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Abstract: The selective laser melting (SLM) process was used to fabricate an Alloy718 specimen.
The microstructure and creep properties were characterized in both the as-built and post-processed SLM
materials. Post-processing involved several heat treatments and a combination of hot isostatic pressing
(HIP) and solution treatment and aging (STA) to homogenize the microstructure. The experimental
results showed that the originally recommended heat treatment process, STA-980 ◦C, for cast and
wrought materials was not effective for SLM-processed specimens. Obvious grain growth structures
were obtained in the STA-1180 ◦C/1 h and STA-1180 ◦C/4 h specimens. However, the grain size was
uneven since heavy distortion or high-density dislocation formed during the SLM process, which would
be harmful for the mechanical properties of SLM-fabricated materials. The HIP+ direct aging process
was the most effective method among the post-processes to improve the creep behavior at 650 ◦C.
The creep rupture life of the HIP+ direct aging condition approached 800 h since the HIP process had
the benefit of being free of pores, thus preventing microcrack nucleation and the formation of a serrated
grain boundary.

Keywords: superalloy; Alloy718; selective laser melting; post-process; heat treatment;
hot isostatic pressing

1. Introduction

The IN718 superalloy is widely used in gas turbine and related aerospace applications due to its
excellent mechanical properties and structural stability at elevated temperatures [1–3]. However, IN718
components produced by conventional processing techniques are limited in terms of their potential
complexity and, thus, in their operating range and efficiency [4]. Additive manufacturing processes
such as selective laser melting (SLM) offer several advantages in comparison to conventional processing
techniques, such as a large degree of design flexibility and reductions in the number of production
steps, lead time, and investment cost [5–8]. Additive manufacturing fabrication has become an
increasingly attractive fabrication method due to the above-mentioned advantages over conventional
manufacturing methods. However, the strong thermal gradient, which is induced by the highly
localized heat input, the energy absorption, and the rapid solidification rate, results in promotion of
residual stress during the SLM process. Moreover, the fast solidification rate is also responsible for the
microsegregation of the chemical composition and the formation of nonequilibrium phases, which are
associated with the formation of dendritic growth [9,10]. As shown in [9], Amato et al. indicated that
post-treatments may promote the formation of secondary precipitates, namely, Laves and carbides,
which will affect the mechanical properties of the Inconel625 superalloy built up by SLM. On the other
hand, in our previous experience with the solution treatment and aging (STA) process (980 ◦C/1 h),
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which is the originally recommended treatment for conventional Alloy718, the creep behavior of
Alloy718 built up by SLM showed poor creep rupture life [11]. The row of interdendritic δ precipitates
with incoherent interfaces acted as a nucleation site for damage accumulation and led to a decrease
in creep life. Moreover, the existence of residual stress that was blocked by the subgrain boundary
prohibited dislocation motions and accelerated the rate of crack propagation. Therefore, a suitable
post-process is required to improve the microstructure and mechanical properties of SLM materials.
The normal post-processes recommended for additive-manufactured Ni-based superalloys are thermal
treatments and hot isostatic pressing (HIP) [12–14]. Due to the metastable property of the primary
strengthening phase (γ”) in Alloy718 and the ability for undesirable phases to form, determining
optimal post-processes for Alloy718 can be difficult [15,16]. The current work is seen as a logical
continuation of our previous work on the effect of different post-processes on the microstructure,
texture, and creep properties of Alloy718 superalloy built up by SLM. In this study, several heat
treatment (HT) processes and HIP were conducted to improve the microstructure and mechanical
properties of SLM materials. The objective of this study is to analyze the effects of post-processes on
the microstructure and creep properties of Alloy718 built up by the SLM process.

2. Materials and Experimental Procedure

The chemical composition of the Alloy718 powder is presented in Table 1. A set of SLM process
parameters for Alloy718 provided by GmbH Electro Optical Systems (EOS) (Robert-Stirling-Ring
1, 82152, Krailling, Bavaria, Germany) (laser power 400 W; scanning speed 7.0 m/s; hatch distance
80 µm; layer thickness 40 µm; beam diameter 100 µm; atmosphere pure 99.9999% argon) was utilized
to fabricate an Alloy718 cube with the dimensions 35 mm × 35 mm × 35 mm. A multidirectional
scanning strategy was used in which the laser scan direction was rotated by 66.5◦ for each layer to
reduce the residual stress. After the SLM process, test specimens were cut from the cube parallel to the
build direction using a spark cutter, and the dimensions of each were 19.6 mm × 2.8 mm × 3.0 mm.
Each specimen was then divided into several sets of samples for different post-processes. Table 2
summarizes the post-processes for the SLM samples. For Alloy718, solid solution and precipitation
strengthening are the major steps in the strengthening mechanisms. Based on the strengthening
mechanisms, the heat treatment scheme consisted of solution treatment and aging (STA) [17].
In this work, the as-built specimen was heated to various solution temperatures ranging from 980 to
1180 ◦C (Table 2), kept at each temperature for 1 h, and allowed to cool to room temperature by air
cooling. Subsequently, each solution-treated specimen was given a two-step aging treatment consisting
of 718 ◦C for 8 h, furnace cooling to 621 ◦C, holding at 621 ◦C for 10 h, and air cooling to room
temperature. These heat-treated samples were designated STA-980 ◦C, STA-1045 ◦C, STA-1065 ◦C,
STA-1120 ◦C, and STA-1180 ◦C (Table 2). On the other hand, some as-built samples were directly
subjected to an optimal condition for HIP at 1180 ◦C and 175 MPa for 4 h (abbreviated as as-HIPed) [18].
One more condition was studied in this research, namely, HIP+ direct aging, which involved
undergoing an aging treatment after the HIP process. After post-processes, the tensile creep test
was carried out at 650 ◦C and 550 MPa. The microstructures were observed using a scanning electron
microscope (HITACHI S-3700N; Hitachi, Tokyo, Japan) and a transmission electron microscope (TEM)
(JEOL JEM-3200FS; JEOL, Tokyo, Japan). Inverse pole figures (IPF) and Kernel Average Misorientations
(KAM) maps were calculated from the orientation measurements by electron backscatter diffraction
(EBSD) (2.2 SP2, Oxford Instruments, Oxfordshire, UK).

Table 1. Chemical composition of IN718 powder used in selective laser melting (SLM) (mass %).

Cr Nb Mo Ti Al Co Cu C Si, Mn P, S B O Fe Ni

19.6 5.05 2.85 1.10 0.46 0.03 0.05 0.04 0.04 0.0 0.002 0.019 Balance 52.59
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Table 2. Post-process variants.

Variant 1st Step: Solution Treatment 2nd Step: Age Hardening

STA-980 ◦C 980 ◦C/1 h/air cooling

720 ◦C/8 h/furnace cooling to 620 ◦C
+ 620 ◦C/10 h/air cooling

STA-1045 ◦C 1045 ◦C/1 h/air cooling
STA-1065 ◦C 1065 ◦C/1 h/air cooling
STA-1120 ◦C 1120 ◦C/1 h/air cooling

STA-1180 ◦C/1 h 1180 ◦C/1 h/air cooling
STA-1180 ◦C/4 h 1180 ◦C/4 h/furnace cooling

Variant 1st Step: HIP Process 2nd Step: Post-Treatment

As-HIPed HIP at 1180 ◦C/175 MPa/4 h N/A

HIP + direct aging HIP at 1180 ◦C/175 MPa/4 h 720 ◦C/8 h/furnace cooling to 620 ◦C
+ 620 ◦C/10 h/air cooling

Design of Post-Processes

The purpose of post-processes is to obtain an isotropic and homogenous microstructure to realize
high creep resistance and ductility. In this work, as-built specimens were heated to desired solution
temperatures in the range from 980 ◦C to 1180 ◦C (summarized in Table 2), kept at the temperatures for
1 h, and allowed to cool to room temperature by air cooling. After the solution treatment, the specimens
were subjected to a two-step aging treatment consisting of 718 ◦C for 8 h, furnace cooling to 621 ◦C,
holding at 621 ◦C for 10 h, and air cooling to room temperature (Table 2). The purpose of heat treatment
is to dissolve segregation particles and strengthening phases into the matrix and to re-precipitate the γ′

and γ” phases with the following double aging treatment. This treatment avoids the poor mechanical
characteristics of Alloy718 built up by SLM in our previous study [2]—i.e., the high dislocation density,
the subgrain boundary, and the row of undesired precipitates.

In this study, solutions were treated at the subsolvus (980 ◦C), solvus (1045 ◦C), and supersolvus
(1065 ◦C) temperature of the undesired δ phase to evaluate the effect of the δ phase on the creep
properties. On the other hand, treatment at 1100 ◦C rather than 980 ◦C has been suggested to achieve
sufficient delta dissolution for traditionally processed Alloy718 [18]. Moreover, solutions treated at
1100 ◦C have sufficient energy at the beginning of grain growth, which is associated with a release
of the stored strain energy through the annihilation of dislocations [19]. Further, coarsening of the
grain structure was observed with heating above 1100 ◦C in a laser-solid-formed superalloy. Therefore,
solution treatments at 1100 ◦C, 1120 ◦C, and 1180 ◦C were compared in this study. After the solution
treatment, the specimens were subjected to a two-step aging treatment as mentioned above.

After completion of the build, some as-built specimens were subjected to the HIP process,
which could eliminate the small amount of residual porosity and segregation to obtain a homogenous
microstructure [12,13]. An optimal HIP condition for traditionally processed Alloy718, consisting
of a soaking temperature of 1180 ◦C and a pressure of 175 MPa for 4 h, was used [17].
After the HIP process, the as-HIPed specimens were subjected to a double aging process. Moreover,
an STA-1180 ◦C/4 h specimen was solution-treated at 1180 ◦C and kept at the temperature for 4 h,
followed by furnace cooling to room temperature (an equivalent temperature and time to HIP process)
and subsequently subjected to double aging, then compared to the other variants in order to investigate
the effect of pressure in the HIP process on the mechanical properties of SLM materials in this study.
Comparisons of density between post-processed materials and cast and wrought alloys using the
Archimedes method are shown in Table 3.
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Table 3. Comparisons of density between post-processed materials and cast and wrought alloys.

Variant Density (g/cm3) Density Compared with Cast and Wrought Alloy (%)

cast and wrought alloy 8.23 100.00
as-built 8.20 99.62

STA-980 ◦C 8.19 99.46
STA-1045 ◦C 8.17 99.26
STA-1065 ◦C 8.20 99.59
STA-1120 ◦C 8.18 99.38

STA-1180 ◦C/1 h 8.20 99.61
STA-1180 ◦C/4 h 8.18 99.32

as-HIPed 8.19 99.45
HIP+ direct aging 8.24 100.11

3. Results

3.1. Microstructure Changes

3.1.1. The As-Built Microstructure

Figure 1 shows the microstructure of the as-built specimen. In the side view, molten pool
boundaries were observed in the typical arc-shaped configuration; they were 75 µm in thickness
and 100 µm in width and were induced by the Gaussian energy distribution of the laser [20].
In addition, the dendrite structure and interdendritic regions were decorated with a continuous
network of precipitates which were identified as Laves phase and carbides by TEM analysis
(Figure 2). The terminal stages of solidification consist of a primary L → γ stage followed
by L → γ + NbC and L → γ + Laves reactions due to the segregation of Nb (Figure 2) [21].
In addition, high-density dislocations originated from the production of thermal stress during the
melt-solidification processing (Figure 2c) [22].

The shaping process (rapid heating and cooling) induces thermal variations that cause
areas of the selective-laser-processed layers to expand and contract at different rates, generating
high-density dislocations.

The IPF map of the as-built specimen was constructed by means of EBSD as shown in Figure 3.
A mixture of columnar grains and equiaxed grains was observed from the side view (Figure 3).
The microstructure can be attributed to the heat flux during the SLM solidification process [4].
The equiaxed grains generally resulted from the heterogeneous nucleation on the partially melted
areas, such as the overlapped areas or the areas near the solidification front [23]. On the other hand,
the epitaxial growth led to the columnar grains.

Materials 2018, 11, x FOR PEER REVIEW  4 of 13 

 

STA-1120 °C 8.18 99.38 
STA-1180 °C/1 h 8.20 99.61 
STA-1180 °C/4 h 8.18 99.32 

as-HIPed 8.19 99.45 
HIP+ direct aging 8.24 100.11 

3. Results 

3.1. Microstructure Changes 

3.1.1. The As-Built Microstructure 

Figure 1 shows the microstructure of the as-built specimen. In the side view, molten pool 
boundaries were observed in the typical arc-shaped configuration; they were 75 μm in thickness and 
100 μm in width and were induced by the Gaussian energy distribution of the laser [20]. In addition, 
the dendrite structure and interdendritic regions were decorated with a continuous network of 
precipitates which were identified as Laves phase and carbides by TEM analysis (Figure 2). The terminal 
stages of solidification consist of a primary L → γ stage followed by L → γ + NbC and L → γ + Laves 
reactions due to the segregation of Nb (Figure 2) [21]. In addition, high-density dislocations originated 
from the production of thermal stress during the melt-solidification processing (Figure 2c) [22]. 

 
Figure 1. Secondary electron images of the as-built specimen: (a) lower magnification showing the 
molten pools structure and (b) higher magnification showing dendritic structures. The build direction 
with respect to the plane of the images is shown with an arrow. 

 
Figure 2. TEM images of as-built specimen showing (a) precipitates along the interdendritic region, 
(b) interdendritic precipitates, and (c) high-density dislocation. The build direction with respect to the 
plane of the images is shown with an arrow. 

The shaping process (rapid heating and cooling) induces thermal variations that cause areas of 
the selective-laser-processed layers to expand and contract at different rates, generating high-density 
dislocations. 

Figure 1. Secondary electron images of the as-built specimen: (a) lower magnification showing the
molten pools structure and (b) higher magnification showing dendritic structures. The build direction
with respect to the plane of the images is shown with an arrow.



Materials 2018, 11, 996 5 of 13

Materials 2018, 11, x FOR PEER REVIEW  4 of 13 

 

STA-1120 °C 8.18 99.38 
STA-1180 °C/1 h 8.20 99.61 
STA-1180 °C/4 h 8.18 99.32 

as-HIPed 8.19 99.45 
HIP+ direct aging 8.24 100.11 

3. Results 

3.1. Microstructure Changes 

3.1.1. The As-Built Microstructure 

Figure 1 shows the microstructure of the as-built specimen. In the side view, molten pool 
boundaries were observed in the typical arc-shaped configuration; they were 75 μm in thickness and 
100 μm in width and were induced by the Gaussian energy distribution of the laser [20]. In addition, 
the dendrite structure and interdendritic regions were decorated with a continuous network of 
precipitates which were identified as Laves phase and carbides by TEM analysis (Figure 2). The terminal 
stages of solidification consist of a primary L → γ stage followed by L → γ + NbC and L → γ + Laves 
reactions due to the segregation of Nb (Figure 2) [21]. In addition, high-density dislocations originated 
from the production of thermal stress during the melt-solidification processing (Figure 2c) [22]. 

 
Figure 1. Secondary electron images of the as-built specimen: (a) lower magnification showing the 
molten pools structure and (b) higher magnification showing dendritic structures. The build direction 
with respect to the plane of the images is shown with an arrow. 

 
Figure 2. TEM images of as-built specimen showing (a) precipitates along the interdendritic region, 
(b) interdendritic precipitates, and (c) high-density dislocation. The build direction with respect to the 
plane of the images is shown with an arrow. 

The shaping process (rapid heating and cooling) induces thermal variations that cause areas of 
the selective-laser-processed layers to expand and contract at different rates, generating high-density 
dislocations. 

Figure 2. TEM images of as-built specimen showing (a) precipitates along the interdendritic region,
(b) interdendritic precipitates, and (c) high-density dislocation. The build direction with respect to the
plane of the images is shown with an arrow.

Materials 2018, 11, x FOR PEER REVIEW  5 of 13 

 

The IPF map of the as-built specimen was constructed by means of EBSD as shown in Figure 3. 
A mixture of columnar grains and equiaxed grains was observed from the side view (Figure 3). The 
microstructure can be attributed to the heat flux during the SLM solidification process [4]. The 
equiaxed grains generally resulted from the heterogeneous nucleation on the partially melted areas, 
such as the overlapped areas or the areas near the solidification front [23]. On the other hand, the 
epitaxial growth led to the columnar grains. 

 
Figure 3. Inverse pole figure (IPF) maps of the as-built specimen were taken at (a) low magnification 
and (b) high magnification. The build direction with respect to the plane of the images is shown with 
an arrow. 

3.1.2. The Heat-Treated Microstructure 

After the solution treatment at 980 °C and the double aging heat treatment, there were numerous 
Nb-rich precipitates and δ phases along the grain boundaries and interdendritic regions (Figure 4b). 
The transformation of Laves into δ phases is a result of the solution heat treatment under the STA-
980 °C condition. Similar results have also been reported in [24]. The chemical compositions of Laves 
in the as-built specimen and that of the δ phase under the STA-980 °C condition are shown in Table 
4. This needle-shaped δ phase is generally undesirable due to its adverse effect on the mechanical 
properties. Further, the pinning effect of the δ phases resulted in similar grain morphology and grain 
size between the STA-980 °C specimen and the as-built specimen (Figure 5). This standard solution 
treatment at 980 °C is not effective for the homogenization of SLM-processed specimens. Figure 4c,d 
show the microstructures that went through the STA-1045 °C and STA-1065 °C conditions, 
respectively. Continuous carbides were distributed along the grain boundaries in the STA-1045 °C 
specimen, which showed spherical carbides along the grain boundaries. Moreover, the amount of the 
interdendritic δ phase decreased as the solution temperature increased. In addition, as shown in 
Figure 5c, a solution temperature of 1065 °C—above the temperature of the delta solvus (1045 °C)—
led to slight grain growth due to elimination of the δ phase, which inhibits recrystallization and grain 
growth control through the pinning of grain boundaries. 

Table 4. TEM-EDS results of the precipitate (atom %). 

Elements Al Ti Cr Fe Ni Nb Mo 
Laves (as-built) 2.20 1.09 12.74 11.28 45.42 22.06 5.21 

δ phase (STA-980 °C) 0.84 2.43 4.17 3.41 51.16 35.86 2.12 
matrix (STA-980 °C) 2.38 0.47 12.45 14.16 61.63 5.59 3.20 

Figure 3. Inverse pole figure (IPF) maps of the as-built specimen were taken at (a) low magnification
and (b) high magnification. The build direction with respect to the plane of the images is shown with
an arrow.

3.1.2. The Heat-Treated Microstructure

After the solution treatment at 980 ◦C and the double aging heat treatment, there were numerous
Nb-rich precipitates and δ phases along the grain boundaries and interdendritic regions (Figure 4b).
The transformation of Laves into δ phases is a result of the solution heat treatment under the
STA-980 ◦C condition. Similar results have also been reported in [24]. The chemical compositions
of Laves in the as-built specimen and that of the δ phase under the STA-980 ◦C condition are
shown in Table 4. This needle-shaped δ phase is generally undesirable due to its adverse effect
on the mechanical properties. Further, the pinning effect of the δ phases resulted in similar grain
morphology and grain size between the STA-980 ◦C specimen and the as-built specimen (Figure 5).
This standard solution treatment at 980 ◦C is not effective for the homogenization of SLM-processed
specimens. Figure 4c,d show the microstructures that went through the STA-1045 ◦C and STA-1065 ◦C
conditions, respectively. Continuous carbides were distributed along the grain boundaries in the
STA-1045 ◦C specimen, which showed spherical carbides along the grain boundaries. Moreover,
the amount of the interdendritic δ phase decreased as the solution temperature increased. In addition,
as shown in Figure 5c, a solution temperature of 1065 ◦C—above the temperature of the delta solvus
(1045 ◦C)—led to slight grain growth due to elimination of the δ phase, which inhibits recrystallization
and grain growth control through the pinning of grain boundaries.
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and (e) STA-1180 ◦C/1 h specimens were analyzed using the orientation measurements by EBSD.
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After STA-1120 ◦C and STA-1180 ◦C, most of the δ phase had been dissolved back into the
matrix, as shown in Figure 4e,f. However, the carbides consisting primarily of NbC became
coarse at temperatures above 1120 ◦C, since the material had sufficient time for carbides to grow.
Moreover, the driving force for carbide precipitation is the segregation of the carbide-forming
elements—e.g., carbon and niobium—as the alloy cooled [25]. It was also noted that grain
growth became active during the solution treatment at 1120 ◦C (Figure 5d). Kernel Average
Misorientations (KAM) maps show an obvious decrease in the dislocation density in the STA-1120 ◦C
specimen (Figure 6).

However, the grain size is uneven in the favored sites because the driving force for grain growth
can often be characterized as regions of heavy distortion or high dislocation density [26], like the
overlapping areas in SLM materials.



Materials 2018, 11, 996 7 of 13

Materials 2018, 11, x FOR PEER REVIEW  6 of 13 

 

 
Figure 4. Scanning electron microscope images of (a) as-built, (b) STA-980 °C, (c) STA-1045 °C, (d) 
STA-1065 °C, (e) STA-1120 °C, and (f) STA-1180 °C/1 h specimens. 

 
Figure 5. IPFs of (a) STA-980 °C, (b) STA-1045 °C, (c) STA-1065 °C, (d) STA-1120 °C, and (e) STA-
1180 °C/1 h specimens were analyzed using the orientation measurements by EBSD. The building 
directions are shown by arrows. 

After STA-1120 °C and STA-1180 °C, most of the δ phase had been dissolved back into the matrix, 
as shown in Figure 4e,f. However, the carbides consisting primarily of NbC became coarse at 
temperatures above 1120 °C, since the material had sufficient time for carbides to grow. Moreover, 
the driving force for carbide precipitation is the segregation of the carbide-forming elements—e.g. 
carbon and niobium—as the alloy cooled [25]. It was also noted that grain growth became active 
during the solution treatment at 1120 °C (Figure 5d). Kernel Average Misorientations (KAM) maps 
show an obvious decrease in the dislocation density in the STA-1120 °C specimen (Figure 6). 

 
Figure 6. KAM maps of (a) as-built, (b) STA-1045 °C, (c) STA-1065 °C, (d) STA-1120 °C, and (e) STA-
1180 °C/1 h specimens were analyzed using the orientation measurements by EBSD. A square 
scanning grid and neighbor shell (5 × 5) were used to calculate the misorientation. These KAM maps 
were run at a 0.5 μm step size using a 600 × 600 point grid. 

Figure 6. KAM maps of (a) as-built, (b) STA-1045 ◦C, (c) STA-1065 ◦C, (d) STA-1120 ◦C,
and (e) STA-1180 ◦C/1 h specimens were analyzed using the orientation measurements by EBSD. A
square scanning grid and neighbor shell (5 × 5) were used to calculate the misorientation. These KAM
maps were run at a 0.5 µm step size using a 600 × 600 point grid.

3.1.3. The HIPed Microstructure

An equiaxed-grains structure was observed after the HIP process (Figure 7b,c). The high HIP
temperature led to great grain growth and a more isotropic appearance with coarsening grains
compared to heat-treated SLM specimens. Figure 7 shows the IPF maps of specimens that went
through the HIP process and direct aging treatment (abbreviated HIP+ direct aging). As can be
observed, the subsequent heat treatment resulted in annealing twins. Moreover, the HIPed materials
exhibited a much greater volume fraction of coarser carbide due to the lower solidification rates during
the HIP process (Figure 8). The increase in carbide size is consistent with the increase in the time
available for growth at the lower cooling rates encountered in HIP processing. The carbides were
densely distributed along the grain boundary and also uniformly in the matrix in HIPed specimens,
while the STA-1180 ◦C/4 h specimen showed that carbides mostly precipitated along the grain
boundaries (Figure 8).
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3.2. Mechanical Properties of Heat-Treated SLM Specimens

To study the effect of heat treatment on the mechanical properties, a creep test was performed.
All of the heat-treated specimens were subjected to creep under 650 ◦C/550 MPa. The effects of heat
treatment on the creep properties of SLM specimens are shown in Figures 9 and 10. The minimum
creep rate was measured in the early portions of the test (see Figure 10c). As shown in Figure 9,
the as-built specimen exhibited a creep rupture life of 270 h, while the STA-980 ◦C specimen exhibited
only half the rupture life of the as-built specimen. The presence of successive needle-shaped δ

precipitates, in conjunction with the poor coherency, contributed to the inferior creep life and poor
elongation in STA specimens. The row of interdendritic δ precipitates with incoherent interfaces acted
as nucleation sites for damage accumulation and a decrease in creep life. The δ-phase embrittlement
would be the primary reason that the STA-980 ◦C specimen showed the poorest creep rupture life [11].
The STA-1045 ◦C condition produced a creep rupture life two times longer than that of the STA-980 ◦C
specimen. As the treatment used a higher solution temperature, the STA-1065 ◦C specimen showed
a much longer creep rupture life compared with the STA-980 ◦C specimen due to the better dissolution
of the interdendritic δ phase (Figure 4). Further analysis of the creep curve data revealed that the
STA-1045 ◦C and STA-1065 ◦C samples reached minimum creep strain rates of 1.59 × 10−7 s−1 and
1.90 × 10−7 s−1, respectively (Table 5); this indicates that both specimens had similar creep rates
during the early stages of creep, while the STA-1045 ◦C specimen showed a dominant accelerating
creep stage after 100 h (Figure 9). On the other hand, the STA-1065 ◦C specimen showed a rupture
life 1.5 times longer than that of the STA-1045 ◦C specimen due to the smaller amounts of Laves
phase and δ phase. The rupture surfaces showed a mixture of dendritic pattern and transgranular
pattern in the STA-980 ◦C, STA-1045 ◦C, and STA-1065 ◦C specimens, as shown in Figure 11a–c,
respectively. The presence of the interdendritic δ phase, in conjunction with the poor coherency in the
above specimens, brought about the poor creep life. Moreover, Alloy718 is precipitation-strengthened
primarily by γ” phases, which are based on a Ni3Nb composition. However, the formation of δ phase
requires a niobium concentration ranging from 10% to 30%, which depletes the matrix of the principal
alloy elements required for hardening [18]. As a result, the creep strength would decrease as the
formation of δ phase increased. Furthermore, the rupture mode would become transgranular when the
grain aspect ratio is large [27]. The rupture surface is therefore partly dendritic and partly transgranular.
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of the initial 165 h.

At conditions above STA-1120 ◦C, the specimen showed a decreased rupture life (Figure 9a),
while the STA-1180 ◦C/1 h specimen showed improved creep rupture life due to the grain growth.
Creep fracture at intermediate temperatures (T/Tm = 0.3 to 0.6, 380 ◦C–760 ◦C) is often initiated
with the nucleation and growth of cavities on grain boundaries. As a result, the STA-1180 ◦C/1 h
specimen would show better creep resistance than STA-1120 ◦C due to a lower contribution of grain
boundary sliding to the overall deformation. The rupture surfaces showed a mixture of intergranular
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and transgranular patterns in the STA-1120 ◦C specimens, as shown in Figure 11d. The long grains
rupture in a transgranular pattern, while shorter grains may “pull out”, resulting in a rupture which is
partially transgranular and partially intergranular [27]. On the other hand, the STA-1180 ◦C specimen
(Figure 11e) showed intergranular fractures, which is common in creep tests since the homologous
temperature of the creep test is intermediate, and the grain boundary is always attributed to the
damage initiation.
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Table 5. Creep properties of post-processed specimens.

Variant STA-
980 ◦C

STA-
1045 ◦C

STA-
1065 ◦C

STA-
1120 ◦C

STA-
1180 ◦C/1 h

STA-
1180 ◦C/4 h As-HIPed HIP+ Direct

Aging

steady-state rate,
έ (10−7 s−1) 10.7 1.59 1.90 1.59 1.37 1.74 1.73 0.89

creep life (h) 134 254 426 230 462 151 493 677
strain (%) 1.29 0.56 0.53 0.75 0.81 0.2 1.10 0.65
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3.3. Mechanical Properties of HIPed SLM Specimens

Although the STA-1180 ◦C/1 h specimen showed the longest creep rupture life among the
heat-treated SLM specimens (Figure 9), the STA-1180 ◦C/4 h exhibited poor creep properties
(Figures 12 and 13). On the other hand, the as-HIPed specimen without heat treatments exhibited
a better creep rupture life than the STA-1180 ◦C/4 h specimen (Figure 9). Moreover, the creep
rupture life of the HIP+ direct aging condition approached 700 h, since the principal strengthening
phase was precipitated with the subsequent heat treatment. The rupture surfaces of the
STA-1180 ◦C/4 h, as-HIPed, and HIP+ direct aging specimens were observed to be common
intergranular fractures (Figure 14).
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4. Discussion

4.1. Effects of the Formation of Laves Phase/δ Phase in SLM Materials

The element Nb has been shown to be very important for controlling the microstructure in
Alloy718, which relies on the γ” (Ni3Nb) phase for strengthening [15]. However, Nb is easily segregated
into the interdendritic regions during the solidification process. The segregation of Nb leads to the
formation of Laves at the end of solidification, which is generally undesirable. Laves is a hexagonally
closely packed phase and is generally accepted to be of the form of a high Nb concentration ranging
from 10% to 30% [18]. Moreover, the associated formation of the Nb-rich δ phases indicates that much
of the Nb will be tied up as secondary phases in the STA-980 ◦C specimen (Table 4). As a result,
the formation of Laves/δ phases would deplete the matrix of principal strengthening elements.
Moreover, Laves/δ phases would represent a weak zone between the interfaces of Laves and the
matrix, leading to premature fracture. The Laves/δ phases would act as preferential sites for crack
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initiation and propagation due to their inherent brittle nature [18]. Therefore, the creep strength would
decrease as the formation of the Laves phase/δ phase increases along the interdendritic region [21].

4.2. Grain Morphologies of the As-Built Specimen

The mixture of columnar grains and equiaxed grains was observed from a side view (Figure 3).
These microstructural differences can be attributed to the heat flux during the SLM solidification
process [4]. The equiaxed grains generally resulted from the heterogeneous nucleation of the partially
melted areas, such as the overlapping areas or the areas near the solidification front [24]. On the other
hand, the epitaxial growth led to the development of columnar grains.

4.3. Inhomogeneous Grain Growth and Its Effects on Mechanical Properties

Owing to the locally concentrated energy input, repeated rapid heating, fast solidification rate,
and consequent plastic deformation, residual stress remained during the SLM process [19], which could
be the driving force for the normal grain growth. The grain boundaries with high surface energy
serve as the favored locations for grain growth [26]. Active grain growth was observed at the solution
temperature of 1120 ◦C (see Figure 5d). However, the amount of residual stress affects the rate of
grain growth because the residual stress alters the surface energy of the grain boundaries. Moreover,
the residual stress would affect the inhomogeneity of growth rates [28]. When the sample was further
HIP-treated at 1180 ◦C and 175 MPa for 4 h, an inhomogeneous distribution of fine grains was observed,
as shown in Figure 7b,c. This inhomogeneous grain growth led to unevenly distributed grains, which
would be harmful for the mechanical properties of additive manufactured materials [29]. Damage
initiation is always attributed to the grain boundary, where voids may form and grow by diffusional
processes in the creep test when the test temperature is intermediate (T/Tm = 0.3 to 0.6) [26]. A large
grain size is preferred for creep resistance, while small regions of equiaxed grains may act as nuclei of
failure [26]. The δ phase was dissolved in the matrix by the solution treatment at higher temperatures;
however, creep properties were not greatly improved because of the inhomogeneous grain growth.

4.4. The Effects of HIP on the Mechanical Properties of SLM Specimens at 650 ◦C

The experimental results presented in Figures 12 and 13 of the present work suggest that HIP
treatment improves the creep behavior. A much longer rupture life and a nearly zero steady-state
rate were observed in the HIP+ direct aging specimen. An extremely low steady-state rate would be
generally caused by the precipitation process, as the new precipitates would make further dislocation
difficult during the creep test [26]. Moreover, a serrated grain boundary with zig-zag morphology
was formed in the HIP specimens, which would prolong the creep rupture life significantly [1]
(see Figure 8). The serrated boundaries are said to arise from the cellular carbides that are localized at
grain boundaries [30]. The zig-zag grain boundaries with carbides can increase the rupture strength
by preventing early cavity formation and the linking of growing cavities along grain boundaries [31].
Inhibition of the grain growth by the carbides would bring about the serrated grain boundary.
As a result, the HIP process was the most effective among the post-processes (Figure 12), and it
has the benefits of being free of pores, inhibiting micro crack nucleation [32], and leading to a serrated
grain boundary with a high volume (Figure 8b,c). The present work presents clear experimental
evidence for the beneficial effect of HIP on the creep properties.

5. Conclusions

In this study, the effects of post-processes on the microstructures and mechanical properties of
SLM-fabricated Alloy718 were investigated. The following conclusions can be drawn from this work:

1. The dendrite structure and interdendritic regions were decorated with a continuous network of
Laves phase and carbides in the as-built specimen. In addition, the rapid heating and cooling
induces thermal variations that cause high-density dislocations.
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2. The originally recommended heat treatment process, STA-980 ◦C, for cast and wrought materials
is not effective in SLM-processed specimens.

3. Laves phases/δ phases were dissolved in the matrix by a solution treatment at higher
temperatures; however, creep properties were not improved greatly because of the
inhomogeneous grain growth.

4. The HIPed materials exhibited a serrated grain boundary with a high-volume fraction of carbide
along the grain boundary. HIP improved the creep life, and the HIP+ direct aging process was
the most effective among the post-processes for improving the creep behavior at 650 ◦C.
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