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Abstract: Hot working is a key process in the production of superalloys; however, it may result in the
formation of inclusions that affect the superalloy performance. Therefore, the effects of hot working on
inclusions in a superalloy must be studied. GH4738 superalloy was manufactured, herein, by vacuum
induction melting and vacuum arc remelting. Hot working was performed by unidirectional drawing,
upsetting and drawing, and upsetting/drawing with radial forging. The types and distributions
of inclusions after these three hot working processes and those in an original ingot were analyzed
using scanning electron microscopy, energy dispersive spectroscopy, and Image-Pro Plus software.
The results showed that the melting technology essentially determined the inclusion types in
GH4738. Four types of inclusions were found in the experiments: TiC–TiN–Mo–S composite,
TiC–TiN composite, Ce–Mo–S composite, and SiC inclusions. In the case of hot working by
unidirectional drawing, the average inclusion size first decreased, and then increased from the
center to the edge. In the case of upsetting and drawing, and upsetting/drawing with radial forging,
the average inclusion size decreased from the center to the edge.
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1. Introduction

The temperature and mechanical performance requirements of key engine components, such
as turbine disks and blades [1–5], are becoming more stringent as aerospace engines are moving
toward better reliability, higher thrust-to-weight ratio, and larger size. Superalloys that afford
excellent high-temperature strength, good oxidation resistance, high hot corrosion resistance
temperature, etc. [6–8], have become indispensable materials for manufacturing aerospace engine
components, and they are considered to provide “a new generation of superalloys for every generation
of aircraft” [9–11].

However, the performance and structural integrity of superalloys can be greatly affected by
inclusions. Thus far, researchers have controlled inclusion growth in two ways. Some researchers
have modified melting technologies to improve the purity of superalloys, and thereby enhance their
performance. For example, Degawa et al. [12] prepared IN738 and MarM247 alloys by vacuum
induction melting (VIM) in a CaO crucible; they found that ingot quality was improved significantly,
and that ingots contained less than 10 ppm of N, O, and S (each). Schneider et al. [13] found that
using a low-frequency alternating current instead of direct current for electroslag remelting resulted
in higher ingot purity. Shevchenko et al. [14] demonstrated that the time variation and asymmetric
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distribution of the arc in vacuum arc remelting (VAR) did not facilitate slag discharge by the molten
pool, thus affecting ingot purity. Appropriate arc control could effectively improve the ingot quality.

Other researchers improved alloy properties by studying and manipulating the type, size,
morphology, distribution, and evolution of inclusions [15–17]. Wang et al. [18] analyzed inclusions
at different positions in a 20Cr13 hot-rolled stainless-steel round bar, and identified changes in
inclusions from the edge to the center, thereby enabling growth control and elimination of inclusions in
hot-rolled bars. Kawakami et al. [19] studied the generation mechanisms of nonmetallic inclusions in
high-cleanliness steel, and found that reducing the inclusion size during secondary refining effectively
enhanced alloy properties. Jiang et al. [20] studied the evolution mechanisms of nonmetallic inclusions
in high-strength steel alloys, and found that the steel-slag reaction time strongly influenced the type,
composition, and shape of inclusions. These studies suggested that appropriate control over the
inclusion type and morphology could improve the fatigue resistance of alloys.

Thus far, however, few studies have reported on the types and distributions of inclusions formed
in superalloys, and on the effects of hot working techniques on inclusions in superalloys. Inclusions
with different sizes and distributions formed in the superalloy after hot working could lead to different
fatigue strengths [21]. Therefore, this study performed VIM and VAR of the GH4738 superalloy
followed by hot working via unidirectional drawing, upsetting and drawing, and upsetting/drawing
with radial forging. The type, percentage, size change, and distribution of inclusions in GH4738 were
observed and recorded to analyze the effects of three hot working methods, and the original method,
on the inclusion type and distribution. The results of this study should provide engineering guidelines,
and a theoretical foundation for optimizing the melting technology of superalloys and selecting a
reasonable hot working method.

2. Experimental

2.1. Melting and Hot Working

Electrolytic nickel plate, high-purity chromium, high-purity molybdenum, some GH4738 revert
materials, and other elemental alloys were used as raw materials in this experiment. The GH4738
superalloy was melted by VIM (Consarc, Rancocas, NJ, USA), and the vacuum degree of the whole
melting process was kept at 2 Pa. Argon was injected before adding trace elements, such as Mg, B,
and Zr, to prevent volatilization, and its effect on alloy composition accuracy. Finally, four ingots of
Φ460 mm were poured at 1400 ◦C, and then, they were cooled for 3 h in the vacuum induction furnace.

After removing risers, the four ingots were polished to prevent secondary pollution caused
by refractory and surface oxide coatings before VAR. The four ingots were then melted by VAR
(ALD, Hanau, Germany). The initial melting rate was set at 8 kg/min to form a molten pool
quickly. Then, the melting rate in the stable melting stage was controlled at a constant melting
speed, and gradually reduced to 4.5 kg/min. Toward the end of the process, the voltage and current
were adjusted to gradually reduce the melt rate and provide a controlled hot top. Vacuum degree of
less than 1 Pa was used during the entire melting process. Each ingot was cooled for 2 h in the vacuum
arc furnace after VAR. Finally, we obtained four superalloy bars of Φ508 mm. Table 1 shows their
chemical composition.

Table 1. Chemical composition of the GH4738 superalloy (%).

Cr C Co Mo Al Ti S Ni

18.92 0.07 13.13 3.96 1.47 2.97 <0.15 Balance

The four superalloy bars were homogenized in a heat treatment furnace before hot working.
In the heat treatment furnace, the four superalloy bars were heated to 1000 ◦C for 5 h, left to stand
for 10 h, and finally cooled to 400 ◦C. Three of the four ingots were then subjected to different hot
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working techniques: unidirectional drawing (Φ508 mm→ Φ470 mm→ Φ430 mm→ Φ400 mm→
Φ350 mm→ Φ290 mm→ Φ220 mm), upsetting and drawing (Φ508 mm→ Φ470 mm→ Φ430 mm→
Φ400 mm→ Φ430 mm→ Φ400 mm→ Φ350 mm→ Φ290 mm→ Φ220 mm), and upsetting/drawing
with radial forging (Φ508 mm→ Φ470 mm→ Φ430 mm→ Φ400 mm→ Φ430 mm→ Φ400 mm→
Φ350 mm→ Φ300 mm→ Φ240 mm→ Φ230 mm→ Φ220 mm) by a high-speed forging hydraulic
machine and a radial forging machine, to yield bars of a uniform size (Φ220 mm). The superalloy bars
were subjected to heat treatment (850 ◦C for 4 h) after each plastic deformation. Figure 1 shows the
roadmaps of melting and hot working.
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2.2. Preparation and Testing

The 15 mm × 15 mm × 15 mm samples used in the experiments were cut from the center from a
point at a distance of 1/2R (R is the radius) from the center, and from the edges of the transverse and
longitudinal sections of the bars. Figure 2 shows the sampling positions.

The metal samples were mechanically polished. The inclusion size, morphology, and composition
were characterized using a scanning electron microscope–energy dispersive spectrometer (SEM–EDS,
SEM, Phenom proX scanning electron microscopy, Eindhoven, The Netherlands). Each sample was
divided into four zones to obtain more accurate inclusion data. Twenty-five different viewing fields
were selected in each zone to perform statistical analyses. Image-Pro Plus software (Version 6.0,
Media Cybernetics, Inc., Rockville, MD, USA) was used to analyze the average size and distribution
of inclusions.
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3. Results and Discussions

3.1. Inclusion Type and Percentage Contribution

The data collection and analysis of the types and percentages of inclusions in the original sample
and those obtained using the three different hot working methods showed nearly identical results,
indicating the minute influence of the different hot working techniques on the inclusion type and
percentage (Table 2). Therefore, the melting technology should be considered in the data analysis. The
inclusion types and percentages in the samples were obtained using only one hot working method
were analyzed in detail, because of the length restrictions of this paper (Figures 3 and 4).
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Figure 4. SEM images and EDS mapping of other inclusions: (a) Al2O3; (b) MgO; and (c) Ti–Mo–Zr–C–S.

Table 2. Proportions of various types of inclusions for three hot working and origin methods (%).

Method TiC–TiN–Mo–S TiC–TiN Ce–Mo–S SiC Others

Unidirectional Drawing 75.2 8.9 7 6.9 2
Upsetting and Drawing 75 9 7 7 2

Upsetting/Drawing with Radial Forging 75.4 9.2 6.8 6.7 1.9
Origin 74.6 9.1 7.1 6.9 2.3

Five different types of inclusions can be identified in the samples shown in the table and
two figures, of which four are dominant: TiC–TiN–Mo–S composite, TiC–TiN composite, Ce–Mo–S
composite, and SiC inclusions. The TiC–TiN–Mo–S composite inclusions had the highest proportion,
and existed in two different forms (Figure 3a,b). The composite inclusions could have been formed
during superalloy melting because different types of inclusions collided, combined, or were enriched
at the surface because of the circulation and convection of the molten metals and the different densities
of various inclusions [22].

Figure 3c,d show that composite inclusions were formed by both TiC and TiN. TiN had a lower
standard Gibbs free energy of formation than TiC; therefore, it preferentially nucleated. TiC then
precipitated on the TiN surface, aggregated, and grew, forming TiC–TiN composite inclusions.
Both compounds had face-centered cubic structures with similar lattice constants, and they easily
formed solid solutions during their growth. Therefore, no clear nucleation center was observed [23].

An analysis of Figure 3e,f revealed no Ce among the constituents of GH4738; however, Ce–Mo–S
inclusions were found in the ingots. These inclusions were caused by the inadequate purity level of
some revert or raw materials fed during VIM of GH4738, which led to Ce contamination and formation
of Ce–Mo–S inclusions.
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Figure 3g,h show that during VIM of GH4738, C was added into the furnace as a deoxidizing
agent to form CO, thereby removing oxygen. Less CO was produced as the oxygen concentration
gradually decreased in the liquid metal. A part of this could not be released because of the small
bubble size, and it remained attached to the crucible wall, thereby facilitating a reaction between a
fraction of CO with Si in the crucible wall material and producing SiC inclusions [24].

The remaining inclusion types had smaller proportions. Although the number of undesirable
elements could be kept low during VIM and VAR of GH4738, some trace elements were still segregated
to form inclusions (Figure 4a–c).

The earlier analyses showed that the three hot working methods had minute influences on the
inclusion types and percentages in GH4738. The raw material purity, VIM refining time, slag discharge
extent of metal molten pool in VAR, etc., were the determining factors.

3.2. Distribution of Inclusions in Transverse and Longitudinal Directions

Figures 5 and 6 show the distributions of the inclusions along the transverse and longitudinal
directions, for the original sample and the samples obtained using the three hot working methods.
Analyzing both figures led to the following result: in the original ingot, a moderate increase in
the percentage of inclusions with sizes less than 2 µm from the center to the edge resulted in the
average inclusion size gradually decreasing. This decrease was caused by the gradual decrease in the
cooling rate of the ingot from the edge to the center during VAR, resulting in less time for inclusion
polymerization or inclusion growth owing to particle collisions. Therefore, the average inclusion size
at the edge was the smallest, whereas that at the center was the largest. After the ingots were subjected
to the three different hot working methods from the center to 1/2R and to the edge, they showed a
decrease in the average inclusion size in that direction. The inclusions deformed and fractured or
broke as the deformation of the ingot increased in the hot working process, thereby resulting in the
average inclusion size decreasing [25]. This study analyzed the effects of three different hot working
methods on superalloy inclusions, because such methods affect the inclusion distribution.

The average inclusion size for hot working by unidirectional drawing (first group) first decreased,
and then increased from the center to the edge. At 1/2R, inclusions with sizes less than 2 µm had
the highest percentage, resulting in the lowest average inclusion size at that spot. According to the
classical plasticity theory [26], deformation rarely occurs in the contact region between the forged piece
and the plate; thus, inclusions in this region do not undergo much deformational fracture when force
is applied. The average inclusion size at the edge was larger compared to that at 1/2R. As noted in a
previous study [27], for hot working by unidirectional drawing, the average chord length of grains at
the center was greater than that at 1/2R, indicating that a larger deformation force was experienced by
the inclusions at 1/2R compared to that at the center (i.e., large inclusions underwent deformational
fracture or were more readily broken into numerous small inclusions). Therefore, the average inclusion
size was smaller at 1/2R than at the center. In conclusion, hot working by unidirectional drawing
primarily affects the inclusion size at the 1/2R position in the superalloy.
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In hot working with upsetting and drawing (second group), the sharp increase in the percentage of
inclusions with sizes less than 2 µm from the center to 1/2R and to the edge resulted in a rapid decrease
in the average inclusion size in that direction. This decrease was caused by the large deformation
energy generated in the forged piece during repeated upsetting and drawing, making it difficult for the
temperature of the whole work piece to decrease. The alloy structure at the center had a lower forging
penetration efficiency and degree of deformation as it cooled more slowly [28]. The internal inclusions
there underwent less deformational fracture or breaking and, as such, had the highest average size.
However, the multidirectional deformation caused by repeated upsetting and drawing also intensified
the degree of fracture and breaking among the inclusions at 1/2R and along the edge, making some of
them more dispersed in distribution [29]. Furthermore, cooling occurred much faster at the edge than
at 1/2R, thereby facilitating the dispersion of fine inclusions. Therefore, the average inclusion size was
the smallest at the edge. We can conclude that hot working by upsetting and drawing mainly affected
the inclusion size at the superalloy edge.

The percentages of inclusions of different sizes at the center, at 1/2R, and along the edge
showed a significant increase for inclusions of size less than 2 µm when the ingots were subjected to
upsetting/drawing with radial forging during hot working (third group), forming a trend of decreasing
average inclusion size from the center to the edge. As noted in a previous study [30], the grain size
was the finest at the edge for a work piece subjected to radial forging. In other words, the effect of
radial forging was mainly seen in the grain size at the edge, and the grain refinement at the edge was
accompanied by a reduction in the inclusion size there. Considering the variations in the average
inclusion size from the center to the 1/2R point and to the edge of a forged piece subjected to upsetting
and drawing, as described in the previous section, the third hot working method appears to have
chiefly affected the inclusion size at the superalloy edge.

4. Conclusions

The size and distribution of inclusions formed after superalloy melting had thus far been
unclear. A large difference was found between the inclusions and the matrix, causing different
fatigue strengths in superalloys owing to the different sizes and distributions of inclusions in each
region after applying different hot working methods, which affected the superalloy performance.
The influence of inclusions in the superalloy and on their properties must be reduced, and the
performance degradation induced by inclusions formed in different hot working methods must
be avoided. Therefore, this study analyzed the effects of three different hot working techniques,
namely, unidirectional drawing, upsetting and drawing, and upsetting/drawing with radial forging,
on inclusions in GH4738 superalloy. GH4738 was fabricated by VIM and VAR. Hot working was also
performed. The type, percentage, size change, and distribution of inclusions in GH4738 were observed
and recorded, to analyze the effects of the three hot working methods on the inclusion type and
distribution. This study provides engineering guidelines and a theoretical foundation for optimizing
the melting technology of superalloy, and selecting a reasonable hot working method. The following
conclusions were drawn from this study:

1. The three hot working methods have minimal impact on the inclusion type and percentage in
GH4738. The melting technology plays a determining role. Four types of inclusions were found in
the superalloy during this experiment: TiC–TiN–Mo–S composite, TiC–TiN composite, Ce–Mo–S
composite, and SiC inclusions.

2. For GH4738 subjected to hot working by unidirectional drawing, the average inclusion size first
decreased, and then increased from the center to the edge. This technique primarily affected the
inclusion size at the 1/2R point of the superalloy.

3. For GH4738 subjected to hot working by upsetting and drawing, and upsetting/drawing with
radial forging, the average inclusion size decreased from the center to the edge. These two
techniques primarily affected the inclusion size at the edge of the superalloy.
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