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Abstract: The magnetorheological (MR) elastomer as a hard and soft hybrid functional material,
a composite material consisting of magnetic hard particles embedded in elastomeric soft matrix, is a
branch of MR materials that are functional smart materials rapidly responding to external magnetic
fields. These tunable properties of MR elastomers facilitate a variety of applications. In this brief
review paper, in addition to general information on the MR elastomers, recent research not only on a
wide variety of MR elastomeric systems focusing on various magnetic particles, elastomeric matrices,
additives and particle modification methods, but also on their characteristics including MR properties
from dynamic oscillation tests is covered along with their mechanical properties such as the Payne
effect, tensile strength and engineering applications.
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1. Introduction

Recently, world-wide interest in smart and intelligent materials has shown huge growth [1–3].
Smart materials are materials that can change their material properties in response to applied external
stimuli, such as electric or magnetic fields, stress, pH, moisture, temperature, light, and so on [4].

Magnetorheological (MR) materials belonging to functional smart materials exhibit tunable
rheological and viscoelastic characteristics such as shear stress, yield stress, dynamic modulus and
damping when regulated by an applied external magnetic field, so-called MR phenomenon first
discovered in the late 1940s [5–9]. In general, a wide range of MR materials has been categorized
as MR fluid, MR elastomer, MR gel, MR grease and MR foam, mainly depending on the phase
matrix materials used [10]. MR materials consist of magnetic particles incorporated in a non-magnetic
medium. The most applicable one among the MR materials is considered to be the MR fluid since it
produces the highest MR effect based on the rheological properties measured [11]. The yield stress and
shear viscosity of the MR fluids increase by many orders of magnitude, and the suspension system
changes from a Newtonian liquid to a solid-like state when a magnetic field is applied [12,13]. Their
variety of applications includes magnetically-controllable devices such as brakes, clutches, dampers
and mounts for semi-active or adaptive vibration controlling [14–18]. However, despite their good
performance and several successful commercial applications, MR fluids exhibit distinct shortcomings
such as deposition, sedimentation, environmental contamination and sealing problems [19–21]. These
disadvantages tend to limit the huge growth of their wider engineering applications [22]. Concurrently,
MR gels, another system with an intermediate state between the states of MR fluid and MR elastomer,
have been also introduced. Various studies including tunable viscoelasticity of magnetic MR gels have
been reported [23–27].
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On the other hand, MR elastomer, one of the hard and soft hybrid functional and smart materials,
is considered to be an alternative material to overcome the shortcomings of the MR fluids. The MR
elastomers are solid and can be used for stiffness-controllable devices unlike MR fluids being used
in viscosity-controllable devices. In addition, they are composed of nano- or micron-sized hard
magnetic particles dispersed in an elastomeric soft matrix. The magnetic particles used in MR
elastomers are carbonyl iron, iron oxides and other soft-magnetic particles without magnetic hysteresis,
and suitable elastomer matrix materials include natural rubber [28,29], silicone rubber [30–32],
nitrile rubber [33], polybutadiene rubber [34,35] and polyurethane rubber [36,37]. Specifically,
magnetically-controllable elastomer composites with magnetic particles promise to have more
functions than conventional elastomers. MR elastomers can be applied for automotive bushings, engine
mounts and adaptively-tuned vibration absorbers [38–43]. The first comprehensive investigation of
MR elastomers was conducted by Jolly et al. [44], in which a quasi-static dipolar mechanism was
introduced to interpret the dynamic modulus change of an MR elastomer. Based on all these merits,
MR elastomers have drawn huge attention and have become an emerging research topic. In addition,
related to their engineering applications, many theoretical models have been also extensively
introduced in attempts to characterize the mechanical behaviors of the MR elastomers [45–47]. Recently,
Cantera et al. [48] reviewed models for predicting the magneto-mechanical response of MR elastomers
under various loads.

MR elastomers can be at first classified into two kinds: isotropic MR elastomers and anisotropic
MR elastomers. The former is characterized by having a uniform magnetic particle distribution in
the matrix, and the latter has a special chain-like structure of magnetic particles in a matrix resulting
from curing the matrix under an applied magnetic field. It has been known that the MR effect of
anisotropic MR elastomers is larger than that of isotropic ones at the same particle content [49].
Jung et al. [50] investigated the MR performance of isotropic and anisotropic MR elastomer systems
prepared using natural rubber (NR) and carbonyl iron (CI) particles and found that the anisotropic
MR elastomer possessed a larger storage modulus than the isotropic one, which was explained as due
to the reason that the chain-like structure formed by aligned particles along the field direction acts as
a rod-like filler. Similarly, Lu et al. [51] reported that for MR elastomers consisting of thermoplastic
poly(styrene-b-ethylene-co-butylene-b-styrene) rubber and CI particles, the anisotropic MR elastomer
showed an even higher initial storage modulus because the filler effect resulting from the chain-like
structure of the particles enhanced the magnetic permeability of the MR elastomer.

This article briefly reviews recent research on the fabrication and characterization of various hard
and soft hybrid functional MR elastomers along with their physical and mechanical properties and
potential industrial applications. Specifically, their viscoelastic characteristics can be modified by not
only external stimuli such as an external magnetic field, stress and temperature, but also their intrinsic
features determined by the constitution of components, network structure, crosslinking density,
the type and size of particles, and so on. In particular, the microstructures with either the isotropic
or anisotropic state of the MR elastomers were confirmed by using scanning electron microscopy
(SEM), while the magnetic properties of hard magnetic particles were measured by vibrating-sample
magnetometer (VSM) analysis. The viscoelastic MR properties of MR elastomers such as dynamic
moduli and loss tangent and MR efficiency were observed by a rotation-typed rheometer attached to a
magnetic field generator. Furthermore, mechanical properties of MR elastomers such as the Payne effect
and damping factor are also discussed along with their extensive potential engineering applications.

2. Magnetorheological (MR) Elastomer

Structurally, the MR elastomers can be thought of as solid analogs of MR fluids, which are mainly
composed of soft-magnetic magnetic particles suspended in non-magnetic fluids. However, there are
some differences in the way in which these two limiting classes of materials are typically intended to
operate. Noteworthy is that the magnetic particle chains within the elastomer matrix are intended to
function in the pre-yield region, while MR fluids typically activate within a post-yield continuous shear
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or flow regime. Therefore, the efficiency of the MR fluids is explained by their field-dependent yield
stress, while the strength of MR elastomers is generally analyzed by their field-dependent dynamic
modulus [10].

The fabrication process of MR elastomers is similar to that of conventional rubber. The material
ingredients are magnetic particles, elastomer matrix and additives. The fabrication process of MR
elastomers consists of three steps: mixing, curing and magnetic particle orientation, as shown in
Figure 1. After all ingredients are mixed in an internal mixer under a sufficient processing temperature,
the isotropic MR elastomers are cured without the presence of a magnetic field, while the anisotropic
MR elastomers are cured with the action of a magnetic field. For instance, the anisotropic MR elastomer
of rubber/CI particles was prepared in a magneto-heating coupled device in the presence of a magnetic
field (indicated as arrows in Figure 1) [50]. The curing process for anisotropic MR elastomers requires a
strong magnetic field (MF), usually above 0.8 T, to form the chain-like structure of dispersed magnetic
particles in the rubber matrix following the magnetic field direction. A constant temperature is required
to maintain the flexibility of the magnetic particles for both isotropic and anisotropic MR elastomers
during curing [52].
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Figure 1. Schematic diagram of fabrication process of isotropic and anisotropic magnetorheological
elastomers (MRE).

2.1. Magnetic Particles

Generally, soft-magnetic particles are considered as favorable candidates for MR materials
because of their appropriate magnetic properties including simple magnetization and demagnetization,
almost no magnetic hysteresis and a large magnetization saturation constant [53]. The high magnetic
permeability of the particles easily attracts small magnetic leakage fields in the material compound,
thus inducing the maximum possible MR effect [54]. CI [55–57], iron oxide [58–61] and nickel [62] have
been utilized as the magnetizable particles in MR materials. Among these magnetic particles, the CI
particles have been most commonly used not only because of their excellent magnetic properties with
high permeability and low remnant magnetization, but also due to their spherical shape. Consequently,
many research works regarding MR elastomers have focused on studying the influence of CI particles
on the rheological behavior of the MR elastomers.

Several groups have also reported the effects of magnetized nanoparticles of CoFe2O4 [63], Ni [64]
and FeCo3 [65] included in MR elastomers (i.e., silicone rubber) and Fe [66] incorporated in MR
suspensions (or MR elastomers) on the MR elastomer composites.
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Chen et al. [67] prepared MR elastomers with nitrile butadiene rubber (NBR) and Fe3O4 with
high mechanical properties using zinc dimethacrylate (ZDMA). The polymerized ZDMA during the
NBR vulcanization caused the zinc ion paring to NBR and the interaction with Fe3O4, resulting in
excellent mechanical properties and magnetic properties. However, it should not be ignored that
addition of ZDMA also showed bad chemical stability to acid and base. Kurniawan et al. [68] also
investigated Fe3O4 particles coated with polyethylene glycol, which could be a promising candidate
for the silicone rubber-based MR elastomer due to their good mechanical and magnetic characteristics
and also a desirable candidate as microwave absorbing materials. Furthermore, Mietta et al. [69]
synthesized Fe3O4/Ag nanoparticles by using the co-precipitation method for new magnetic MR
elastomers. Besides, some researchers have studied nickel particles for the MR elastomer systems.
Landa et al. [70] synthesized nickel nanoparticles and nanochains, then used them as fillers for the
fabrication of the anisotropic MR elastomer with the silicone rubber matrix.

The magnetic particles coated with an organic or inorganic material via a modified Stöber method
were observed to enhance not only the sedimentation properties of MR fluids, but also the anti-acidic
and anti-oxidation resistance of the dispersed magnetic particles [71,72]. Therefore, in the case of MR
elastomers, such a coating technique could be utilized to prevent the particles from oxidation and
improve their compatibility with the elastomeric matrix [73]. Actually, the hydrophilic properties
of the CI particles make them incompatible with the hydrophobic elastomer matrix. Consequently,
such magnetic particles may de-bond from the elastomer matrix, leading to the deterioration of the
mechanical properties of the MR elastomer.

Recently, some studies to overcome this problem by fabricating the magnetic particles
being surface-modified with organic or inorganic materials have been reported by using proper
compatibilizers [74–79]. Li et al. [75] prepared core-shell structured poly(methyl methacrylate)
(PMMA)-coated CI particles to investigate the effect of particle coating on the dynamic properties of the
MR elastomers with PMMA matrix. Compared to the non-coated CI particles, the use of PMMA-coated
CI particles yielded a lower MR effect; however, they produced a weak Payne effect and a small steady
loss factor. Fuchs et al. [76] fabricated surface-coated iron particles using poly(fluorostyrene) for
the silicone rubber-based MR elastomers. It was found that the MR elastomers with surface-coated
iron particles possessed superior mechanical properties with respect to the oxidation stability test.
Behrooz et al. [77] prepared poly(tetrafluoropropyl methacrylate) (PTFPMA)-coated iron particles
utilizing a combination of reversible addition fragmentation chain transfer polymerization and click
chemistry techniques. The PTFPMA-coated iron particles did not show a significant change in the
shear modulus of the MR elastomers, but the loss of shear modulus due to oxidation was reduced.
Maleic anhydride was also selected as the compatibilizer to modify the interface of MR elastomers
to improve their damping properties [78]. The compatibility between the magnetic particles and
rubber matrix could be enhanced by increasing the content of the compatibilizer. The enhancement
of the bond between the two components (particles and matrix) in the MR elastomers produced the
superior mechanical properties of the loss factor and tensile strength. Furthermore, An et al. [79]
fabricated (3-aminopropyl) triethoxy silane (APTES)-coated CI particles in order to have better affinity
with natural rubber matrix. The silane-coated CI particle-embedded MR elastomers have improved
mechanical properties and MR effect.

Recently, the majority of published works have been focused on the investigations of the
rheological properties of MR elastomers with monodispersed magnetic particles, although MR
elastomers with a bimodal distribution of particles have also received some attention. Especially,
the combinations of magnetic and nonmagnetic particles or two types of magnetic particles have
been considered as fillers of MR elastomers. Li et al. [80] and Sorokin et al. [81] investigated the MR
properties of two different MR elastomers filled with various proportions of micron-sized iron and
nano-sized magnetite particles. The MR elastomers with mono-modal particles showed a higher
MR effect.
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2.2. Elastomer Matrix

Various elastomers can be used as matrices to fabricate MR elastomers with different properties.
The elastomer matrix plays an important role in the mechanical performance of MR elastomers,
and the selection of a suitable matrix material is regarded to be significantly important when we
need to consider the possible applications and long-term stability of the MR elastomeric composites.
Furthermore, based on the stiffness of elastomeric matrices, their softness could be changed from
soft to hard. Among the MR elastomeric matrices mentioned above [82], silicone rubber and natural
rubber are two kinds of the most common matrices reported in MR elastomer research [83]. For the
use of silicone rubber, there are many advantages such as its simple processing caused by liquid
precursors with low shear viscosity and its higher relative MR effect. Furthermore, it was reported
that silicone rubber is more resistant to heat, chemicals, fungi, UV and O3 compared to natural rubber
(NR) [84]. However, this kind of soft matrix could not satisfy the needs of applications of high impact
loading [85]. Perales-Martinez et al. [86] studied how different contents of CI particles embedded in a
silicone rubber affect the MR response of the MR elastomers. Li et al. [87] investigated the viscoelastic
properties of both isotropic and anisotropic MR elastomers with silicone rubber as the matrix by using
compression and shear methods in frequency and strain swept tests.

On the other hand, NR is also considered to be more suitable for an MR elastomer matrix material
especially for practical engineering applications than other rubbers due to its superior mechanical
properties [88]. Chen et al. [89] fabricated NR-based MR elastomers and found that their mechanical
properties in terms of tensile/tear strength and hardness are better than those of silicone rubber-based
MR elastomers. As examined by Li et al. [90], the NR-based MR elastomers have also shown the
capability to generate a relatively higher MR effect and magneto-induced storage modulus.

Nonetheless, it is known that NR exhibits poor aging, weathering and resilience over a wide
temperature range, as well as relatively low resistance to oil [91]. These drawbacks somewhat limit
the applications of the NR-based MR elastomers. As a partial solution for these drawbacks, it is
well known that epoxidized natural rubber (ENR), prepared in carefully-controlled conditions and
classified as a biodegradable and eco-friendly material since it is produced from a renewable natural
resource, demonstrates some new and unique properties beyond the common features of NR in
terms of damping ability, gas permeability, oil resistance and rolling resistance [92]. These properties
are very critical for MR elastomer applications, particularly for various devices in automobile and
mechanical industries.

It was also reported that the mechanical properties of silicone rubber and the degradation stability
of natural rubber were poor compared to polyurethane (PU) elastomers [93]. In the study, PU rubber
was selected as a matrix because of its better degradation stability than NR and superior mechanical
stability than silicone rubber. The properties of PU rubbers such as tensile strength, stiffness, friction
coefficient and chemical resistance can be easily adjusted by altering the types of soft and hard segments
and the content of the hard segments [94]. Wei et al. [95] prepared PU rubber-based MR elastomers,
and their mechanical properties, including shear modulus, MR effect, loss factor and glass transition
temperature, were characterized with a dynamic mechanical analyzer. In addition, Wu et al. [96]
prepared anisotropic MR elastomers composed of polytetramethylene ether glycol-based polyurethane
rubber and iron particles. The difficulty in the orientation of iron particles in the polyurethane matrix
was overcome by ball mill mixing.

2.3. Additives

Many reported studies of MR elastomer systems involved in some additives, which are used as
parts of the MR elastomer ingredients. The types of additives include a reinforcing agent, magnetic
filler, plasticizer, conductive material and crosslinking agent. These are typically added to increase the
performances of MR elastomers. The additives most used in MR elastomers are classified into two
categories. The first one is a mechanical reinforcing filler such as carbon black, silicon carbide, graphite,
graphene and carbon nanotubes (CNTs) and is utilized to improve the mechanical properties of MR



Materials 2018, 11, 1040 6 of 22

elastomers. Chen et al. [97] and Nayak et al. [98] investigated the isotropic MR elastomers fabricated
with and without the addition of carbon black into the matrix material and found that the addition
of carbon black improved the mechanical properties of the MR elastomers. Tian et al. [99] fabricated
both isotropic and anisotropic MR elastomers with various weight fractions of graphite and found that
the graphite particles increased the initial mechanical properties and decreased the MR effect. Silicon
carbide (SiC) particles were also introduced in order to enhance the dynamic mechanical performance
of the MR elastomers [100], while the SiC particles have been broadly used in rubber technology
because of their great bonding with the rubber matrix, and they can highly improve the performance
and mechanical properties of rubber material. Bica et al. [101] utilized graphene nanoparticles to
produce a hybrid electro-conductive MR elastomer for a magnetoresistive sensor. Recently, it has been
reported that CNTs act as a filler for the fabrication of MR elastomers, providing enhanced dynamic
mechanical and MR properties [102,103]. Aziz et al. [103] added functionalized multiwall CNTs into
the MR elastomers prepared with NR and carbonyl iron particles and found that the addition of the
CNTs contributed to the formation of the interconnected network of NR, resulting in the enhanced MR
and mechanical properties of MR elastomers.

The magnetic fillers have a considerable influence on the MR properties of the MR elastomer
composites. Davis et al. [104] have theoretically found that the optimum volume percent of magnetic
fillers for increasing the shear modulus was 27 volume percent. However, the MR effect of the MR
elastomer composites is quite low for practical industrial applications. Stepanov et al. [105] and
Kramarenko et al. [106] synthesized MR elastomers composed of silicone rubber with carbonyl iron
particles and hard magnetic filler particles (NdFeB) and investigated their viscoelastic properties
depending on the size and concentration of filler particles in the MR elastomers. The deformation of
the MREs was controlled by the applied magnetic field, and their elastic and loss moduli, depending
on strain, increased up to more than 100-times. Finally, adding certain kinds of plasticizers significantly
improved the MR effect of MR elastomers. Lokander et al. [107] investigated the relative MR effect
of the isotropic MR elastomers with nitrile rubber and iron particles at the critical particle volume
concentration at a high magnetic field (~0.8 T) and found that their relative MR effect was increased by
adding di-2-ethylhexylphthalate as a plasticizer. Wu et al. [108] showed that that diisooctyl phthalate
(DOP) used as a plasticizer also enhanced both the absolute and relative MR effects of PU rubber-based
MR elastomers, and the DOP particles incorporated into the PU rubber matrix not only softened the
matrix, but also improved the MR effect.

3. Characterizations of MR Elastomer

3.1. Morphology

The microstructures of MR elastomers mainly regarding the dispersion of magnetic particles in
the matrix have been observed by SEM [50,79]. Typically, prior to the SEM observations, first MR
elastomer samples were cut perpendicularly to the surface of the disc, after immersing the samples in
liquid nitrogen. Through the observations of the structural images, interfacial adhesion between the
rubber matrix and dispersed magnetic particles could be seen. In addition, the alignment of magnetic
particles within the rubber matrix was characterized using the energy dispersive X-ray spectrum
(EDAX) with Fe-mapping image analysis. Figure 2 shows the microstructure of pure CI particles
dispersed in NR with/without magnetic fields. Figure 2a displays the randomly-dispersed CI particles
in an NR matrix from the SEM images of the isotropic MRE prepared in the absence of a magnetic
field. Its Fe-mapping image of EDAX analysis, in which the bright dots are considered to be the
CI particles dispersed in the continuous NR matrix, is presented in Figure 2c. On the other hand,
Figure 2b,d shows, respectively, the SEM images and EDAX mapping image of the morphologies of
the anisotropic MR elastomer samples. Figure 2d shows that the Fe contents from the CI particles
exist, and the CI particles in the matrix are aligned clearly with the applied magnetic field direction
during the curing process. These morphological states of the MR elastomers are strongly related
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to their MR characteristics together with their potential engineering applications. Recently, for a
better understanding of the microstructural formation of the embedded magnetic particles in the MR
elastomers, X-ray micro-computed tomography (CT) [109,110] was adopted, and the characterization
by utilizing CT provided a three-dimensional map of the structure and geometry of the samples, while
preserving the pristine structure.
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Figure 2. SEM and Fe-mapping images of the pure carbonyl iron (CI) particles incorporated in the
natural rubber (NR)-based isotropic (a,c) (reprinted with permission from [50], Copyright 2016 Elsevier
B. V., New York, NY, USA) and anisotropic (b,d) MR elastomers (reprinted with permission from [79],
Copyright 2017 Elsevier B. V., New York, NY, USA).

3.2. Magnetic Property

Magnetic properties of both soft-magnetic particles adopted and MR elastomers have been
characterized by the investigation of their magnetization and hysteresis loop measurements [76,100].

Figure 3a illustrates the magnetization curves of the epoxidized NR (ENR)-based MR elastomers
for different contents of CI particles [76]. In the case of all samples, the magnetization curves reveal
narrow magnetic hysteresis loops. This fact indicates that the ENR-based MR elastomers exhibit
a soft magnetic characteristic. The trend of the graphs is similar for all samples in such a way
that the magnetization curves were increased dramatically up to a certain magnetic field intensity,
approximately 400 mT and 600 mT.

Figure 3b shows the hysteresis loops of the various MR elastomers with or without CNTs (pure
MR elastomer, MR elastomer with CNTs, MR elastomer with carboxylated CNTs (COOH-MWCNT)
and hydroxylated CNTs (OH-CNT), measured in magnetic fields up to 1.2 T [94]. Overall, the MR
elastomer samples containing CNTs have a higher magnetic saturation value (MS) compared to those
without CNTs. According to Fang et al. [111], a possibly reason is that the CNTs used as an additive
strengthen the chain-like and columnar structure formed by CI particles and CNTs, resulting in the
higher saturation magnetization.
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4. MR Characteristics

4.1. Dynamic Test

MR elastomers are known as viscoelastic materials that can store and dissipate some of the energy
during deformation under both external shear and magnetic fields. Generally, the ability of the material
to store energy elastically is related to the storage modulus (G′), which represents the elasticity of the
material. On the other hand, the loss modulus (G”), which quantifies the ability to dissipate the energy
of deformation as heat, represents the viscous properties of the material. Fundamentally, G′ and G”
are principal parameters describing the rheological properties of viscoelastic materials, as well as MR
materials, including MR elastomers. To examine the MR characteristics of MR elastomers, both the
strain amplitude sweep test and angular frequency sweep test are typically used using a rotational
rheometer equipped with the magnetic field generator and the disk-type MR elastomer samples.

The strain amplitude sweep test is used to define the linear viscoelastic (LVE) region for a
frequency sweep test as the next step. Once the LVE region limit is determined, the dynamic properties
of the MR elastomer could be studied within the linear region and in the nonlinear region, separately,
to show the influence of the LVE limit on the dynamic properties. Figure 4a,b shows the storage moduli
of the isotropic and anisotropic MR elastomers composing of NR and CI particles, respectively, as a
function of strain for different magnetic field strengths (in the applied strain range 0.01–5% and at
a fixed frequency of 1 Hz), measured in order to obtain the position of the LVE region. From both
figures, it is determined that the storage modulus increases with increasing magnetic field strength.
In addition, overall, the storage modulus decreases with increasing strain amplitude, reducing rather
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slowly within a 0.1% strain and then sharply over a 0.1% strain. The storage moduli of the two different
MR elastomer samples maintain constant plateau values at the low strain region and then decrease
gradually with increased strain. As expected, in the LVE region, the storage moduli are independent
of the applied strain. In addition, the storage moduli of the anisotropic MR elastomers are shown to be
higher than those of the isotropic MR elastomers at the same magnetic field strength.
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Figure 4. Strain amplitude sweep curves of the NR-based MR elastomers under various magnetic field
strengths: (a) isotropic MR elastomers and (b) anisotropic MR elastomers (reprinted with permission
from [50], Copyright 2016 Elsevier B. V., New York, NY, USA).

Figure 5a,b presents the frequency dependency of the storage moduli and loss moduli, respectively,
of (3-aminopropyl) triethoxy silane (APTES)-coated CI-based MR elastomers and pure CI-based MR
elastomers in a range of angular frequencies from 1–100 rad/s at a mean strain value of LVE [79]. With
increasing magnetic field strength, all the anisotropic NR-based MR elastomer samples including CI or
CI/APTES particles exhibit an enhancement of their storage moduli. In addition, the storage moduli
of the ATPES-coated CI-based MR elastomer (closed) are seen to be higher than those of the pure
CI-based MR elastomer (open).
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elastomers) (reprinted with permission from [79], Copyright 2017 Elsevier B. V., New York, NY, USA).
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Fundamentally, the MR effect, one of the key parameters for evaluating the performance of MR
elastomers, is usually calculated by storage moduli. The MR effect can be described by both absolute
and relative MR effects. The absolute MR effect (∆G′) is the difference between the maximum storage
modulus (G′max) achieved in the presence of a magnetic field and the shear modulus obtained without
a magnetic field (G0). The absolute MR effect is expressed by the following equation: ∆G′ = G′max −
G0, and the relative MR effect equation is represented as follows:

Relative MR Effect =
G′ −G0

G0
× 100, (1)

where G0 is the initial storage modulus without a magnetic field and G′ is the magneto-induced storage
modulus at the magnetic field strength. Through dynamic mechanical tests, the MR effect of MR
elastomers is shown to be dependent on the frequency and strain amplitude. Figure 6 shows the MR
effect of CI/APTES-based MR elastomers (a) and pure CI-based MR elastomers (b) as a function of
frequency [79]. At all magnetic field strengths, the MR effect of the CI/APTES MR elastomers is higher
than that of the pure CI MR elastomers.
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4.2. Creep Test

The phenomenon of creep often appears when the strain of materials changes over time slowly
under a constant stress. If the stress is instantaneously removed, the dependence of strain on time
is defined as the recovery behavior, and it is believed that the information of the creep and recovery
behavior of a MR elastomer can provide the guidance for its engineering applications. Due to its
importance in understanding the viscoelastic behaviors of the systems, it has been widely applied
not only for polymeric materials, but also smart materials such as electrorheological suspensions
and magnetic fluids [112–114]. However, there are merely a few reports on the creep and recovery
behavior of MR elastomers. Li et al. [115] found that the response strain of MR fluids was highly
dependent on the constant stress level and proposed a thick column structure hypothesis to explain
the creep behaviors of MR fluids. In addition, both experimental and modeling studies of the creep
and recovery behaviors of MR elastomers were investigated. A four-parameter viscoelastic model was
developed to describe the creep behaviors of MR elastomers. The results indicated that the model
can predict the creep behaviors of MR elastomers very well [116]. Xu et al. [117] also systematically
investigated the creep and recovery behaviors of MR elastomers prepared with PU/epoxy resin (EP)
interpenetrating polymer networks. They reported that the creep and recovery behaviors of MR
elastomers are influenced by the magnetic field, particle distribution and temperature. Yu et al. [118]
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tested the compression creep performance of PU-based MR elastomers. To understand the mechanism
of the time-dependent mechanical properties and improve the properties of MR elastomers for an
engineering application, deeper research into the creep and recovery behavior of MR elastomers
is needed.

Bica et al. [119] investigated the creep behavior of silicone-based MR elastomers containing
carbonyl iron (CI) particles, in which the MR elastomer samples used for the investigation were named
according to the weight fraction of silicone rubber and MR suspension (CIs in silicone oil): Sample 1
(Sm1) (75% silicone rubber and 20% MR suspension), Sm2 (55% silicone rubber, 40% MR suspension)
and Sm3 (35% silicone rubber, 60% MR suspension). As shown in Figure 7a,b, as soon as the constant
stress of 30 Pa is applied, an instantaneous deformation and a nearly total instantaneous recovery
of MR elastomer samples are observed without any apparent delayed response. In the absence of
a magnetic field (Figure 7a), the elastomers show delayed strain following decreased instantaneous
strain in both creep and recovery processes due to the negative effect of the CI particles on the elasticity
of the elastomer matrix. When measured in the presence of a magnetic field (Figure 7b), all the
samples exhibit a much reduced instantaneous strain under the impact of the same stress as the
anisotropic structures of particles enhance the solid properties of the elastomers under the magnetic
field strength. Note that the Sm2 sample showed the highest solid properties with and without an
external magnetic field.
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5. Mechanical Properties

5.1. Payne Effect

The Payne effect is the phenomenon of softening stress at small strain for of a rubber filled with
particles, named after the British rubber scientist, Payne [120]. It is measured under a cyclic loading
condition with a small strain amplitude, considering the dependence of the storage modulus on the
applied strain amplitude. Many researchers studied the Payne effect of anisotropic and isotropic MR
elastomers and found that MR elastomers have a much larger storage modulus at low strains than
at high strains [121]. The Payne effect is defined as the ratio of the change from initial to infinite
modulus values to the initial modulus value of the material. The Payne effect can be calculated from
the following Equation (2);

Payne Effect =

(
G′0 −G′∞

)
G′0

, (2)

where G′0 and G′∞ are the values of the storage modulus at initial and infinite strain, respectively.
Figure 8 shows the G′ values as a function of strain for surface-coated CI-based MR elastomers and
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non-coated CI-based MR elastomers, representing the Payne effect based on the fact that the storage
modulus decreases steadily with the increase of strain in the composite rubber [75,79]. The storage
moduli of the surface-coated CI-based MR elastomers are much larger than those of the pure CI-based
MR elastomers over the full strain range. The surface-coated CI-based MR elastomers have a smaller
Payne effect than the pure CI-based MR elastomer due to increased bond strength between the particles.
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The Payne effect, which has been widely adopted for analyzing rubber-polymer networks,
has been recently also applied to both MR elastomers and polymer blends. The term “magnetic
field-enhanced Payne effect” was first introduced by An et al. [122] for the MR gels to highlight their
strain-softening. Recently, Sorokin et al. [123] also showed that the Payne effect in silicone rubber-based
MR elastomers including magnetic fillers was enhanced by applying the magnetic field. Both the
absolute values of the dynamic moduli and magneto-induced Payne effect were increased with the
increment of the content of magnetic filler incorporated within the elastomer, which consequently
increased the contribution from magnetic interactions.

5.2. Loss Factor

The loss factor is related to the bond energy between the magnetic particles and the rubber matrix.
The strengthening of the bond between particles and matrix produces a small loss factor. The loss factor
of magnetic particle-filled elastomer composites has three components: loss factors of elastomer matrix,
filler and the interface between filler and matrix. Usually, the last component is the main source of the
loss factor of composite because the bond strength between fillers and matrix is typically weak, and a
kind of motion occurs between the particle and matrix. The friction caused from the motion leads to
energy dissipation. Figure 9a,b shows the loss factor of both surface-coated CI and pure CI-based MR
elastomers, respectively. The bond strength between fillers and the matrix of surface-coated CI-based
MR elastomers is much stronger than that of the pure CI-based MR elastomers, considering the result
with the lower values of the loss factor of surface-coated CI-based MR elastomers. When the magnetic
field is applied to the MR elastomers, the originally dispersed magnetic particles respond to an external
magnetic field even though their movement is confined within the elastomers, and the interaction
force between the particles in the matrix is enhanced. With the increase of applied magnetic field, the
frictional motion decreased through the strong interaction force between the magnetic particles and
the elastomer matrix. As a result, the energy dissipation was reduced, and the loss factor decreased
with further increasing of the magnetic field [95].
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5.3. Tensile Strength

Based on the fact that tensile strength is one of the most important mechanical properties of
rubber-based materials, it has been also widely investigated for MR elastomers. Schubert et al. [124]
reported the tensile strength behavior of silicone-based MR elastomers under uniaxial tension both
in the absence and in the presence of magnetic fields, as shown in Figure 10a. The tensile property
increased with increasing iron particle volume concentration. The isotropic and horizontal alignment
anisotropic MR elastomers showed a similar stress-strain curve shape with constantly increasing slope.
In the case of vertical alignment anisotropic MR elastomers, they exhibited larger stresses than the
isotropic MR elastomers except for the MR elastomer with 30% iron content. On the other hand,
Chen et al. [97] fabricated the NR-based MR elastomer samples using carbon black to modify and
improve their mechanical properties. The result indicated that the carbon black was able to enhance
the tensile strength of the MR elastomer because the carbon black has a positive effect on the bound
condition between the rubber and magnetic particles. When the magnetic field was applied on the
MR elastomer, the MR elastomer became stiffer or softer than usual. Bellan et al. [125] also studied
the influence of the magnetic field on the tensile strength of silicone-based MR elastomers. Figure 10b
shows that the tensile strength of both isotropic and anisotropic MR elastomer was reinforced by the
application of the magnetic field due to the magnetic attractive force between the particles.
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Figure 10. Tensile test results of pure silicone rubber, isotropic and anisotropic MR elastomers with
various iron content in the absence of a magnetic field (a) (reprinted with permission from [124],
Copyright 2015 Elsevier B. V., New York, NY, USA) and (b) pure silicone rubber, isotropic and anisotropic
MR elastomers with 15 vol% of iron content in the presence of a magnetic field (123 kA/m) (reprinted
with permission from [125], Copyright 2002 World Scientific Publishing Co. Pte Ltd., Singapore).
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6. Applications of MR Elastomers

The research on controlling both stiffness and damping of MR elastomers has attracted
considerable interest in recent years. In addition to their active controlling capability, the fast time
response of MR elastomers makes them suitable for a variety of engineering applications, such as
adaptively-tuned vibration absorbers (ATVAs), isolators, sandwich beams, force sensors and actuators.

6.1. Vibration Absorbers

The unique and controllable properties of MR elastomer composites make the composites
promising candidates for various applications including ATVAs. The ATVAs expand the effective band
and greatly improve their performances in many applications by regulating their natural frequencies
suitably to compensate for the drift in the excitation frequency. Ginder et al. [126] developed an ATVA
by utilizing MR elastomers. Their experimental results indicated that the ATVA had the capability to
shift frequency from 500–610 Hz. Inspired by the above work, Deng et al. [127], Sun et al. [128] and
Vatandoost et al. [129] developed a variety of ATVAs in shear mode, squeeze mode and compression
mode, respectively, by using MR elastomers. Williams et al. [130] did much research on ATVAs with
shape memory alloys, which can vary their frequency by changing the environmental temperature.
Zhou et al. [131] designed a novel smart piezoelectric actuator with controllable characteristics based
on an MR elastomer. The relative change in the resonant frequency of the actuator was found to be
adjusted up to 30% by applying a magnetic field. Hoang et al. [132] fabricated a conceptual ATVA
with soft MR elastomers for the suppression of powertrain vibration. Their results showed that the
ATVA using MR elastomer materials can effectively work in a frequency ranging from 7 Hz–70 Hz.
Xin et al. [133] proposed and validated the principle of a new ATVA for powertrain mount systems
of automobiles. Recently, Sun et al. [134] proposed the eccentric mass on the top of the multilayered
MR elastomer structured VA for vibration reduction, as seen in Figure 11a. The vibration test results
for the proposed MR elastomer illustrated that the MR elastomer absorber discerned double natural
frequencies (one in the torsional direction and the other in the translational direction) that were tunable.
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Publications, Thousand Oaks, CA, USA).
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6.2. Vibration Isolators

Besides vibration absorbers, MR elastomers can also be applied to vibration isolators due to
their excellent and tunable stiffness. Figure 11b shows the scheme of a shear-compression mixed
mode MR elastomer isolator [135]. Two pieces of MR elastomers fabricated with different dimensions
were utilized in the isolator. The test results showed that the natural frequency of the MR elastomer
mixed isolator can be effectively controlled by regulating the applied magnetic field. When applying
magnetic field, the natural frequency was able to increase up to 46% and 103%; the increment of
stiffness was 122.15% and 329.63%; and the increment of damping was 99.07% and 180.31%. The shear
MR elastomer operates in shear mode, and the other MR elastomer operates in compression mode.
Behrooz et al. [136] theoretically and experimentally investigated a three-story scaled building isolated
with four variable stiffness and damping isolators. Eem et al. [137] experimentally evaluated the
seismic performance of a newly-proposed smart base-isolation system. Opie et al. [138] fabricated a
clipped-optimal controller for an MR elastomer isolation system with 5–10-Hz excitation. Their results
showed that the MR elastomer isolator system relatively reduced resonances and payload velocities by
16–30%, when compared to passive systems. Recently, Du et al. [139] reported an investigation on a
semi-active/passive integrated vibration isolator by using an MR elastomer and spring. The frequency
sweep test in their study illustrated that the resonant frequencies of the semi-active/passive integrated
vibration isolator were able to be controlled from 30.0 Hz–51.0 Hz when the magnetic field was applied.

6.3. Other Applications

Bose et al. [140] designed a controllable valve utilizing soft MR elastomers. This device is able
to regulate air flow through a controllable valve. Kashima et al. [141] proposed an isotropic MR
elastomer soft actuator with three parts: electromagnetic coil, soft silicon rubber and MR elastomer
cover. Recently, the development of an MR elastomer-based sandwich structure has been initiated,
and sandwich beams have been used in various industrial areas, especially in aerospace engineering.
A sandwich beam typically consists of two skin parts and a core part. Zhou et al. [142] investigated the
field-dependent dynamic rigidities of sandwich beams with an MR elastomer core by finite element
analysis. Nayak et al. [143] performed a dynamical analysis of the three-layer symmetrical sandwich
beams with the MR elastomer embedded core and conductive layers, subjected to a periodic axial
load under various boundary conditions. Ying et al. [144] examined a micro-vibration response of a
clamped–free sandwich beam using an MR elastomer core and a supplemental mass under stochastic
supporting micro-motional excitation. Furthermore, MR elastomers have been recently adopted for
manufacturing plane electric capacitors to measure electrical capacitance [145,146].

7. Conclusions

In this brief review article, we provided the recent research on the fabrication, characterizations,
properties and applications of various MR elastomeric composites prepared with a wide variety
of magnetic particles, elastomers and additives as one example of hard and soft hybrid smart and
functional materials. It was shown that the morphologies of the iso/anisotropic MR elastomers
prepared with/without magnetic fields have been characterized by SEM and Fe-mapping. In addition,
their magnetic properties were obtained by measuring their magnetization and hysteresis loops.
The MR properties of the MR elastomer have been determined using a rotational rheometer under
a range of magnetic field strengths by the strain amplitude and frequency sweep tests. The results
of the MR property measurements showed that with increasing magnetic field strength, the storage
moduli increased depending on the strain at a constant frequency. According to the investigation of
the viscoelastic characteristics and the MR effect of MR elastomers, higher MR performance has also
been observed for the anisotropic MR elastomers compared to the isotropic MR elastomers, and also,
surface-coated CI particles-based MR elastomers showed higher MR performance compared to the
MR elastomers with non-coated particles. Besides, the mechanical properties of MR elastomers
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have been characterized by the Payne effect, tensile strength and loss factor of MR elastomers.
From the determination of two parameters of CI-based MR elastomers, it was found that the
mechanical properties of surface-coated particle-based MR elastomers were stronger than those of pure
particle-based MR elastomers because of the strengthened bonding energy between the CI particle and
rubber matrix. Finally, the magnetic particle-filled elastomeric hybrid composites with controllable
MR properties and fast response to external stimuli show a huge potential to be applied to a variety
of engineering devices such as automotive bushings, engine mounts, adaptively-tuned vibration
absorbers, isolators and actuators. It is also believed that the MR elastomeric hybrid composites can be
potential candidates for biomedical devices, as well.
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