations occur at the boundaries of the
feasible regions of the introduced design space. Both continuous and discrete fibre orientations are
considered. For continuous fibre orientations, the optimal stacking sequence corresponds to angle-ply
symmetric laminates.

Keywords: composite laminated plates; buckling; optimal design; finite element analysis; elliptical
cut-outs; continuous optimization; discrete optimization

1. Introduction

The strength and buckling behaviors of laminated composite plates subjected to in-plane loads
are important aspects in the preliminary design of aircraft and launch vehicle components. Holes are
provided either in the center or elsewhere in the laminar plates for pipes for electric cables or other
purposes. Due to the presence of holes in the plates, stress is concentrated near to the holes, and the
stiffness of the plates is significantly reduced. In addition, a variety of modes of static and dynamic
behavior are possible, and failures often result from the development of fatigue cracks which propagate
from a stress concentration at the cut-out. The early solutions for the stresses in tensile sheets with
circular holes obtained by Kirsch [1] in1898 or for elliptical cut-outs clearly [2] showed the regions of
compressive stresses and stress concentrations. Then, Lechnitski [3] and Savin [4] demonstrated the
existence of the same problems for anisotropic plates with holes ofdifferent shapes.

Various attempts have been made to reduce or eliminate stress concentrations. In general,
they can be classified in three groups [5]. In general, the design of composite structures is directly
connected to searching for the material distributions including (1) the sizing (addressed commonly to the
choice of a thickness distribution around holes) [6,7], (2) the shape optimization of cut-out (the design
of the domain of the design model) for plates [8,9] and cylindrical panels [10] and (3) the topology
(understood in the sense of fibre orientations and/or fibre distributions; see, e.g., Gurdal et al. [11–13],
Hyer et al. [14,15] and Parnas et al. [16]). Of course, each of the above problems can be formulated and
solved separately. However, the nature of composite materials (two-phase materials with arbitrarily
chosen fibre orientations—woven rovings and/or varying fibre volume fractions) and their layered
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structure allows us to join sizing, topology, and shape design in order to produce a new composite
material that satisfies our specific mechanical and technological requirements (objective functions)
of anisotropic plates with holes. For instance, each of the elements in the plated structure may have
different thicknesses, volume fractions, shapes of reinforcement, mechanical properties and various
fibre orientations, whereas shape variation is equivalent to the choice of elements having, e.g., thickness
or mechanical properties equal to zero. The latter problem involves the determination of features, such
as the number and location of holes and the connectivity of the domain.

It is well-known that for compressed structures, buckling is one of the possible failure modes. For
the first time, in 1963, Cherepanov [17] described and analysed the buckling problem for stretched
plates with a hole. If a plate contains a cut-out, regions of compressive stresses arise under a uniaxial
tensile load. Figure 1 shows the compression effects due to tension for various shapes of holes.
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The buckling coefficient is derived numerically, and it is a function of the aspect ratio, α = Lx/Ly, 
and of the type of the hole (i.e., circular, square, etc.). 

Only a few papers have taken the orthotropic behavior of composite plates into account 
[24–26]. Kremer and Schurmann [26] indicated that the initiation of buckling could precede 
fracture due stress concentrations and result in the final failure (modes and loads) under both 
static and fatigue loading conditions. 

A broad review of the works that have dealt with the buckling behavior of compressed 
laminated plates and cylindrical shells with holes was done by Muc et al. [27] (two sections of the 
work) and therefore, this is not repeated and discussed herein. 

This study is important in order as it aims to determine the buckling behavior of multilayered 
laminated plates with holes. With the aid of the finite element method (FEM) NISA II (v.19, EMRC, 
Troy, MI, USA), one is able to estimate buckling loads with respect to the orthotropic properties of 
the plate, but no analytical solution has been found so far, even for plates with circular holes. 

Figure 1. Distributions of total displacements around a hole for isotropic plates determined by finite
element analysis: (a) circular; (b) horizontal ellipse (the scaling factor is 5, i.e., the computed values are
multiplied by the factor 5).

In the past, the main focus has been on isotropic materials. The results of semi-empirical
analyses of the crack/cut-out buckling problem have been presented in a number of works [18–22].
The empirical formula for the buckling stress of isotropic plates is expressed as
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where E is the Young’s modulus, t is the sheet thickness, and r is the hole radius. Shimizu [23] proposed
the application of the Euler’s beam formula with a correction coefficient, KS:
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The buckling coefficient is derived numerically, and it is a function of the aspect ratio, α = Lx/Ly,
and of the type of the hole (i.e., circular, square, etc.).

Only a few papers have taken the orthotropic behavior of composite plates into account [24–26].
Kremer and Schurmann [26] indicated that the initiation of buckling could precede fracture due
stress concentrations and result in the final failure (modes and loads) under both static and fatigue
loading conditions.

A broad review of the works that have dealt with the buckling behavior of compressed laminated
plates and cylindrical shells with holes was done by Muc et al. [27] (two sections of the work) and
therefore, this is not repeated and discussed herein.

This study is important in order as it aims to determine the buckling behavior of multilayered
laminated plates with holes. With the aid of the finite element method (FEM) NISA II (v.19, EMRC,
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Troy, MI, USA), one is able to estimate buckling loads with respect to the orthotropic properties of the
plate, but no analytical solution has been found so far, even for plates with circular holes.

One objective of the present study is to present an overview of past research, focusing on
the identification of the analytical approaches used and then, describing the particular aspects of
the behavior investigated. Then, attention is focused on the possible maximization of buckling
loads with respect to fibre orientations (so-called topology optimization). The optimization results
are demonstrated and verified with the aid of finite element computations in conjunction with
the definition of new, specific design variables. Another objective is to determine key behavioral
characteristics and trends arising in the buckling analysis of a rectangular laminated plate with an
elliptical cut-out that address specific issues, such as the effects of plate anisotropy (laminate material
properties), stacking sequences, and cut-out shape. Last, some closing comments about the obtained
results and future works are given.

2. Formulation of the Buckling Problem and Derivation of Buckling Loads—The
Rayleigh–Ritz Method

To structurally model a plate subjected to bi-axial compression/tension, it is assumed that the
coordinate system origin is located at the plate geometrical center on the mid-plane (Figure 2). It is also
assumed that the plate is made of N layers where each of the plies has an identical thickness t/N (t is the
total thickness of the panel and t/min(Lx, Ly) << 1). Each layer is made ofan identical, unidirectional,
composite material. The plate is enforced to be symmetric about its mid-plane, requiring only half
of the layers (i.e., N/2) to be designed. In addition, the plate is also required to have a balanced
stacking sequence.

2018, 11,xFOR PEER REVIEW  3 of 16 

 

One objective of the present study is to present an overview of past research, focusing on the 
identification of the analytical approaches used and then, describing the particular aspects of the 
behavior investigated. Then, attention is focused on the possible maximization of buckling loads 
with respect to fibre orientations (so-called topology optimization). The optimization results are 
demonstrated and verified with the aid of finite element computations in conjunction with the 
definition of new, specific design variables. Another objective is to determine key behavioral 
characteristics and trends arising in the buckling analysis of a rectangular laminated plate with an 
elliptical cut-out that address specific issues, such as the effects of plate anisotropy (laminate 
material properties), stacking sequences, and cut-out shape. Last, some closing comments about the 
obtained results and future works are given. 

2. Formulation of the Buckling Problem and Derivation of Buckling Loads—The Rayleigh–Ritz 
Method 

To structurally model a plate subjected to bi-axial compression/tension, it is assumed that the 
coordinate system origin is located at the plate geometrical center on the mid-plane (Figure 2). It is 
also assumed that the plate is made of N layers where each of the plies has an identical thickness t/N 
(t is the total thickness of the panel and t/min(Lx, Ly) << 1). Each layer is made ofan identical, 
unidirectional, composite material. The plate is enforced to be symmetric about its mid-plane, 
requiring only half of the layers (i.e., N/2) to be designed. In addition, the plate is also required to 
have a balanced stacking sequence. 

  
(a) (b) 

Figure 2. (a) The panel and the elliptical hole geometry; (b) stacking sequence, symmetric case. 

When a flat plate is subjected to an in-plane load, it initially remains flat and stays in 
equilibrium condition. However, as the in-plane force increases to a certain amount, the plate 
becomes unstable, and its configuration changes from flat to non-flat. The load at which the plate 
leaves its equilibrium condition and becomes unstable is known as the “buckling load”. 

The linear buckling analysis of multilayered composite plates makes it possible to accurately 
determine the critical loads which are of practical importance in the stability analysis of thin plates. 
It shows the effects of different cut-out shapes, material properties, orientations of layers and the 
length/thickness ratio on the critical load. 

The critical load multiplier, λ, can be obtained by imposing the stationariness (which corresponds 
to a minimum condition) of the total potential energy change, Π, at the critical buckling state: 

( ) ( )
ΩΩ

+−+++=Π 2
,

2
,

2
66

2
2212

2
11 42 yyxxxyyyyyxxxx wNwNdxdyDDDDdxdy λεεεεε

 
(3) 

where Ω denotes the 2D space occupied by the mid-plane of the laminate; D11, D12, D22, D66 are the 
bending and in-plane shear stiffnesses (their explicit form is presented in the Appendix A); and w is 
the normal deflection of the plate. Note that Relationship (3) is written in the local Cartesian system 
of coordinates, where 1 corresponds to the fibre direction, and 2 corresponds to the perpendicular one. 

x

yz

t

N
N-1
N-2

1
2
3

Figure 2. (a) The panel and the elliptical hole geometry; (b) stacking sequence, symmetric case.

When a flat plate is subjected to an in-plane load, it initially remains flat and stays in equilibrium
condition. However, as the in-plane force increases to a certain amount, the plate becomes unstable,
and its configuration changes from flat to non-flat. The load at which the plate leaves its equilibrium
condition and becomes unstable is known as the “buckling load”.

The linear buckling analysis of multilayered composite plates makes it possible to accurately
determine the critical loads which are of practical importance in the stability analysis of thin plates.
It shows the effects of different cut-out shapes, material properties, orientations of layers and the
length/thickness ratio on the critical load.

The critical load multiplier, λ, can be obtained by imposing the stationariness (which corresponds
to a minimum condition) of the total potential energy change, Π, at the critical buckling state:

Π =
∫
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where Ω denotes the 2D space occupied by the mid-plane of the laminate; D11, D12, D22, D66 are the
bending and in-plane shear stiffnesses (their explicit form is presented in the Appendix A); and w is
the normal deflection of the plate. Note that Relationship (3) is written in the local Cartesian system of
coordinates, where 1 corresponds to the fibre direction, and 2 corresponds to the perpendicular one.

In open literature and standard texts, buckling loads are often expressed using approximate
simple formulae and design charts to aid designers in estimating the buckling strength of structural
members. It is still necessary, however, for designers to perform the buckling analysis if more accurate
results are required or if there is no standard solution available. There are a large number of techniques
available that are used to evaluate buckling loads. Among them, we would like to point out three
commonly used approaches.

The finite element method. The buckling nodal displacements are approximated by the shape
functions at each of the finite elements describing the structure. The stationarity requirement (i.e.,
Π = 0) leads to a homogeneous system of equations for the load factor λ.

The Bubnov–Galerkin method. The buckling displacements are approximated by a series of functions
with unknown coefficients, cij, satisfying the boundary conditions. The homogeneous system of
equations, obtained by the differentiation, ∂Π/∂cij = 0, allows buckling loads to be found.

The Rayleigh–Ritz method. The Rayleigh quotient is used in the min-max theorem to get exact values
of all eigenvalues. It can be also used in eigenvalue algorithms to obtain an eigenvalue approximation
from an eigenvector approximation. Specifically, this is the basis for the Rayleigh quotient iteration.
A judicious choice for the trial function that satisfies kinematic boundary conditions and depends on
the set of variational parameters must be given in advance. Therefore, the Rayleigh–Ritz variational
principle is a powerful technique for the approximate solution of eigenvalue problems where a trial
function (or functions) is introduced. The solution obtained from Equation (3) is an upper bound one
when compared to exact solutions.

In the literature [28–30], analytical (mathematical) investigations of the local static stability of
infinite isotropic plates with circular/elliptical openings subjected to a uni-axial tension loading have
been conducted using the Bubnov–Galerkin or the Rayleigh–Ritz method. The buckling modes have
been described with the help of expansion into series in the polar or elliptical systems of coordinates.
The results of these studies were strongly affected by the number of terms in the expansions (see the
comparison shown in Figure 3). The results obtained by the author (“present”) were derived with the
use of one term of expansion. The correctness of the estimations is verified in Section 4.
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3. Optimal Design

In order to find the laminate stacking sequence that is best suited to the load and geometrical
boundary conditions under consideration, the ply orientations of the laminate as well as the ply
thicknesses need to be used as design variables. For the laminate with N plies, the total number of
design variables is equal to 2*N. It is impossible to solve such a problem analytically, and the numerical
solution is troublesome since a lot of local minima and maxima exist. Therefore, we propose the use of
the graphical optimization method to solve the optimization problem, which can be formulated in the
following way to maximize the buckling load, expressed by Relationship (3) with respect to the 2*N
design variables mentioned above. It is well-known that the design space is represented by the interior
and the boundary of the parabola (Figure 4).
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The axes of the coordinate system (x, y) are defined in Appendix A. Each point of the interior
of the parabola is characterized by two real numbers that represent the laminate stacking sequence.
The boundary of the parabola described by the function y = x2 corresponds to angle ply symmetric
fibre orientations ±θ, and in this way, for a laminate made of plies with identical thicknesses, the total
number of variables is reduced to one variable, i.e., fibre orientation (θ). The diagram in Figure 4
can be used to design laminates with predetermined ply orientation angles (i.e., with discrete ply
orientations). The feasible region for laminates with fixed ply angles is a polygon with vertices located
on the envelope (the parabola). The possible forms of the polygons are drawn in Figure 4. For laminates
with 0◦, ±45◦, and 90◦ plies, the design space is a triangle. For laminates with 0◦, ±15◦, ±30◦, ±45◦,
±60◦, ±75◦, and 90◦ plies, the space forms a polygon.

For uni-axially or bi-axially simply-supported, compressed plates, the trajectories characterizing
the constant buckling loads constitute straight lines (Figure 4). In such a situation, the optimal stacking
sequences cannot be determined uniquely since they correspond to the set of points (x, y) belonging to
the portion of the straight line cutting the feasible region (see Muc [31,32]).

The buckling analysis of laminated tensioned plates with cut-outs shows the opposite effect to
that observed previously, i.e., the position of the maximal buckling load on the design space (x, y) is
strictly localized and reduced to a point (Figure 5). The maximum occurs at the edge of the feasible
region—the parabola for continuous fibre orientations or the polygon for a discrete set of allowable
fibre orientations. Buckling of a structure is dominated by a change in the membrane stress state to
a bending dominated stress state. The buckling load of composite plates is dominated by the local
bending (D11, D22) and in-plane shear (D66) stiffnesses (Equation (3)) which depends on the spatial
direction, the stacking sequence, and the fibre orientation.
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To determine the finite dimensions of the plate, Tan [33] also proposed various correction 
factors. However, the above formulae cannot be applied directly to the buckling analysis because it 
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4. Parametric Investigations

In regard to laminated plates weakened by holes, the problems associated with the finite element
(FE) description and the analysis of the accuracy have been discussed in detail by Muc [8]. In general,
the mesh division is controlled by two variables in the polar coordinate system: the radial distance
from the hole and an angle measured from the x reference axis. The direction defined by the angle is
controlled by a few parameters (exponential splines) in order to obtain predominantly equal curvature
along the curve defining the opening. However, in the case of an increasing stress concentration, the
amount of FE grows. Convergence tests are carried out with regard to the plane strain energy density
(U) variations along the curve of the hole. The energy density (U) takes a form that is analogous to the
first part of Equation (3) after the replacement of the bending stiffness (Dij) by the plane stiffnesses (Aij)
and the parameters of curvatures by the in-plane strains. In the radial direction, the node concentration
is controlled by two parameters enabling the geometric progression to be obtained.

The buckling loads are estimated with the use of the classical linear stability analysis. Since the
FE package, NISA II, currently has four methods for eigenvalue extraction, the correctness of the
evaluation of buckling loads can be determined by the comparison of the computed values for different
methods. The FE analysis is based on a rectangular 2D mesh generated automatically with the aid of
the rules described above. In the analysis, the FE are shaped as a four-noded quadrilateral. Each of the
elements consists of a number of layers of perfectly bonded orthotropic materials. The nodes have
six degrees of freedom (NKTP 32—the name of FE in the NISA II program), i.e., the transverse shear
effects are included in the analysis.

Tan [33] derived several formulas to determine the stress concentration factor for an orthotropic
panel subject to uni-axial tension with an elliptical hole (Figure 2). For infinite panels, with respect to
the material constants, the stress concentration factor can be expressed in the following way:

Kt∞ =
σy(x = b, y = 0)

Ny/t
= 1 +

b
a

√√√√2

(√
Ex

Ey
− νxy +

Ex

2Gxy

)
. (4)

To determine the finite dimensions of the plate, Tan [33] also proposed various correction factors.
However, the above formulae cannot be applied directly to the buckling analysis because it does not
take the bending effects into account (Equation (3)). It demonstrates only that the stress concentration
effects are not only the function of Young’s moduli but also, of the in-plane Kirchhoff’s modulus (Gxy)
and Poisson’s ratio (νxy). The effects of the Poisson’s ratio on the buckling loads were investigated by
Seif and Kabir [34].
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4.1. Influence of Mechanical Properties

The buckling load and the shape of buckling mode of the perforated plates are highly influenced by
their material properties (Figures 6–15). For isotropic plates (the Kirchhoff modulus G12 = 0.5E/(1 + ν)),
the buckling resistance of plates with elliptical holes (b/a > 1) is always lower than for plates with
circular holes with identical radii (b). This effect is different for composite materials where both
the in-plane and transverse shear Kirchhoff’s moduli are very low (see Equation (4) and Figure 6).
Therefore, to analyse the influence of the value of the orthotropic ratio, β = E1/E2, on buckling loads,
the ratio G12/E1 (G12 = G13 = G23) is assumed to be very low and equal to 0.015, e.g., the similar ratio
occurs for the graphite epoxy, IM7/8552.
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Figure 6. The influence of in-plane shear properties on buckling loads; (a) a rectangular plate,
Lx/Ly = 1.25, 2b/Lx = 0.16; (b) a square plate, 2b/Lx = 0.4.

Figure 6 demonstrates the characteristic features of buckling problems and their dependence on
both material and geometrical properties. The tensioned panel can buckle in the form of

• a single buckle at the apex of the hole (x = 0, y = a)—the characteristic buckling mode of an infinite
tensioned plate;

• two buckles, one localized at the apex and the second around the point x = b, y = 0;
• three buckles located far from a cut-out—it is a characteristic behavior of buckled short tensioned

panels [35].

For any values of parameter β, the buckling of composite multilayered plates with centrally
located cut-outs always affects the major regions of the structure. Next, in this section, in order to
show their influence on buckling modes, the angles of fibre orientations (θ) are selected in a specific
way. In general, we intend to present the possible variations of buckling modes around the maxima of
buckling loads.

Figure 1 demonstrates the compressive deformations of plates, but the plots do not show the
variation in the pre-buckling displacements with fibre orientations and the orthotropic parameter (see
Figure 7). Note that the left edge of the plate is completely free and the bottom one is subjected to
symmetry conditions with respect to the x-axis. The maximal displacements, ux (uy = 0), occur at the
point (0, Lx/2).
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Figure 7. Pre-buckling deformations of the square plate with a circular hole (2b/Lx = 0.4). The scaling
factor is 5.

When the size of the circular hole is small (comparing to the width and the length of the plate),
the compressive stresses are small. These stresses are responsible for the occurrence of buckling
(see Figures 8 and 9), but the influence of material properties on buckling loads is not significant
since the maximum of the curves plotted in Figure 8 has almost the same value as that of isotropic
materials—the difference is about 10–12%. The amplitudes of the buckles are higher than those for
laminated structures and take quite a different form (localized at the apex of the hole in the case of
isotropic structures). At this point, it is interesting to mention that isotropic and laminated plates show
the same wave number in the lateral direction.
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Figure 8. Distributions of buckling loads with fibre orientations (θ) and the orthotropic parameter,
β = E1/E2, G12/E1 = 0.015. The rectangular plate (Lx/Ly = 1.25) for the elliptical horizontal hole,
2b/Lx = 0.16.
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Figure 9. Buckling modes (normal deflections) for the rectangular plate, Lx/Ly = 1.25, with the circular
hole 2b/Lx = 0.16: (a) isotropy E1/E2 = 1; (b) E1/E2 = 2 θ = 14◦; (c) E1/E2 = 2 θ = 30◦.
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As the compression effects increase (the increase of the ratio 2b/Lx), the orthotropic effects become
much more apparent (Figures 10 and 11). It may be observed by comparison with Figure 10, the initial
increase in the pre-buckling deformations (ux) at the plate corner is associated with a rapid increase
in the buckling loads, whereas the further reduction of buckling loads with an increase in the value
of θ is connected with the decrease in deformations, both at the corner and at the apex of the circular
opening, i.e., at x = 0, y = a. For both isotropic and laminated plates, the buckling mode is localized at
the apex of the hole (the highest amplitude), and then, the amplitudes of the buckles decrease rapidly
in the lateral direction.
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Figure 10. Distributions of buckling loads with fibre orientations (θ) and the orthotropic parameter, β

= E1/E2, G12/E1 = 0.015 for the square plate with the circular hole 2b/Lx = 0.4.
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Figure 11. Buckling modes (normal deflections) for the square plate with the circular hole 2b/Lx = 0.4:
(a) isotropy E1/E2 = 1; (b) E1/E2 = 2 θ = 14◦; (c) E1/E2 = 2 θ = 60◦.

Both the buckling loads (Figure 10) and buckling modes vary (Figure 9) with fibre orientation in
as similar manner as that observed for the pre-buckling in-plane displacements (Figure 7). It is worth
noting that for the lower buckling loads (θ > 14◦), two waves of buckling appear (Figure 11c) as a
result of the plate finite dimensions (compare with the results presented by Kremer, Schurmann [26]
for infinite plates).

The change in the shape of the hole from the circular to the elliptical cut-out leads to different
distributions of buckling loads with fibre orientations (Figures 8, 10 and 12) since for the horizontal
elliptical holes, the compression effects are much higher than for circular holes with identical
geometrical ratios: 2b/Lx and Lx/Ly (see Tan [33]). Therefore, for elliptical horizontal cut-outs, a
reduction of the buckling load values is observed.
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Figure 12. Distributions of buckling loads with fibre orientations (θ) and the orthotropic parameter,
β = E1/E2, G12/E1 = 0.015 for the rectangular plate (Lx/Ly = 1.25) with the elliptical horizontal hole
2b/Lx = 0.16, b/a = 2.

Now, the maximal buckling loads occurs at θ = 60◦. Note that the position of the maximum is
shifted from the angle θ = 14◦ (see Figure 8). Note that for the circular cut-out (Figure 8), the local
maximum occurs at θ = 90◦ which has a similar value as that for the angle θ = 14◦. For laminated
plates, the maximal amplitudes of the buckling displacements are very high comparing to the circular
holes (see Figure 13). They are strictly localized at the top of ellipses and smeared out over the wide
area of the hole. In this way, those regions may be the origin of possible first-ply-failure of laminates.
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Figure 13. Buckling modes (normal deflections) for a rectangular plate (Lx/Ly = 1.25) with the elliptical
horizontal hole, 2b/Lx = 0.16, b/a = 2: (a) isotropy E1/E2 = 1; (b) E1/E2 = 2 θ = 30◦; (c) E1/E2 = 2 θ = 60◦.

For laminated plates with the horizontal elliptical cut-out (the same b/a = 2 as previously) with
the plate aspect ratio, Lx/Ly = 1, and the plate-width ratio, 2b/Lx = 0.4, the distributions of buckling
in-plane loads (Figure 14) almost resemble the plots in Figures 8 and 10 (circular holes), and the
buckling modes (Figure 15) are quite different than for circular holes. For ellipses at the point (0, a),
the curvature is higher than that for circular holes, and the number of buckling waves increases to 3.
Then, for higher values of the angle (θ), it becomes much more localized.
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Figure 15. Buckling modes (normal deflections) for the square plate with the elliptical horizontal hole
2b/Lx = 0.4, b/a = 2: (a) isotropy E1/E2 = 1; (b) E1/E2 = 2 θ = 14◦; (c) E1/E2 = 2 θ = 30◦.

In the comparison with the case of circular holes, due to the increase in the curvature at the
apex (0, a), an increase in buckling loads is observed. Similar effects were noticed by Kremer and
Schurmann [26].

The discussion of the results has been carried out for plates with orthotropic properties. However,
the application of composite materials should be estimated by a comparison with the isotropic
structures. For all cases considered herein, the applicability of laminated constructions is strictly
limited. Useful information can be obtained by the analysis of the variation in buckling loads with
different fibre orientations for symmetric angle-ply laminates. The analysis should be always supported
by a finite element investigation.

4.2. Influence of Plate and Cut-Out Geometry

For prescribed material properties, the values of buckling loads are also sensitive to the plate aspect
ratio, Lx/Ly, and to the plate-width ratio, 2b/Lx, that, briefly speaking, characterize the magnitude of
the stress concentration effects at the point x = b, y = 0. As the stress concentration effect decreases
(2b/Lx→0), the values of the buckling loads decrease for both circular and elliptical cut-outs (Figure 16).
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5. Comparison of Theoretical Predictions and the Finite Element Analysis

A comparison of the analytical and numerical buckling loads of isotropic plates is presented in
Table 1. It is assumed that: E = 40 (GPa), ν = 0.25, t = 0.01 (mm), b = 20 (mm), and G12 = 0.5E/(1 + ν).
Note that for horizontal elliptical holes, the radius of curvature increases at x = 0 and is equal to b2/a.
For square plates with a circular hole, the Kremer approximation [26] seems to be too conservative;
however, the results can be derived for infinite plates, i.e., 2b/Lx tends towards zero. Shimizu [23] took
into consideration the finite width, Lx, of the plate, and his estimation (Equation (2)) relates better to
the FE results, particularly for small holes and rectangular plates. The decrease of the radius of the
curvature at the plate apex leads to the reduction of the buckling but the value computed with the
use of Relationship (1) are too low. The last row in Table 1 demonstrates the results for an elliptical
hole with the same curvature radius as that described previously, but the ratio,2b/Lx, is lower. It is not
reflected by the analytical predictions.

Table 1. Analytical estimations of buckling loads versus finite element computations.

Form of Plate and Shape of Hole

Method of Analysis

Kremer [26]
Equation (1)

Shimizu [23]
Equation (2) Present FE

Rectangular plate, circular hole,
2b/Lx = 0.4, Lx/Ly = 1.25 35.5 10.87 10.19

Square plate, circular hole,
2b/Lx = 0.4 35.5 10.87 14.94

Square plate, horizontal elliptical
hole, 2b/Lx = 0.4, b/a = 2 35.5/4 = 8.88 Not available 13.88

Rectangular plate, elliptical hole,
2b/Lx = 0.16, b/a = 2, Lx/Ly = 1.25 8.88 Not available 35.55

Strength analyses of stretched composite plates with elliptical cut-outs (see Tan [33],
Srivastava [36]) have proven that the correct description of the problem should incorporate three
geometrical ratios (t/b, 2b/Lx and Lx/Ly). However, it is impossible to characterize the influence of
material properties on the buckling resistance with the use of simple analytical formulas. The above
problems have also been discussed by Muc et al. [37–39] and Seif and Kabir [34].
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6. Concluding Remarks

Several key findings and behavioral characteristics were discussed. These findings included the
effects of the cut-out size, shape, plate aspect ratio, and orthotropic ratio.

It has been observed that the buckling patterns of stretched plates with holes can be different and
cannot be limited to the case of a single buckle around the apex of the hole in the direction of a tensile
load. For the lowest buckling load, the existence of two or three buckles is also possible. This evidently
demonstrates the origin of the difficulties in the analytical estimations of buckling loads with the use
of the Rayleigh quotient or the Bubnov–Galerkin method.

The buckling load is very sensitive to the variations in the material properties, i.e., the E1/G12

and E1/E2 ratios, due to their significant influences on the pre-buckling deformations and complicated
shapes of buckling modes. In the classical analysis of isotropic structures (G12 = 0.5E/(1 + ν)),
the buckling load of circular holes is always higher than that for elliptical cut-outs. The decrease in the
E1/G12 ratio (orthotropic composite materials) may lead to an increase in buckling loads for horizontal
elliptical holes; they may be higher than those for circular holes (see Figure 16). Changesin the value of
the orthotropic ratio, β = E1/E2, can reduce or increase the value of buckling loads. Thus, it is obvious
that the optimal design of material properties is required and recommended.

To solve the above problem, in a general manner, two new design variables were introduced to
allow us to analyse the effects of material properties, fibre orientations, and stacking sequences on
variation in the buckling loads. The post map method was proposed as a useful tool to capture those
effects in a consistent and explicit way. For plates made of plies with identical thicknesses and material
properties, it seems that the maximal buckling loads can be reached at the boundaries (the parabola
or the polygon) of the feasible region of the defined design variables; the boundaries correspond to
angle-ply symmetric fibre orientations.

Since experimental research shows the simultaneous existence of different failure modes (see e.g.,
Muc et al. [37–39]), the detailed first-ply failure (FPF) and delamination (the use of fracture criteria)
analysis should be carried out to determine and optimize the dominant failure modes (buckling,
FPF or delamination) for perforated laminated plates or shells. Such an analysis should precede the
experimental verification of buckling loads for stretched laminated panels.
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Appendix A

In the local Cartesian system of coordinates the physical relation between the moments M11, M22,
M66 and the changes of curvatures ε11, ε22, ε12 (see Equation (3)) can be expressed as follows: M11

M22

M66

 =

 D11 D12 0
D12 D22 0

0 0 D66


 ε11

ε22

ε66

,

where
D11 = t3

12 (U1 −U3 + U2x + 2U3y), D12 = t3

12 (U4 + U3 − 2U3y),
D22 = t3

12 (U1 −U3 −U2x + 2U3y), D66 = t3

12 (U5 + U3 − 2U3y),

U1 =
1
8
(3Q11 + 3Q22 + 2Q12 + 4Q66), U2 =

1
2
(Q11 −Q22), U3 =

1
8
(Q11 + Q22 − 2Q12 − 4Q66),

U4 =
1
8
(Q11 + Q22 + 6Q12 − 4Q66), U5 =

1
2
(U1 −U4),

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12,
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The variables x and y denote the design variables and are defined in the following way:

x =
4
t3

N

∑
l=1
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z3
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− z3

l−1
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cos(2θ(l)), y =

4
t3

N

∑
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(
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l
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l−1

)
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zl and zl−1 are the location coordinates of the top and the bottom surfaces of the lamina, l (see
Figure A1).

The above definitions are valid both for continuous and discrete fibre orientations. However, for
discrete fibre orientations, it is much more convenient to use specific coding and decoding procedures,
as described by Muc [40].
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