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Abstract: In this study, a previously known high-affinity silica binding protein (SB) was genetically
engineered to fuse with an integrin-binding peptide (RGD) to create a recombinant protein (SB-RGD).
SB-RGD was successfully expressed in Escherichia coli and purified using silica beads through
a simple and fast centrifugation method. A further functionality assay showed that SB-RGD
bound to the silica surface with an extremely high affinity that required 2 M MgCl2 for elution.
Through a single-step incubation, the purified SB-RGD proteins were noncovalently coated onto an
electrospun silica nanofiber (SNF) substrate to fabricate the SNF-SB-RGD substrate. SNF-SB-RGD was
characterized by a combination of scanning electron microscopy (SEM), Fourier transform infrared
(FTIR) spectroscopy, and immunostaining fluorescence microscopy. As PC12 cells were seeded
onto the SNF-SB-RGD surface, significantly higher cell viability and longer neurite extensions were
observed when compared to those on the control surfaces. These results indicated that SB-RGD could
serve as a noncovalent coating biologic to support and promote neuron growth and differentiation
on silica-based substrates for neuronal tissue engineering. It also provides proof of concept for
the possibility to genetically engineer protein-based signaling molecules to noncovalently modify
silica-based substrates as bioinspired material.

Keywords: electrospun silica nanofibers; silica binding protein; RGD; neuronal tissue engineering

1. Introduction

Nanoscale biomaterials is a rapidly expanding field of research that has seen great application
success in areas such as cancer therapy [1,2], gene delivery [3,4], antimicrobial resistance [5,6],
and tissue engineering [7,8]. The neuronal tissue engineering field has especially focused on producing
three-dimensional, bioactive, and biodegradable nanoscaffolds that mimic the extracellular matrix
(ECM) [9] as a promising approach for nerve repair and nervous system regeneration [10,11]. Amongst
the more popular studied scaffolds, certain limiting factors that hinder their applications have
been reported. For example, natural materials, such as collagen and laminin, could experience
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inconsistency from batch to batch, while the production of synthetic organic polymers, such as
polycaprolactone and poly(lactic-co-glycolic acid), would require the use of toxic organic solvents for
dissolution [12]. Therefore, more recent explorations have identified electrospun silica nanofibers as a
three-dimensional, nontoxic, biocompatible, bioactive, and biodegradable inorganic-based alternative
for neuronal tissue engineering [13–15].

In studying neuronal tissue engineering, an abundance of literature has highlighted the
importance of providing surface contact guidance cues in the form of ECM proteins for developing
neurons [16,17]. Within the ECM proteins, such as fibronectin, collagen, vitronectin, and laminin [18,19],
an Arg-Gly-Asp (RGD) motif was found to improve cell adhesion to material surfaces [20] and is widely
used for tissue engineering to promote cell growth [20–22]. However, the procedures for immobilizing
RGD-containing peptides onto material surfaces usually demand tedious cross-linking processes with
limited yield [23,24]. Moreover, the chemical modification processes in non-aqueous solution could
reduce the biological function of the adhesion molecules [25,26]. Therefore, having an immobilization
method that is non-damaging and effective for the binding of an RGD-containing protein onto material
surfaces is desired. Some studies have found that genetically engineered fusion proteins, such as
RGD-CBD (cellulose binding domain) [20], RGD-SBM (starch binding module) [27], and RGD-PhaP
(polyhydroxyalkanoate granule binding protein) [21,28], could easily be used to surface modify their
counterpart materials with high affinity. In addition, an RGD-phage coating has also been shown to be
an alternative noncovalent surface modification for material surfaces [29]. However, so far, no study
has applied this idea of utilizing an efficient, noncovalent surface modification for grafting RGD onto
electrospun silica nanofibers (SNFs) in neuronal tissue engineering.

We have previously demonstrated a multi-step chemical reaction process to modify the
surface of a silica nanofiber for assisting cell attachment and enhancing neuronal cell growth and
differentiation [30]. To explore the possibility of grafting RGD onto silica nanofibers without
introducing any cross-linking agents, we identified a published silica-binding protein (SB) [31]
that could be used for one-step anchoring of RGD onto silica surfaces. This present work shows
the successful design and engineering of a novel fusion protein SB-RGD, which contains the SB
protein for mediating silica surface binding of the SNF substrate and the RGD motif for allowing
integrin-receptor-dependent cell adherence. In addition, a simple and rapid purification method
leveraging the silica binding ability of the fusion protein is described. The purified SB-RGD was
functionally shown to bind to the SNF surfaces with high affinity. The heat-denatured SB-RGD
was found to have limited binding ability to the SNF surface, affirming that the purified SB-RGD
retained proper folding to assist noncovalent binding to the SNF surface. Last, the as-prepared RGD
surface-functionalized SNF (SNF-SB-RGD) was proved to enhance the adhesion of PC12 cells for its
survival and sustained neurite outgrowth for its differentiation. We believe that this work presents
a new surface modification approach that requires only single-step incubation and could easily be
genetically engineered to present various other protein-based signaling molecules for a more versatile
neuronal tissue engineering scaffold.

2. Materials and Methods

2.1. Materials

Tetraethyl orthosilicate (TEOS), the silica precursor, was purchased from Acros Organics (Thermo
Fisher Scientific, Waltham, MA, USA). Polyvinyl pyrrolidone (PVP, Mw = 1,300,000 g/mol) and
phosphate buffered saline (PBS) were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

2.2. Preparation and Characterization of SNF Substrates

The SNF was prepared on a coverslip by the electrospinning (ES) method reported
previously [14,15]. A mixture of 1.9 g of TEOS, 0.04 g of formic acid, 3.15 g of ethanol, and 2.0 g
of water was mixed with 0.9 g of PVP then continuously stirred for 1 h to form the ES solution.
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The silica/PVP composite nanofibers were firstly prepared from the ES solution by the ES technique at
a flow rate of 0.9 mL/h using a 24-G plastic syringe with a stainless steel needle. The voltage applied
was 16 kV, and the distance from a 12 × 12 mm2 coverslip placed on a flat aluminum plate collector
was 10 cm. The silica/PVP composite nanofibers collected on the coverslip were finally calcined for
3 h at 450 ◦C to remove the PVP and the solvent residues to form SNF.

The morphologies of all the as-prepared silica nanofibers were studied with an S-3500N field
emission SEM (Hitachi, Tokyo, Japan). The diameters of the silica nanofibers prepared were measured
from the SEM images with Image J analysis software (50 fibers for each sample, n = 50). FTIR
(BIORad-FTS-7, Perkin Elmer, Waltham, MA, USA) spectra of the SNF and SNF-SB-RGD substrates
were also measured over 4000–400 cm−1 at a resolution of 2 cm−1 to identify the functional groups of
the silica nanofibers.

2.3. Plasmid Construction and the Expression and Purification of the SB-RGD Protein

For the construction of the plasmid pET-SB-RGD, we first digested the pET21b plasmid
(Novagen, Madison, WI, USA) with NheI and XhoI. The silica binding protein SB (ribosomal
protein L2; rplB) sequence (1082440-1083261 nt, GenBank Accession No. NZ_CP027060), linker
(5′-GGAGGTGGAGGTTCCTCATCCTCATCC-3′), and RGD sequence (5′-GGACGGGGCGATTCC-3′)
with the NheI restriction site at the 5′ end and the XhoI restriction site at the 3′ end was chemically
synthesized by Genomics, New Taipei City, Taiwan. The SB-RGD sequence was then subcloned into
the NheI and XhoI sites of pET21b to obtain the plasmid pET-SB-RGD.

Recombinant Escherichia coli Rosetta (DE3) pLysS (Novagen) was used as the host strain to produce
the fusion protein SB-RGD. The recombinants were cultivated overnight in 200 mL Luria Bertani
medium with 100 µg/mL ampicillin in the presence of 0.1 mM isopropyl b-D-thiogalactopyranoside
(IPTG) (Sigma-Aldrich). The cultivated cells were centrifuged at 8000g for 8 min and lysed using
lysozyme (Thermo Fisher Scientific) with further centrifugation at 15,000× g for 20 min to remove cell
debris. The recovered whole-cell lysate was incubated with silica particles (approximately 20 mg) for
30 min at room temperature. The particles were centrifuged at 15,000× g for 10 min and washed twice
with 5 mL of wash buffer of 25 mM Tris buffer containing 0.5 M NaCl. Next, the particles were further
suspended in 5 mL of 25 mM Tris buffer containing 2 M MgCl2 for elution. After a 20-min incubation,
the suspension was centrifuged at 15,000× g for 10 min. The obtained supernatant containing the
purified SB-RGD proteins was collected and dialyzed against 25 mM Tris buffer containing 0.5% Tween
20 to remove the MgCl2. The protein concentration of samples was determined by the protein assay kit
(Bio-Rad Laboratories Inc., Hercules, CA, USA). About 15 µg of lysate from each sample was loaded
and separated by SDS-PAGE on 12.5% polyacrylamide gels under reducing conditions.

2.4. Dissociation Testing of SB-RGD from Silica Particles

The whole-cell lysate obtained as previously described in Section 2.3 was incubated with silica
particles (approximately 20 mg) for 30 mins. Then, the SB-RGD-bound silica particles were separated
out through centrifugation at 15,000× g for 10 min and then incubated in the following solutions
at room temperature for 30 mins: (1) 25 mM Tris buffer containing 2M NaCl; and (2) 25 mM Tris
buffer containing 2 M MgCl2. After incubation, the silica particles were collected by centrifugation at
15,000× g for 10 min and washed three times with 5 mL of 25 mM Tris buffer. Finally, each sample was
centrifuged at 15,000× g for 10 min, boiled at 95 ◦C for 15 min, and analyzed by SDS–PAGE.

2.5. Preparation of SNF-SB-RGD and the SNF Coated with Heat-Denatured SB-RGD (SNF-SB-RGD∆)

The various electrospun silica nanofiber substrates, SNF, SNF-SB-RGD, and SNF-SB-RGD∆,
utilized in this work are illustrated in Figure 1. To prepare SNF-SB-RGD, 0.01 mg/mL purified SB-RGD
was incubated with SNF for 1 h then washed three times with PBS to remove any unbound proteins.
For the fabrication of SNF-SB-RGD∆, purified SB-RGD was first heated at 95 ◦C for 15 min to obtain
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SB-RGD∆, then 0.01 mg/mL SB-RGD∆ was incubated with SNF for 1 h followed by three washes
with PBS.
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Figure 1. Schematic of the various prepared substrates. SNF: the uncoated mesoporous electrospun
silica nanofiber on a coverslip. SNF-SB-RGD: the SNF substrate coated with purified native
SB-RGD fusion protein that strongly bound to SNF surface through ionic bonding. SNF-SB-RGD∆:
SNF substrate coated with SB-RGD∆, which yielded limited binding after PBS washing due to
denatured conformation.

2.6. Examining the Immobilization of Fusion Protein on SNF-SB-RGD and SNF-SB-RGD∆

To visually examine the immobilization of fusion protein to the silica material, the substrates
were first blocked using 10% goat serum (Thermo Fisher Scientific). Then, the samples were incubated
with mouse anti-his tag primary antibody (diluted at 1:500, Merck & Co. Inc., Kenilworth, NJ, USA).
After washing with PBS, the samples were immersed with DyLight 488 conjugated donkey anti-mouse
(1:250 dilution; Jackson ImmunoResearch, West Grove, PA, USA) antibody for 1.5 h at 37 ◦C and washed
again with PBS before imaging. Ten images at different positions were acquired under fluorescence
microscopy (Nikon, Shinagawa, Tokyo, Japan). For each sample, 10 pairs of regions of interest (ROI) on
each fluorescence image, including those from fibers and those from the corresponding backgrounds,
were randomly selected utilizing the ImageJ software. The average signal intensity of each region
was measured by tracing 50 pixels either on the background or along the fiber. The ratio was then
calculated with the average signal intensity of the ROI obtained from the fiber over that from the
corresponding background.

2.7. In Vitro Culture of PC12 Cells

Rat PC12 cells (American Type Culture Collection, Manassas, VA, USA), previously used to
explore scaffold for nerve regeneration [15,32], were cultured in high-glucose DMEM supplemented
with 5% heat-inactivated fetal bovine serum, 10% horse serum, and 1% penicillin/streptomycin at
37 ◦C in a humid atmosphere with 5% CO2 [33]. For seeding of PC12 cells onto the various silica
nanofiber substrates, the live cells were counted with a trypan blue exclusion assay in a hemocytometer.
Then, PC12 cells with a density of 6.9 × 103 cells/ cm2 were seeded onto the various silica nanofiber
substrates sterilized overnight under UV radiation. For neuronal differentiation, the cells after seeding
were cultured in DMEM supplemented with 1% heat-inactivated fetal bovine serum, 2% horse serum,
and 1% penicillin/streptomycin supplemented with 100 ng/mL nerve growth factor (NGF) (Corning,
NY, USA). For cell maintenance, the medium was replenished every 3 days.
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2.8. Cell Viability Assay

PC12 cell viability was determined using a Live/Dead assay kit (Life Technologies, Waltham,
MA, USA). The PC12 cells were first seeded on the as-prepared SNF substrates then assayed after
72 h of cultivation [15,34]. Calcein AM and Ethidium Homodimer-1 dyes diluted in PBS to a final
concentration of 1 µM were added to the cultivated cells for 10 min. Then, 10 images at different
positions (n = 10) were taken for each sample utilizing the fluorescence microscope (Nikon). The cells
stained with Calcein AM, a cell-permeant dye, were counted as live cells, whereas those stained with
EthD-1, a membrane-impermeable DNA-binding dye, were counted as dead cells. Based on the ratio
of the number of live cells to that of the total cells, the percentage of viable cells for each sample
was calculated.

2.9. Immunocytochemistry Staining

The fluorescence immunocytochemistry conducted on the PC12 cells was similar to the procedure
previously reported [35,36]. Briefly, the cells were fixed with 4% paraformaldehyde (PFA, Merck
& Co. Inc.) for 30 min, then blocked with 10% goat serum and 0.3% Triton X-100 in PBS for 2 h.
After overnight incubation at 4 ◦C with rabbit anti-microtubule-associated protein 2 (MAP2) antibody
(1:500 dilution; Merck & Co. Inc.), the cells were washed and further incubated with secondary
antibodies, DyLight 488 conjugated donkey anti-rabbit (1:250 dilution; Jackson ImmunoResearch)
antibody, for 1.5 h at 37 ◦C. Twenty-three fluorescence images from various fields were acquired using
fluorescence microscopy (Nikon) for each sample using the 20× objective lens. The neurite lengths
indicated by the MAP2 staining were analyzed with the Neuron J software (National Institutes of
Health, Bethesda, MD, USA) [37] plugin of Image J [38].

2.10. Cell Morphology Study

The morphologies of the PC12 cells on the SNF substrates were examined with the SEM. On the
5th day after seeding, the substrates with cells were collected, then fixed with formaldehyde and
sequentially dehydrated via an increasing concentration gradient of alcohol. Finally, the substrates
were dried at room temperature and coated with gold for observation by the SEM.

2.11. Statistical Analysis

All of the data are presented as means ± standard error of mean. The difference was determined
by one-way analysis of variance (ANOVA) or the student’s t-test. The statistical significance was taken
at p < 0.05.

3. Results and Discussion

3.1. Genetic Engineering and Expression of the Recombinant SB-RGD Fusion Protein.

As seen in Figure 2A, a recombinant plasmid (pET-SB-RGD) was genetically engineered to have
the SB protein (depicted as a blue box) fused in-frame through a linker sequence (depicted as a white
box) to the RGD motif (depicted as a green box) followed by six histidines (depicted as a gray box)
for immune-detection that ended with a stop codon. The sequencing-verified recombinant plasmid
was then transformed into a host strain Escherichia coli Rosetta (DE3) pLysS for expression. Successful
production of the SB-RGD fusion proteins was achieved through IPTG induction. As seen in the
SDS-PAGE analysis presented in Figure 2B, lane 2, after IPTG induction, the whole-cell lysate yielded
a prominent SB-RGD recombinant protein band at 35 kD, which was not present in the preinduction
sample lane (Figure 2B, lane 1).
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Figure 2. (A) Schematic representation of the cloning site for genetic engineering of the fusion protein
SB-RGD. (B) The SDS-PAGE result of the expressed and purified fusion proteins. Lane 1: pre-induced
whole-cell lysate (negative control); lane 2: soluble fractions (crude proteins) of induced SB-RGD; lane
3: the purified SB-RGD protein. (C) The SDS-PAGE result of the SB-RGD dissociation assay. Lane 1:
the induced whole-cell lysate; lane 2: the silica particles immersed in the induced whole-cell lysate,
washed by incubation with 25 mM Tris buffer (pH 8.0) containing 2 M NaCl for 30 min, and finally
boiled at 95 ◦C for 15 min with SDS sample buffer before being loaded into SDS-PAGE for analysis.
Lane 3: sample treated exactly the same as lane 2 except that the wash was conducted with 25 mM Tris
buffer (pH 8.0) containing 2 M MgCl2.

3.2. Purification and Functional Testing of SB-RGD

To functionally test the silica binding ability of the fusion protein, as well as leveraging the silica
binding ability for a simple purification method, we incubated the induced cell lysate with silica
particles. After incubation was done to allow for binding, the silica particles were washed with either
25 mM Tris buffer with 2 M NaCl, or 25 mM Tris buffer with 2 M MgCl2 to test the binding affinity.
The washed silica particles were then cooked with SDS sample buffer and loaded into SDS-PAGE
for protein analysis. Figure 2C, lane 1, shows the whole-cell lysate that was used to coat the silica
particles. Figure 2C, lane 2, demonstrates that, after a high-salt wash with 2 M NaCl, most proteins
were gone while the SB-RGD protein stayed bound to the silica particle; this is evident in the presence
of the single SB-RGD band in lane 2. This result functionally shows that the SB-RGD protein can bind
tightly through high affinity to the silica surface as predicted. Further testing was done to investigate
the condition for dissociating the SB-RGD from the silica particle. The result shows that divalent
cations Mg2+ at the concentration of 2 M are effective at releasing the SB-RGD protein, which is evident
through the lack of an SB-RGD protein band in Figure 2C, lane 3. These results of SB silica binding
behavior are consistent with the previous study [39] and confirm the strong silica binding ability of the
expressed SB-RGD protein.

After defining the dissociation condition of the SB-RGD protein from the silica particles, we were
able to establish a simple purification method that does not require conventional chromatography
but only simple centrifugation for rapid separation. Specifically, we start by incubating the induced
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lysate with silica particles, followed by washes done through incubation and separation done through
centrifugation. The elution was performed by incubating the washed particles in 2 M MgCl2. Last,
after the silica particles were pelleted by centrifugation, the resulting eluent was dialyzed against
neutral 25 mM Tris buffer to obtain purified SB-RGD. As seen in Figure 2B, lane 3, when purified
SB-RGD was analyzed by SDS-PAGE, the result shows a clean band at approximately 35 KDa.

3.3. Preparation and Characterization of SNF-SB-RGD

To obtain the desired SNFs with noncovalently modified RGD motifs, SNF was first prepared
as previously published [30]. With the SB-RGD now proven to have a high binding affinity to the
silica surface, the production of SNF-SB-RGD was done simply through a one-step incubation of
0.01 mg/mL of the fusion protein with the SNF substrate for 1 h.

FTIR analysis proved the successful ionic bonding of SB-RGD onto the silica surfaces of
the SNF-SB-RGD substrate. As seen in Figure 3B, the characteristic band of peptide bonds
(1700–1600 cm−1 for the C=O stretching vibration of amide I and 3500–3300 cm−1 for the N-H
stretching vibration) [40,41] indicates that the peptide bond of SB-RGD was successfully introduced
onto the surface of ionically bonded silica nanofibers (SNF-SB-RGD). In addition, the characterization
done through SEM micrographs showed that the fiber diameters of the SNF (612 ± 57.0 nm) and
SNF-SB-RGD (616 ± 83.7 nm) substrates did not change significantly (Figure 4, n = 50, t-test, p > 0.1).
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3.4. Binding of SB-RGD to the SNF Substrate’s Surface

To verify that the noncovalent modification of SB-RGD to the silica surface of SNF requires a
functional structure moiety of SB, we compared the binding of SB-RGD versus SB-RGD∆ (SB-RGD
denatured through heating at 95 ◦C for 15 min) to SNF. Immunocytochemistry staining using an anti-his
tag antibody and imaged under fluorescent microscopy was employed to detect the amount of SB-RGD
bound to the SNF surfaces. As shown in Figure 5, under the same exposure time, the fluorescent
microscopy image of SNF (Figure 5A) reveals a baseline fluorescent signal, while SNF-SB-RGD
(Figure 5B) gave a much stronger and more visible signal, and SNF-SB-RGD∆ (Figure 5C) had a dim
and limited fluorescent signal. To quantify this data, we used the image analysis software Image J [38]
to obtain the average signal intensity from 10 randomly selected regions of 50 pixels on both the
electrospun fiber and the background. The ratio of the average intensities gathered from the fiber
over the background is reported on the y-axis of Figure 5D. This data confirms that the purified
SB-RGD retained its silica-binding functionality, as such binding ability can be disrupted through heat
denaturation. This also affirms that, to obtain a strong attachment through the ionic binding with SNF,
a proper folding of the coating biologic is required.
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immunostained with the anti-his tag antibody. (A) SNF, (B) SNF-SB-RGD, and (C) SNF-SB-RGD∆.
(D) Fluorescence analysis of the SNF substrates (n = 10). The scale bars represent 20 µm.

3.5. Effect of Fusion-Protein-Modified SNF on Cell Viability

Next, a LIVE/DEAD assay was performed to test the biocompatibility of the different substrates.
The result shows that although the cell viability on SNF-SB-RGD is lower than that on the conventional
control (as shown in Supplementary Materials Figure S1), it was significantly higher than the
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unmodified SNF (66.87 ± 12.06%) and the denatured fusion-protein-coated SNF, SNF-SB-RGD∆
(71.63 ± 7.47%)(n = 10 t-test, * p <0.05 and # p >0.05) (Figure 6). This result reaffirms that PC12 cells
could not easily adhere and grow onto the uncoated surface of SNF, which is consistent with a previous
report [42]. However, on the surface successfully modified by SB-RGD (SNF-SB-RGD), significant cell
adherence and therefore growth and viability were observed. When SB-RGD is denatured through
heating (SNF-SB-RGD∆), the surface binding ability is disrupted due to the change of conformation,
and the cell viability rate is similar to that of uncoated SNF (SNF). This result shows the biocompatibility
of the SNF-SB-RGD substrate and demonstrates the importance of a functional fusion protein with
proper folding for successful surface modification in sustaining cell growth.
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Figure 6. Cell viability comparison between PC12 cells cultured on SNF, SNF-SB-RGD,
and SNF-SB-RGD∆ substrates. Assessments were done using the LIVE/DEAD®stain with Ethidium
Homodimer-1 and Calcein AM 72 hours after seeding. n = 10 t-test, * p <0.05, # p > 0.05.

3.6. Effect of the Various Substrates on the Neurite Extension of PC12 Cells

To test the effect of SNF-SB-RGD on sustaining cell differentiation, NGF-induced PC12
cell differentiation on SNF, SNF-SB-RGD, and SNF-SB-RGD∆ substrates was assessed via
immunocytochemical staining against MAP2. Figure 7 shows fluorescent microscopy images of
PC12 neurite outgrowth on the three substrates. The images show that the SNF-SB-RGD substrate can
more effectively promote and sustain neurite extension throughout the 5 days observed (Figure 7B)
compared to SNF (Figure 7A) and SNF-SB-RGD∆ (Figure 7C). Neurite length was determined via
image analysis software using methods previously established [37]. As summarized in Figure 7D, cells
seeded on SNF exhibited minimal neurite extension (21.42 ± 9.35 µm) throughout the time observed,
while cells on ionically bonded SNF-SB-RGD exhibited longer neurite lengths (118.32 ± 36.39 µm).
Not surprisingly, cells on the SNF-SB-RGD∆ substrate failed to sustain and exhibited significant neurite
extension (52.67 ± 14.26 µm), indicating that SNF-SB-RGD can sustain neurite outgrowth longer than
SNF-SB-RGD∆ due to the binding ability of SB-RGD onto SNF.
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Figure 7. Fluorescence microscopy image of PC12 cell differentiation on (A) SNF, (B) SNF-SB-RGD,
and (C) SNF-SB-RGD∆ substrates at Day 5. Neurite (indicated with arrowheads) was immunostained
with MAP2 (red). (D) Bar graph comparing the neurite length of PC12 cells cultured on the as-prepared
SNF substrates. The scale bars represent 20 µm. (n = 23, t-test, * p < 0.05).

Last, to visualize the structure and morphology of the cell–scaffold interaction on our substrates,
SEM images were analyzed for closer inspection of the cell morphology on all substrates. As seen in
Figure 8, SNF-SB-RGD (Figure 8B) is able to support cell growth with enhanced neurite outgrowth
compared to uncoated SNF (Figure 8A) or SNF-SB-RGD∆ (Figure 8C). For the SNF-SB-RGD∆ with
limited surface-bound RGD peptides, cells appear round and less defined, implying limited adhesion
without differentiation. In contrast, for the SNF-SB-RGD which has a significant amount of RGD
peptides bound, cells grown on the surface appeared flatter (indicating cell adhesion) with pronounced
protrusions (indicating cell differentiation). These results showed that the SNF-SB-RGD substrate was
able to promote cell attachment to the substrate surface and encourage neurites interaction with the
three-dimensional structure as seen by it weaving in and out of the silica nanofibers.

The success of this work presents an alternative way to modify the surfaces of inorganic tissue
engineering scaffolds through recombinant proteins that have a high affinity for the silica substrate.
It also opens the possibility to create an array of silica-binding biologics that present various stimulating
signals (such as RGD, IKVAV, YIGSR, etc.) for cell growth or differentiation guidance on a silica
nanofiber scaffold for tissue engineering. Furthermore, such an array would also have the potential to
be used in silica nanoparticle modification for drug delivery related to cancer therapy [43].
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4. Conclusions

In this work, a recombinant fusion protein, SB-RGD, was genetically designed to allow for easy
purification as well as a simple one-step surface modification of SNF. This new convenient and effective
approach to a coating process avoids the complex and potentially damaging chemical reactions that
are typically employed for covalent modification. Our results showed that SB-RGD possessed a
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