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Abstract: Photothermal therapy (PTT) takes advantage of unique properties of gold nanoparticles
(AuNPs) (nanospheres, nanoshells (AuNSs), nanorods (AuNRs)) to destroy cancer cells or tumor
tissues. This is made possible thanks principally to both to the so-called near-infrared biological
transparency window, characterized by wavelengths falling in the range 700–1100 nm, where light
has its maximum depth of penetration in tissue, and to the efficiency of cellular uptake mechanisms
of AuNPs. Consequently, the possible identification of intracellular AuNPs plays a key role for
estimating the effectiveness of PTT treatments. Here, we review the recognized detection techniques
of such intracellular probes with a special emphasis to the exploitation of near-infrared biological
transparency window.

Keywords: gold nanoparticles; cellular uptake mechanism; Dark Field Microscopy; Surface-enhanced
Raman spectroscopy; Scanning Near-Optical Microscopy

1. Introduction

Photothermal therapy (PTT) is a non-invasive treatment for the therapy for many diseases, in a
special manner, for cancer treatment [1]. PTT is also one of the most promising technologies to arrest
the expansion of cancerous cells with reduced toxicity due to its effective ability to destroy the cancer
cells locally [2]. It is based on the thermal therapy induced by a laser illumination able to activate
the heat production by internalized nanoparticles (NPs) in cancer cells [3–10]. The accumulation
of near-infrared absorbing NPs in tumor sites enormously increases the efficiency of PTT through
effective conversion of light into heat energy [11].

A PTT treatment is based on the effect increasing temperatures have on living cells, and it is
commonly accepted that above 42 ◦C cell viability is strongly reduced. In fact, hyperthermia effects
can range from moderate denaturation of blood and extracellular proteins to induction of apoptosis
and, above 50 ◦C, to cell death and tissue ablation [12]. PTT has been widely used via either direct
irradiation or suitable temperature vectors, such as metal NPs [13]. In NP-mediated PTT cancer
treatments, NPs heat up cancerous cells beyond their temperature tolerance limits, which are lower
than normal healthy tissue due to their poor blood supply, killing them selectively. This can be achieved
by exposing the entire patient or the targeted area to an alternating current magnetic field, an intense
light source or radiofrequencies, which will cause the NPs to heat up and induce thermal ablation of
the tumor. One of the most widespread examples of hyperthermia mediated by NPs, magnetic NPs
have been introduced in the body through magnetic delivery systems or local injection to the affected
area [14]. The first in vivo Phase II clinical trials of magnetic NP hyperthermia were undertaken in
Germany in 2005 [15] by injecting the prostate of cancer patients with biocompatible magnetite NPs.
Successful results were obtained using minimally invasive ablation of the tumor in an AC magnetic
field after several sessions.
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Endocytosis is, hence, a fundamental biological process used by cells to internalize NPs, where,
normally, NP size can affect the uptake efficiency, intracellular kinetics and the overall internalization
mechanism [16–18]. A size-dependent uptake in different cell lines has been observed for AuNP [19],
as well as iron oxide NPs [20]. Consequently, the understanding of the endocytosis process and the
efficiency of cellular uptake is based on the ability to identify internalized NPs inside cells.

Several instrumentations are commonly used to carry out this task. One of the most widely
employed method of detecting AuNPs is through fluorescence with the use of fluorescent molecules
attached to the gold surface or by fluorescent gold core [21–23]. The fluorescence can be estimated by
wild field microscopy [24], or, for enhanced resolution, by confocal laser scanning microscopy [25].
Transmission electron microscopy (TEM) is a widely used microscopy technique for the intracellular
detection of metal NPs bigger than 5 nm [26,27]. Although TEM is a powerful technique that allows the
imaging of metal NPs in cellular components or organelles, nevertheless, it requires time-consuming
sample processing. Differential interference contrast (DIC) microscopy is an optical microscopy
technique working on the principle of interferometry to gain information about the optical path length
analogously to phase contract microscopy but without the bright diffraction halo. DIC has been utilized
to study the endocytosis of functionalized AuNPs with diameters falling in the range 20–80 nm [28–30].

Surface-enhanced Raman spectroscopy (SERS) is another popular method for live cell
investigations [31]. SERS is label-free, highly sensitive and non-destructive method which allows for
molecular identification. In fact, a Raman spectral image is produced by various molecular vibrations
and offers a vibrational fingerprint of a molecule. The Raman scattering signal can be greatly increased
for the molecules, which are spatially close to metal nanostructures. AuNPs are able to enhance the
performances of internalized molecules by 1010 to 1015 folds, allowing spectroscopic detection of single
molecules [32]. Due to its importance in the detection of intracellular AuNPs, SERS methods and
applications will be more detailed in Section 4.

Other than SERS, different other techniques based on the plasmonic properties have been developed
in the last decade. Photothermal microscopy is a technique exploiting two overlapping laser beams,
one that triggers localized small variations of temperature (approximately 1–2 ◦C) in presence of
nano-absorbers, and the other detects possible changes in temperature [33]. In living cells, this
technique is able to detect 5 nm AuNPs [34] and 10 nm × 6 nm AuNRs [35]. A recent version
has been developed for video-rate tracking imaging of single NP photothermal [36]. Analogously
to photothermal imaging, photoacoustic microscopy exploits the conversion of absorbed light
into heat producing an ultrasonic wave via thermoelastic expansion. High-resolution dynamic
contrast-enhanced photoacoustic imaging in vivo has been recently demonstrated using acoustic
nanomodulators [37]. In turn, Scanning Near-Optical Microscopy (SNOM) has been employed to detect
and localize 120–150 nm AuNPs (nanoshells) absorbing light in the near-infrared range exploiting the
biological transparency window [38–41]. By default, in the rest of the text we will indicate the NPs
of spherical geometry with the term AuNP, and we will specify the other NP geometries (AuNS or
AuNR) when necessary.

The review is organized as follows. We describe the endocytosis and cellular uptake mechanisms
of bared or functionalized AuNPs in Section 2. In Section 3, we analyze the optical and photothermal
properties of AuNPs describing the plasmonic properties of such NPs. Finally, in Section 4 we focus
the attention on some experimental techniques for detection and tracking of AuNPs, principally on
Dark Field Microscopy (DFM), SERS, and SNOM. In turn, the theranostics employment of non-metal
materials in PTT is briefly described.

2. Endocytosis and Cellular Uptake Mechanisms of AuNPs

All types of cells in the body exploit the endocytosis or exocytosis processes to communicate
with the biological environments [42]. Such processes are energy-based processes though which cells
internalize (or externalize) ions, nutrients and signaling molecules to interact with other cells [43].
In particular, focusing the attention on the only endocytosis process, the cells obtain energy through
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specific pathways, typically classified into clathrin- and caveolae-mediated endocytosis, phagocytosis
(internalization of large particles ~500 nm), and non-specific pathways such as micropinocytosis
(internalization of fluids and particles together and large vesicles ~200–500 nm), and pinocytosis
(absorption of extracellular fluids, small molecules, and small vesicles <200 nm) [44].

When NPs are administered for biomedical application or absorbed via airways due to pollution
into the body, in this case, the endocytosis of such NPs depend by some parameters, such as size, shape
and surface chemistry, and by cell type [16]. Therefore, the study of endocytosis of NPs meets great
interest in nanomedicine, and, for similar reasons, in nanotoxicology [45]. In this review, we consider
only AuNPs systematically administered for PTT. Various types of cells through the plasma membrane
internalize AuNPs circulating in the bloodstream. The plasma membrane is a selectively permeable
membrane that allow the passage of objects the size of hundreds of nanometers thanks to the fact
that on the membrane can open and close pores without destroying the membrane itself. The growth
of pores on the cell membrane is controlled by the rate at which the membrane elastic energy is
dissipated [46]. Since the viscosity of the membrane is five orders of magnitude larger than the water
surrounding the membrane, most of the energy dissipation is confined to the membrane interior [47].
The energetically stability of such membrane pores discriminate the particle to be internalized in terms
of size and shape of the AuNPs (as well as all the other types of NPs) [48–50]. AuNPs with varying
core size are prepared by the reduction of gold salts in the presence of stabilizing agents both to control
growth and to avoid nanoparticle agglomeration.

In addition, another basic property of internalized AuNPs, other than size and shape, is their
surface chemistry [16]. Since biological systems consist of numerous biomolecules with various
charges, surface chemistry include the chemical composition and the surface charge of the NPs.
AuNPs can be easily functionalized by anchoring thiol linkers in the gold surface. A wide variety of
functionalized bionanoconjugates includes peptides, proteins, antibodies, oligosaccharides, nucleic
acids, etc. [51,52]. AuNPs so functionalized act as a multifunctional platform for both diagnostic and
therapeutic purposes, commonly recognized as theranostics [53–55]. This is because functionalized
AuNPs exploit the optical properties of gold and the biochemistry of the functionalizing coating. In the
next section, we detail the optical and correspondent photothermal properties of the various types
of AuNPs.

3. Optical and Photothermal Properties of AuNPs

Optical and photothermal properties are strictly connected one each other. This connection plays
a basic role not only for the thermal therapies, but also for the intracellular detection and tracking,
being all the intracellular detection techniques of metallic NPs based on optical and subsequent
thermal behavior. The optical properties of the AuNPs, analogously to other metallic NPs, can
be described via the localized surface plasmon resonances (LSPRs). Once irradiated at the LSPR,
the electromagnetic energy is absorbed and dissipated as heat into the surrounding media via diffusive
process. The temperature of irradiated metallic NPs can easily reach hundreds of degrees Celsius
enabling application not only for photothermal therapies, but also for chemical catalysis, drug delivery
and vapor generation [56–58]. An LSPR can be described as a coherent oscillation of the free carrier
gas in a metallic NP. The free carriers are confined to a small volume localizing the surface plasmon to
the single NP. Hence, the incoming electromagnetic (e.m.) wave drives the free carriers to oscillations,
following the frequency of the incoming electric field of the light wave, Figure 1, at the NP surface,
with the positive nuclei acting as a restoring force. In the bulk, a classical harmonic oscillator model
well describes the behavior of the free carriers.

In the general case, the eigenfrequency of a LSPR is determined by many factors, including the
concentration and the effective mass of conduction electrons, the shape, structure, and size of particles,
interaction between particles, and the influence of environment.
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where r is the radius of the core, d is dimension of the gold layer, so that the NS radius is R = r + d and 
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Figure 1. Schematic example of plasmon oscillation for a spherical gold NP showing the displacement
of the conduction electron charged cloud relative to the core under the incoming oscillating electric field.

However, for an elementary description of NP optics it is sufficient to use a combination of the usual
dipole Mie theory and the Drude theory [4,38,59,60]. Adopting the Mie-Drude picture, the absorption
and scattering of light by a small particle are determined by its electrostatic polarizability α, which
can be calculated by using the optical dielectric function ε(ω). As the particle radius R is decreased to
the value comparable with the electron mean free path, deviations of the phenomenological dielectric
function of the particle from the bulk values can be expected. For a small particle with a radius
R = (3V/4π)1/3, where V is the particle volume, embedded in a homogeneous dielectric medium with
the permittivity εm, we have the following expressions for the extinction, absorption and scattering
cross sections [59], respectively:
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where the expression for the polarizability has been explicated. In the case of NSs, the polarizability
changes as [61,62]

α = 4π(r + d)3
(εs(ω)− εm)(εc + 2εs(ω)) +

(
r

r+d

)3
(εc − εs(ω))(εm + 2εs(ω))

(εs(ω) + 2εm)(εc + 2εs(ω)) +
(

r
r+d

)3
(εc − εs(ω))(2εs(ω)− 2εm)

(2)

where r is the radius of the core, d is dimension of the gold layer, so that the NS radius is R = r + d and
Equation (1) must be changed accordingly.

It has been demonstrated that AuNSs with gold layers less than 40 nm, the absorption efficiency is
more higher than scattering efficiency, Qabs > Qsca, and the absorption efficiency is greater the scattering
efficiency, the smaller the thickness of the shell layer [40]. From the point of view of the applicability
for thermal therapy, this characteristic large absorption cross section make AuNS excellent candidate
as heat sources. The temperature generated by an AuNS irradiate with a plasmon resonant wavelength
can be expressed by the relation (originally this expression was introduced for gold nanostars) [63]

T ∼= I
QabsR

κ
(3)

where I is the irradiance of the incoming beam, R the AuNS radius, and κ is the thermal conductivity
of the AuNS, or alternatively the surrounding medium.

Heat transfer between a NP and its cellular environment is carried out predominantly by radiation,
the cellular environment being assumed to be connected to a large environment equivalently to a
thermal bath of temperature Tcell. When the AuNP is illuminated in steady-state by an external laser
beam, the power absorbed (assuming also energy conservation) by the AuNP equals the difference
between the power Prad(T) thermally emitted by the AuNP at temperature T and the power emitted by
the AuNP at the bath temperature Tcell
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Pabs = Prad(T)− Prad(Tcell) (4)

The power absorbed by the AuNP is nearly proportional to the incident power carried by the
external beam by the relation [64]

Pabs = πR2Qabs(λ, T)Iinc (5)

where Qabs is the absorption efficiency given by Equation (1), Iinc is the intensity of the external light
beam, and the prefactor denotes the geometrical cross-section of the AuNP considered spherical in this
case. The power thermally emitted by the AuNP at temperature T is given by the relation [65]

Prad(T) = 8πR2
∫ }c2eλe

[exp(2π}c/λekBT)− 1]
dλe

λ5
e

(6)

where } is the Planck’s constant, c is the speed of light in vacuum, eλ is the thermal emissivity and kB is
the Boltzmann’s constant. It is reasonable to assume that the thermal emissivity is equal to absorption
efficiency Qabs of the AuNP, hence inserting Equations (5) and (6) in Equation (4), we obtain

Qabs(λ, T)Iinc = 8π
∫ }c2Qabs(λe, T)

exp(2π}c/λekBT)
dλe

λ5
e
− Irad(Tcell) (7)

where Irad(Tcell) = Prad(Tcell)/πr2 is the power density emitted by the AuNP before the illumination
at the bath temperature Tcell, and the denominator denotes the geometrical factor for a spherical
NP, for NRs or NSs this factor should be changed accordingly. The temperature T generated by the
AuNP can be obtained numerically by solving Equation (7) using an incremental-iterative procedure
with adaptive step-size dT and initial value coincident to Tcell. To this purpose we need a known
power density Iinc, an incident illumination with fixed wavelength λ, and a fixed angle of incidence.
To destroy a tumor cell for uptaked AuNP is enough to reach 44–45 ◦C. The exploitation of infrared
transparency window, 750–1100 nm, requires the utilization of AuNSs being such type of NPs for
dimensions and core-shell composition able to absorb light in such wavelength range [40,66–68].

Due to the infrared transparency window region, the heating of a cell, where previously an AuNS
has been internalized and illuminated by a laser with a near-infrared wavelength, can be quantified
assuming that only the AuNS generates heat. In the environment composed by the cell surrounding
the AuNS, the heat conduction is described by [69]

ρCp
∂T(r, t)

∂t
= ∇k(r)∇T(r, t) + Q(r, t) (8)

where the temperature T(r,t) is the temperature increase as a function of the coordinate r and the
time t, k(r,t) is the thermal conductivity (Wm−1·K−1), ρ is the density(kg·m−3), Cp is the heat capacity
(J·kg−1·K−1). To reach the target of destroying such a cancer cell with an internalized AuNS, it is
enough to irradiate the cell with power laser of tens W/cm2 for 5–10 min [70]. The local heat intensity
Q(r,t), generated by the light dissipation in AuNSs, can be expressed at the surface by

Q(r, t) =
ω

8π
|E(r = R)|2 · Imε(r, ω) (9)

where R is the AuNS radius, and ε(r,ω) is the AuNS dielectric function. The thermal heat and its
propagation can be defined by two figures of merit [71]: the first one defined as the localization
length of temperature; the second one defined as the ability of a plasmonic structure to create large
temperature gradients. The first figure of merit can be quantified by the ratio ∆Lheating/Lheater, where
Lheater is the size of a plasmonic heater, i.e., NP or NS, etc. The length ∆Lheating is the dimension of the
heated area where the local temperature increase is above the threshold value ∆Tmax/2. The second
figure of merit can be defined as |dT(r)/dl|max/Iflux, where |dT(r)/dl|max denotes the maximum
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temperature gradient and Iflux is the light flux. These two figures of merit are independent of the
incident light power. In terms of absorption efficiencies, the total absorbed energy can be calculated
considering Qabs·∆tpulse, where the total illumination power density is defined as Ptot = Iflux·∆tpulse,
so that the efficiency between the temperature of the system and the correspondent absorption induced
by the NPs is defined as ∆Tmax/Qabs.

4. Detection and Tracking Techniques of Intracellular AuNPs

There are several approaches to the detection of individual metal NPS. They are based on far-field
or near-field optical properties. For example, they can exploit the generation of new wavelength
by the particle under investigation, either in a linear photoluminescence- or in nonlinear-processes.
Alternatively, detection can be done at the same illuminating wavelength or detecting directly the
scattered light or using the interference of the scattered wave with a reference wave. In this last case,
the advantage of the interference signal is that the scattered intensity varies with the sixties power.
Improving the sensitivity of both absorption-based and scattering-based methods making possible
also to give access to both the amplitude and the phase of the scattered wave. Such methods must
be modified and improved for the detection of internalized AuNPs, as well as any other metal types
of NPs, inside cells. Detection and tracking of their intracellular activity require the combination
complementary combination of different techniques. Such experimental framework should be able to
include quantitative assessment of uptake, NP intracellular localization, biochemical environment and
the role of NP. Some of such techniques have been briefly presented in the Introduction. In this section,
we wish to focus the attention specifically on the three techniques, DFM, SERS and aperture SNOM.

DFM in several different configurations has been largely used to detect AuNPs inside cells. DFM
denotes microscopy methods (both in optical and electron microscopy), where unscattered beam
from an image in excluded. This produces a dark background with bright objects on it. As a result,
this technique is able to enhance the contrast in unstained samples. Reflection-mode DFM imaging
allowed Curry et al. to study the effects on epidermal growth factor receptor (EGFR) of 60-nm AuNPs
conjugated to anti EGFR [72]. Making use of analogous reflection-mode DFM, Kumar et al. were able
to follow 20-nm AuNPs functionalized with an anti-actin antibody for labelling actin in live cells [73],
while single 80-nm AuNP imaging and tracking have been reported by Louit et al. [74]. Patskovsky
et al. have developed a new hyperspectral DFM imaging system using a scanned supercontinuum
light source to track 3D density of polyethylene glycol (PEG) functionalized 100-nm diameter AuNPs
targeting CD44+ cancer cells [75]. In an analogous way, Wang et al. studied endocytosis of AuNPs
sizes (45 nm, 70 nm and 110 nm) in various cells (the human cancer cell lines, CL1-0 and HeLa) [76].
In this study, the DFM exploits the spectroscopic difference between the AuNPs and cell organelles,
and a color CCD with a post-processing tool can identify the positions of AuNPs, Figure 2. They
demonstrated the localization of the AuNPs, if into the cytoplasm or adhering to the membrane, the
size dependence of uptake processes (optimal uptake mechanisms for 45 nm). In turn, since the most
AuNPs remain bound to the cell membrane, they can be used to reconstruct the 3D cellular morphology.

Plasmonic properties of AuNPs are the physical base for SERS-active probe for intracellular
applications. One basic advantage of SERS over other imaging techniques such as fluorescence,
UV-vis-NIR or Nuclear Magnetic Resonance, is the enhancement by several orders of extremely weak
Raman scattering signal in proximity of AuNPs [77]. The SERS spectrum provides a complete structural
characterization of target molecule functionalizing AuNPs being SERS a vibrational fingerprint, which
characterizes the molecular chemical bonds and symmetry without the need for staining or expressing
fluorogenic proteins [78,79]. Owing to its ultrahigh sensitivity, non-destructive character, specificity
and due to the possibility to perform Raman measurements under infrared excitation SERS is readily
applicable in vivo with negligible background signal [80]. By using the SERS technique in combination
with near-infrared absorbing molecules in resonance with the excitation laser line, one can develop
promising ultrasensitive contrast agents for in vivo cancer imaging. For this purpose, Huang et al. have
reported integrin-targeted 60-nm AuNPs and gold nanostars functionalized with IR792 perchlorate
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and IR780 perchlorate, respectively, in a femtomolar range [81]. Nagy-Simon et al. recently provided
proof-of-concept resonant SERS imaging on C-26 cell incubated with AuNP-Plu-IR780 to demonstrate
the in vitro applicability of the designed NPs as SERS nanotags under near infrared excitation using
785 nm laser line [79]. In Figure 3, we report the most prominent results obtained by Nagy-Simon
et al., the images denoted by Figure 3A represents, respectively, a C-26 cell, the correspondent SERS
image and overlap of the previous two images. Figure 3B, instead, denotes the SERS spectrum of the
AuNP-Plu(ronic)-IR780. It is relevant in Figure 3B that most of the vibrational bands collected from the
cell in the presence of NPs corresponds to those present in the resonant SERS spectrum of colloidal
AuNP-Plu-IR780. In addition, the intracellular NPs do not present the considerable fluorescence
background (red line). This is the inherent advantage of SERS hot spots generated by clustering NPs
because of their intracellular aggregation.
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Figure 3. (A) bright field image of a C-26 cell incubated with AuNP-Plu-IR780 (a), correspondent SERS
map (b) and the overlapping (c) of the two previous images; (B) SERS spectra of colloidal solution of
AuNP-Plu-IR780 (labelled as 1), and extracted spectra from regions marked blue arrow (2) in image
(A(c)) and from nucleus as marked with the green arrow (3) in (A(c)). (Reproduced from [79] with
permission).



Materials 2018, 11, 882 8 of 14

In addition, SERS technique will play a key role in the development of theranostic platforms.
SERS is able to perform live cell imaging in combination with DFM and DIC microscopies and to try
the effects in PTT applications of designed multimodal water-soluble and stable nanosystems based
on bioconjugated AuNPs [82].

However, there is another technique, which gained great advantage by plasmonic properties of
AuNPs and near infrared wavelengths. This technique is the aperture SNOM. Inside the scanning
probe microscopy family [83], SNOM represents the microscopy technique operating below the far-field
diffraction limit by exploiting the properties of evanescent waves [84]. In a SNOM, the excitation
laser light is focused through an aperture with a diameter (50–100 nm) smaller than the excitation
wavelength. When the sample is scanned at a small distance (10–20 nm), the optical resolution of
transmitted or reflected light is limited only by the diameters of the aperture, reaching to lateral
resolution of 20 nm and vertical resolution of 2–5 nm [85]. In order to improve resolution, apertureless
SNOM (aSNOM) has been designed (in some cases known as scattering SNOM) [86,87]. aSNOM is
based on a dynamic mode operating AFM coupled to sophisticated interferometric optical detection
system. A continuous wave laser beam is focused onto the apex of the metallic or dielectric AFM tip.
The backscattered light is collected and interfered with a reference beam, which is slightly shifted with
respect to the scattered beam. The interfering signals are detected by a fast avalanche photodiode.
The resolution is 10 nm or better. An application of the SNOM to detect intracellular AuNSs (BaTiO3
core ~100 nm +Au shell ~40 nm) has been developed by D’Acunto et al. [38–41]. In this study, the
SNOM were used in air in collection mode with an oblique angle (θ = 45◦) illuminating laser light
of 780 nm, Figure 4. This wavelength enabled the near-infrared transparency window allowing
penetration depth of cm [66].
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Figure 4. (A) Schematic sketch of a SNOM in collection mode; (B) detail of the SNOM probe;
(C) Schematic sketch representing the physical description of dark-spot correspondent to AuNSs.
The aperture SNOM is operating in collection mode, the laser light wavelength is 780 nm in order
to exploit the infrared transparency window. During the scanning, when the SNOM probe is
positioned in correspondence of the AuNS, the optical signal is strongly reduced. (Reprinted from [41]
with permission).

The AuNSs employed in this experiment have an absorption efficiency greater than scattering
efficiency. We therefore expect that when the instrument is measuring the cell topography, and in the
same time collecting the light coming from the cell, if in the collection volume there are some AuNSs,
in correspondence of which the optical map should have dark spots. Which is punctually happened,
see Figure 5.

In order to evidence the localization of the dark spots (correspondent to AuNSs) on the topography
of the cell, we overlap the topography and the correspondent optical map, Figure 6.

The volume of collection of light can be considered as a cylinder with a base area correspondent
approximately to the aperture apex of the SNOM and a height of approximately less than 200 nm
inside the cell [41]. This is the depth dimension of possible identification and localization of the AuNSs
when an aperture SNOM is used.
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Another potential method for cellular uptake and trafficking includes Super Resolution
imaging [88–90]. Stochastic optical reconstruction microscopy (STORM) has been recently applied
to the identification of polystyrene NPs [91], but its extension to AuNPs should be easy and
highly recommended for improving the knowledge of cellular uptake mechanisms. STORM-based
methodology, in fact, is able to resolve ~20 nm diameter NPs, probing their interactions with cellular
structures by co-localization and gaining quantitative information on size, number and positioning of
the internalized NPs.
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Figure 5. (A) Topography (20 µm × 20 µm × 1.5 µm) of an h9c2 mouse cell; (B) corresponding
extinction map collected on the same area; (C) profile to two absorbing optical signals due to the
presence of two AuNPs with an approximate transverse diameter of 150 nm, the vertical scale is in
arbitrary units. The optical map was collected using a 780 nm wavelength laser light in the SNOM
operating in collection mode. (Reprinted from [40] with permission).
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(9 µm × 9 µm) (B) of the optical map with the topography. The localization inside the cell of the
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AuNPs represent only one of the myriad nanomedicine tools in PTT. Other materials with different
chemical and physical properties are currently employed in drug-related cancer treatments [92].
Liposomes were probably the first class of therapeutic NPs to receive clinical approval, and still
today represent the basic nanoplatform in clinical-stage therapeutics. Two basic advantages of
liposomes, or lipid-based NPs, are the easiness of encapsulating drug and the high tissue and cellular
biocompatibility, being the cellular membrane lipid-based composition. Other materials are polymeric
micelles and polymeric NPs, two new classes of multifunctional cancer therapeutic agent. All such
materials have in common to AuNPs the theranostics ability. Already today and more and more in
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the immediate future, to all the materials used in cancer treatments new smart functionalities will be
added in order to make them more effective in their interaction with both sick and healthy cells [93,94].

5. Concluding Remarks and Future Challenges

The use of nanoparticles in medicine is a key application requiring many multidisciplinary
efforts ranging from nanotechnology to material chemistry and biophysics. Interactions between
nanoparticles and cells are one of the major framework of nanomedicine. However, this key application
is still challenging, and nanomedicine fails to be translated to the clinic. The crucial factor, among
others, limiting the rational design of effective nanomedicine is the inadequate understanding of
nanoparticle-cell interactions and consequent cellular uptake mechanisms.

Cellular uptake mechanisms play a key role in PTT. PTT is a reduced toxicity and non-invasive
treatment for the therapy for many diseases, in a special manner, for local cancer treatment. It is based
on the heat induced by a laser illumination able to activate the heat production by internalized NPs in
cancer cells.

In this review, we have described (i) endocytosis and cellular uptake mechanisms of bared or
functionalized AuNPs; (ii) the optical and photothermal properties of AuNPs describing the plasmonic
properties of such NPs, in turn; (iii) some experimental techniques for detection and tracking of
intracellular AuNPs.

AuNPs represent a fundamental opportunity in nanomedicine. Next challenges require both
improved translational application to clinic PTT and/or super-resolution methods to best detection and
tracking of intracellular AuNP probes in single cells or subcellular organs and components, eventually
combined with nanospectroscopy techniques.
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