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Abstract: Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for
emerging technologies in photonics. Of particular interest are scattering and field enhancement
effects of metal nanoparticles for energy harvesting and converting systems. An often neglected
aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond
classical electrodynamics. Those arise from microscopic electron dynamics in confined systems,
the accelerated motion in the plasmon oscillation and the quantum nature of the free electron
gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on
free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from
microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories.
These can be incorporated into standard computational schemes to produce more reliable results on
the optical properties of metal nanoparticles. We combine these solutions into a single framework
and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer
structures. The spectral position of the plasmon resonance and its broadening as well as local field
enhancement show an intriguing dependence on the particle size due to the relevance of additional
damping channels.

Keywords: nanoparticles; microscopic electron dynamics; nonlocality; light interaction; theory
and simulation

1. Introduction

An accurate description of microscopic properties of metal nanoparticles (metal NPs—MNPs)
is important to predict the optical response of e.g., molecules in close proximity to metal surfaces
and resulting field enhancement and quenching effects. Nanoparticles as part of functionalized
layers in sensing, spectroscopy [1] and light harvesting applications, photovoltaics [2–7] and
photocatalysis [8–12], can improve the performance of such devices. They are efficient subwavelength
scatterers improving the light trapping effect and MNPs provide, in particular, large local fields
enhancing charge carrier generation, absorption, and light-induced effects from other nanostructures
such as spectral conversion [13] or photoluminescence [14].

For over a hundred years, modeling of the optical properties of MNPs relies on classical
electrodynamics. In highly symmetric cases (spherical and cylindrical NPs) analytic solutions are
obtained within Mie scattering theory [15] using corresponding basis functions. The electric part E
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of the electromagnetic field creates a polarization field P = α(ε0, ε)E in solid matter, expressed in
terms of the permittivities ε0(ω) and ε(ω) of the environment and the bulk material, respectively.
This polarizability α, depending only on the optical response at a frequency ω, neglects microscopic
electron interaction effects at the ultimate nanoscale arising not only from the quantum nature of the
free electron gas in metals, but also from accelerated motion in the plasmon oscillation.

Figure 1. Illustration of sources of plasmon damping and electron interaction phenomena. (a) Electron-
electron collisions in the bulk material; (b) Electron-surface collisions due to confinement; (c) Electron
irradiation due to acceleration during plasmon oscillation; (d) Short-ranged electron-electron
interactions, such as Coulomb force and electron diffusion.

Light-matter interaction involves processes within the electron subsystem in solids, crystals
and molecules. Inhomogeneities on the length scale of the de Broglie wavelength λe =

h√
2mE

produce scattering and interference effects of electrons which mutually interact with incoming light,
see Figure 1a. Hereby, h is Planck’s constant, m is the (effective) electron mass which depends on the
bulk material, and E is the energy of the electron wave. Typically, this wavelength is about 7.5 nm in
solids at room temperature T = 300 K, where E = kBT with the Boltzmann constant kB. For MNPs,
the main source of electron scattering is the particle surface, see Figure 1b, where the surface-to-volume
ratio indicates the relevance of such scattering events.

Microscopic interaction effects of electrons in metals are accurately described using first-principle
methods, e.g., Density Functional Theory (DFT) [16–18]. These solve Schrödinger’s equation for a large,
but finite number of electron wave functions from all atoms in the considered system. Unfortunately,
even with strong approximations such as the Time Dependent Local Density Approximation (TDLDA),
time-consuming algorithms limit their applicability to particles of a few nanometers in size [19–21].
Moreover, advances in fabrication of nanostructures along with experimental access to particle sizes
and interparticle spacings below 10 nm led to the possibility of direct or indirect observation of
such effects [22–29]. The situation described above resulted in increased interest in semi-classical
approaches towards the incorporation of damping and interaction effects stemming from the quantum
nature of charge carriers, illustrated in Figure 1. In this article, we present two such semi-classical
approaches, the Random Phase Approximation (RPA) and Generalized Nonlocal Optical Response
(GNOR), and ultimately combine them into a single framework to study their joint impact on MNPs of
different materials, sizes and in different environments.

The original formulation of light scattering by a sphere by Gustav Mie [15] excludes microscopic
dynamics of the conduction band electrons in bulk and surface effects. However, efforts to extend
have been made since the 1970s [30–39]. Advanced semi-classical material models can be derived
from perturbative theories [40,41], by separating the free electron dynamics from the core electron
polarization via the hydrodynamic equation for an electron plasma [41–59], and from microscopic
theories [60–64]. It should be noted that a major advantage of ab initio methods lies in their capability
to account for the electron spill-out (evanescent tail of the electron wave functions) of the electron
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density into the surrounding dielectric medium. It was shown within the hydrodynamic framework
that the electron spill-out can be adequately incorporated [57,65] and a current-dependent potential
can be accounted for [66], which is, however, out of scope of the present study.
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Figure 2. Impact of quantum corrections on single nanoparticles. (a) Spectral position of the
localized surface plasmon resonance (LSPR) for gold, silver and aluminum; (b) Extinction cross section
normalized to the surface of a hemisphere for silver evaluated at the respective LSPR wavelengths
from (a).

In this article, we combine two semi-classical approaches towards microscopic electron dynamics
into a single feasible framework to address quantum corrections in MNPs allowing the description of
isolated particles, clusters and large-scale (two- or three-dimensional) devices via the integration of
analytical expressions into standard procedures. We hereby focus on results on damping in MNPs
derived from the microscopic Random Phase Approximation (RPA), stemming from Lorentz friction,
and spatial dispersion (nonlocal) effects obtained with the hydrodynamic approach. We discuss briefly
the separate ingredients of these approaches in the next sections and give more details in the methods
section. Moreover, we compare and combine the different processes of mesoscale electron dynamics
stemming from scattering, Figure 1a,b, irradiation (Lorentz friction), Figure 1c, and nonlocal interaction,
Figure 1d, and study their impact on the optical response of isolated MNPs and dimers. An emphasis
is put on the size regimes where these effects are dominant for the materials silver, Figure 2, as well as
for aluminum and gold, Figure 3.
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Figure 3. Extinction cross section normalized to the surface of a hemisphere for isolated (a) gold and
(b) aluminum nanoparticles evaluated at the respective LSPR wavelengths from Figure 2a.
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2. Results

We briefly discuss classical electrodynamics and mesoscopic electron dynamics obtained from
the RPA and GNOR theories. In summary, we compare quantum correction models stemming from
microscopic RPA derivations with the following, semi-classical damping expressions

γ = γp, (Mie) (1a)

γ = γp +
CvF

a
, (Kreibig) (1b)

γ = γp +
CvF

a
+

ω1

3

(ω1a
c

)3
, (perturbative) (1c)

γ = Im(Ω2) =
−1
3l

+
1 + 6lq

2
2
3 3lA

+
A

2
1
3 6l

, (Lorentz), (1d)

and nonlocal interaction effects. Both approaches are described in more detail in the next sections and
the methods section. The advantage in the analytic formulation is the straightforward integration with
existing computational tools for nanospheres using modified Mie simulations and multiple scattering
techniques [67] for clusters thereof or commercial software such as COMSOL (http://www.comsol.com).

2.1. Classical and Phenomenological Approaches

Typically, the optical response of a metal is described with the Drude model via the frequency-
dependent permittivity

ε(ω) = εb −
ω2

p

ω(ω + iγp)
, (2)

where εb is the background permittivity given by bound (valence band) electrons, ω2
p = 4πn0e2/m is

the plasmon frequency, determined by the material dependent electron density n0 and mass m, and γp

is the inherent (bulk) damping rate. This widely used Drude model applies only to bulk material and
should be modified for nanostructures to include effects due to the finite size of the system. One of the
corrections considered by Kreibig and von Fragstein [68] is the inclusion of an additional damping
due to the scattering on the physical particle boundaries, depicted in Figure 1b. This is in particular
important in particles of sizes equal or smaller than the mean free path λb of electrons in bulk metal.
In such a case, the electrons will experience (in the classical picture) additional scattering from the
boundary of the system. Mathematically, it is described as γK = vF/Le f f , where vF is the Fermi velocity
of the electron gas and Le f f is the effective mean free path of electrons resulting from collisions with
the particle surface [38,68,69]. The common feature is that Le f f reflects the volume (proportional to
the number of electrons inside the nanoparticle) to surface ratio of the particle. According to this,
we get the γK(a) = CvF/a, where a is the radius of the nanoparticle and C is a constant of the order of
unity which depends on the scattering type and particle radius. Similarly, collision effects in the bulk,
depicted in Figure 1a, can be described via the damping term γp = vF/2λb.

2.2. Random Phase Approximation

Nevertheless, this phenomenological approach neglects the microscopic dynamics of electrons
inside the MNP. Their accelerated movement (plasmon oscillation) leads to energy loss via irradiation
of the electromagnetic field, see Figure 1c. In case of nanoparticles much smaller than the incident
wavelength, this effect can be expressed by the Lorentz friction, an effective field stemming from
the plasmon induced dipole field D(t) as EL = 2/3c3∂3D(t)/∂t3, with c being the speed of light [70].
The dynamics of the electron density can be described using a driven, damped oscillator, with the

http://www.comsol.com
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incident electromagnetic wave being the driving force and the damping arising form electron scattering
(bulk γp and Kreibig damping γK) and electromagnetic field irradiation (Lorentz friction).

An analytical form of the exact solution for the damping γ and self-frequency ωL (the exponents
Ωi of solution ∼eiΩit for self-modes i) including Lorentz friction exists [61], which is discussed in more
detail in the methods section. They can be summarized as follows

Ω1 = − i
3l
− i21/3(1 + 6lq)

3lA − iA
21/33l

∈ Im,

Ω2 = − i
3l

+
i(1 + i

√
3)(1 + 6lq)

22/33lA
+

i(1− i
√

3)A
21/36l

= ωL + iγ,

Ω3 = −ωL + iγ = −Ω∗2 ,

(3)

where A =
(
B +

√
4(−1− 6lq)3 + B2

)1/3
, B = 2 + 27l2 + 18lq, q = 1

τ0ω1
, l = 2

3
√

ε0

(
aωp

c
√

3

)3
and

1/τ0 = γp. Exact inclusion of the Lorentz friction indicates that the radiative losses and the
self-frequencies are a complicated function of particle radius as given by Equation (3), see the methods
section for a detailed discussion.

Direct comparison to experimental work for this framework is available within Refs. [61–64] and
good agreement has been found.

2.3. Nonlocal Optical Response

Aside from electron irradiation due to Lorentz friction, we discuss spatial dispersion (nonlocality)
which denominates the effects of electron coupling over a short distance, see Figure 1d [40].
Such interactions are inherent to the solution for the displacement field D of the Coulomb equation

∇D(ω, r) = 0⇒ D(ω, r) =
∫

dr′ε(ω, r, r′)E(ω, r′). (4)

In homogeneous media, we can assume a dependence on the distance |r− r′| rather than
on the specific position of electrons, which allows solving Maxwell’s equations in Fourier space
D(ω, k) = ε(ω, k)E(ω, k).

The dependence on the wave vector k enables us to describe nonlocal electron-electron interaction
(Coulombic force) and electron diffusion effects. It is important to note that the large-k response that
originates in the subwavelength oscillations of plasmonic excitations is not only an inherent prerequisite
for many intriguing wave phenomena, but also particularly sensitive to nonlocality. However,
the common Mie result has no upper wavelength cut-off and does suppress short-range electron
interactions which can strongly dampen the response beyond ω/vF. We show in the corresponding
section below that accounting for nonlocal response leads to longitudinal pressure waves as additional
solutions to the combined system of differential equations of the electromagnetic wave equation and
(linearized) Navier-Stokes equation. This is in contrast to the damping expressions derived by Kreibig
and for Lorentz friction. Such additional waves offer further damping channels, however, they can
also support resonant enhancement effects [12,51,59,71].

Experimental work focusing on the blueshift found for nanoparticles decreasing in size, as well as
the influence of the electron-spill out has been studied in Refs. [22–29], including comparisons with
the hydrodynamic model.

2.4. Remarks on Retardation, Multipolar Response and Computational Feasibility

Both of the presented semi-classical approaches towards microscopic corrections in the mesoscale
electron dynamics in metal nanoparticles have the advantage of analytic expressions fully compatible
with existing computational procedures. For the quantum confinement picture of Kreibig and
the mesoscopic RPA result for the Lorentz friction, modified damping terms were derived, see
Equations (1a)–(1d), which can be used to directly replace the damping in the Drude expression
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for the permittivity given in Equation (2) and subsequently be used in standard Mie calculations
and procedures to calculate optical properties of complex structures, e.g., with a multiple scattering
approach [67] or within commercial software such as COMSOL.

It is important to note that although all electrons participate in plasmon oscillations, part of their
irradiation is absorbed by other electrons in the system. This is in analogy with the skin-effect [72]
in metals and introduces an effective radiation active electron layer of the depth h ∼ 1/σω (σ is the
conductivity) underneath the particle surface. Therefore, the effective energy transfer outside of the
nanoparticle will be reduced by the factor 4π

3 (a3−(a−h)3)/4πa3
3 . According to this, we expect a decrease

of radiative damping, especially for larger particles.
The nonlocal theory introduces a novel type of electron motion, longitudinal pressure waves,

in addition to the transversal modes stemming from the classical electromagnetic wave equation.
This additional electronic excitation offers further damping channels due to the energy lost in
dampened motion. Here, the Mie coefficients are derived from the coupled system of optical and
electronic excitation yielding modified scattering matrices that can again be implemented in existing
methods. The properties of the longitudinal wave are given by analytic expressions such as their wave
vector and their importance with respect to the common Mie solution is entirely captured in a single
additional term, see the methods section for details.

Retardation is important when either the particle radius or the overall system size becomes
large, i.e., for particle dimers, clusters and arrays. Although the presented microscopic effects are
highly localized, they can have a strong impact on a larger particle or system in the interplay with
long-range retardation effects. In addition, particle layer modes can couple to nonlocal modes within
particle arrays and thus increase their impact on a larger scale [59,71]. It is thus noteworthy that the
hydrodynamic theory and the damping terms stemming from microscopic analysis within the RPA
allow fully retarded calculations; equally for planar geometries (nonlocal Fresnel coefficients) [51] and
regular, two-dimensional particle arrays [41,59,71] and even charge carriers in electrolytes (Nonlocal Soft
Plasmonics) [12].

3. Discussion

3.1. Single Metal Nanoparticles

We compare the quantum correction models introduced in the previous section, see Figure 1,
as well as the combined effect of Kreibig damping Equation (1b), Lorentz friction Equation (1d) and
spatial dispersion to classical Mie calculations for the materials gold, aluminum and silver in Figures 2
and 3. Hereby, we show the effect on the Localized Surface Plasmon Resonance (LSPR) for all materials
in Figure 2a, confirming that the modified damping rates do not alter the resonance position predicted
by the classical calculations, whereas nonlocal response—and in combination with any damping
model—does predict an increasing blueshift of the nanoparticle resonance with decreasing particle
size. Looking at the extinction cross section as a function of particle radius in Figure 2b for silver and
Figure 3 for gold and aluminum, we find that all correction models result in a reduction of the optical
response in dependence of both the material and particle size, typically yielding a different optimized
particle size. Hereby, Kreibig damping with a ∼1/a dependence drastically attenuates the optical
response for the smaller size regime below the maxima (15 nm for Ag, 20 nm for Au, and 10 nm for Al),
while the complex size dependence of Lorentz friction results in a greater effect above this particle
size. The diffusion coefficient in the hydrodynamic (GNOR) model (imaginary part of the nonlocal
parameter βGNOR) is chosen thus that its dampening effect captures the Kreibig result [56]. This is
best seen in Figure 3a for Au. The hydrodynamic pressure (real part of the nonlocal parameter βGNOR)
describes Coulomb interaction between electrons and results in the blueshift observed in Figure 2a at
very small particle sizes below 5 nm. We can further incorporate the analytical expressions for Lorentz
friction. This combined result shows the strongest attenuation since all different damping channels are
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included. At a larger particle size (60 nm for Ag, 80 nm for Au, and 40 nm for Al) all material models
converge with classical Mie theory where the mesoscale electron dynamics cease to have an impact.

The damping associated with the Lorentz friction can be approximated to the simpler perturbative
expression Equation (1c) in a narrow size window, see the methods section for a detailed discussion.
Since the exact solution can be obtained with analytical expressions which can be incorporated into
standard calculation schemes, we discuss exclusively exact Lorentz friction results.
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Figure 4. Maximum enhancement factor EF= |E|2/|E0|2 at the particle surface for gold. Dependence
of (a) the maximum EF and (b) its wavelength position for the different quantum corrections on the
particle radius in water. (c), (d) The same as a function of the permittivity ε0 of the surrounding
medium for nanospheres of (c) R = 10 nm and (d) R = 50 nm.

We study the (maximum) field enhancement factor EF= |E|2/|E0|2 just outside of the NP (r → a+)
for the different damping models in Figure 4 for gold nanospheres. Hereby, Figure 4a shows the
spectral position of the field maximum. The local field enhancement reveals the size dependence of the
field resonance with the damping rates. It should be emphasized that Kreibig damping shows a strong
redshift for small particle sizes of the spectral position of local field enhancement maxima in contrast to
experimental findings [25–27] and approaches the Mie result for larger sizes. Nonlocal optical response
agrees with the blueshift of the plasmon resonance found experimentally for noble metals, as already
seen in the extinction cross section, Figure 2a. However, in order to correctly describe simple metals,
the inclusion the electron spill-out region [52,57,65] is crucial. Furthermore, advances towards the
spatial dispersion found in (doped) semiconductors were made recently [73,74], which is of further
interest when using dielectric nanoparticles to enhance the performance of photovoltaic devices.

Lorentz friction is closest to the classical calculation for smaller sizes and deviates stronger at
larger sizes. This is in agreement with the findings of Figures 2 and 3. The corresponding field
enhancement, shown in Figure 4b for gold MNPs in water, is strongly suppressed for the considered
particle size range when including the damping models while spatial dispersion by itself reduces the
predicted field enhancement mostly for smaller particle sizes and converges with the classical Mie
result rapidly with increasing particle size. This behavior is corrected by incorporating Lorentz friction
into the GNOR result.

Figure 4c,d shows the (maximum) field enhancement of gold nanoparticles in dependence of
the refractive index (RI) of the surrounding medium (from air n = 1 to Si n = 3.4) for two particle
sizes. This is accompanied with a linear (in case of the nonlocal theory approximately linear) shift
in the resonance wavelength towards longer wavelengths (not shown). With increasing RI of the
host medium, the enhancement factor reaches a saturation value which for increasing particle size
converges for all material models discussed. The discrepancy between the local field enhancement
values predicted remains similar for small MNPs in different host media spanning several orders
of magnitude.
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Figure 5. Size regime for multipolar response in metal nanoparticles. Enhancement factor EF= |E|2/|E0|2

at the particle surface, where the EF is maximized, for λ = 500 nm close to the corresponding Mie
resonance of gold with classical Mie coefficients and as inset with combined microscopic corrections.
The calculations are based on the dipolar response (black), the first three multipoles (red) and the
converged result (blue).

The complexity of the Lorentz friction makes it necessary to restrict ourselves to the dipolar
response of the plasmon oscillation. It is therefore important to consider the material, particle size
and wavelength regime in order to assess whether the dipolar response model is adequate for the
system under study. We show in Figure 5 for Au NPs the dipolar and the converged result of local
field enhancement obtained from classical Mie calculations at a fixed frequency close to the respective
plasmon resonance. Here, the dipolar approximation is valid up to ca. 100 nm in particle radius which
in general covers the discussed microscopic effects well. The inset in Figure 5 compares this for the
combined theories showing small differences already for particles above 25 nm radius.

3.2. Dimers

For particle dimers, in addition to their size, the particle distance becomes important and
retardation effects cannot be neglected for larger particles in close proximity. This can transfer
the impact of localized microscopic electron dynamics onto a larger structure. Figure 6 shows the
(maximum) field enhancement at the center of a gold dimer in water as a function of both particle
size and distance for the different theories considered. The impact of nonlocal response, Figure 6b,
on the classical Mie theory, Figure 6a, is visible as strong quenching of the local fields. It is worth
remembering that one main effect is a blueshift in the position of the maximum enhancement factor,
see again Figure 4a and Ref. [41]. In addition, the maximum field enhancement within the parametric
area of particle and gap size is EF≈ 9000 for the Mie calculations and EF≈ 3000 for the nonlocal theory,
showing that indeed there is an impact of the longitudinal waves found. The damping observed
within Kreibig theory, Figure 6c, is dramatic for the dimer setup and the dominant contribution in the
combined theory as seen in Figure 6d. This is also evidenced by comparing the Lorentz friction with
and without nonlocal damping, see Figure 6e,f, respectively. The Lorentz friction has a strong impact
on the optical response for larger particle sizes, but also dampens the dimer setup for increasing gap
size, which points towards retardation and the increasing structural size as the main source for this
damping effect. This leads to slightly stronger damping when combined with the additional plasmon
quenching within GNOR in Figure 6f.

The strong field quenching poses limitations to the photovoltaic effect in solar cells. However,
considering different materials for MNPs and their environment, the size regimes where local field
quenching is dominant can be avoided with the presented theory of combined damping.
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Figure 6. Impact of microscopic electron dynamics on gold dimers in water. We show the maximum
field enhancement at the gap center of gold dimers dispersed in water in dependence of their radius
(a > 0.5 nm) and separation (>0.1 nm) for (a) classical Mie calculations, (b) spatial dispersion with
GNOR, (c) Kreibig damping, (d) all RPA corrections combined, (e) Lorentz friction and (f) GNOR with
Lorentz friction. The incident field is polarized along the dimer axis and the maximum EF is evaluated
at the respective resonance frequency calculated for each case.

3.3. Summary

In conclusion, we have presented a number of semi-classical corrections to incorporate electron
dynamics and non-classical interaction effects into optical response calculations for nanoparticles.
Hereby, pure damping models, such as the Kreibig damping and Lorentz friction, derived from
microscopic RPA theory, show an intriguing dependence on the particle size, where the material
influences relevant size regimes. On the other hand, semi-classical nonlocal theories allow evoking
additional modes in the system by explicitly considering mesoscopic dynamics of free electrons.
This results in a correction of the spectral position of resonant phenomena and introduces additional,
implicit damping channels. The phenomenological Kreibig damping does yield a plasmon broadening
that agrees with experiments [38], however, it also introduces a redshift of the resonance with respect
to the classical Mie result contrary to measurements on nanoparticles [25–27,29]. This is addressed by
using the hydrodynamic GNOR (generalized nonlocal optical response) approach, i.e., by introducing
a diffusion parameter, able to reproduce the Kreibig damping while fully capturing the observed
plasmon broadening.

An important aspect is that the resulting analytical expressions can be implemented into existing
computational procedures in a straightforward manner, as isolated theories or combined, allowing
the comparison to experiments with little added numerical effort. We have studied the combined
effect of these mesoscopic electron interaction effects for single nanospheres and gold dimers and
have evidenced the importance of retardation as a way to communicate localized quantum effects and
impact a larger structure.

The straightforward inclusion of electro-optical effects at the nanoscale into (metal) nanoparticle
systems is of importance in nanostructures employed for photovoltaics and catalysis as well as in
spectroscopy and sensing applications.
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4. Methods

4.1. Electron Dynamics within the RPA

The model of electron dynamics inside MNPs [60–62] presented here is an extension to the RPA
theory developed by Pines and Bohm [75] for bulk metals. In our model, a finite, rigid jellium defines
the shape of a nanoparticle. The plasmon oscillations are described as local electron density fluctuations
ρ̂(r, t) obtained from the Heisenberg equation

d2ρ̂(r, t)
dt2 =

1
(ih̄)2 [[ρ̂(r, t), Ĥe]Ĥe] (5)

with a corresponding Hamiltonian Ĥe for electrons inside the MNP in the jellium model taking the
following form

Ĥe =
Ne

∑
j=1

[
−

h̄2∇2
j

2m
− e2

∫ ne(r)d3r
|rj − r|

]
+

1
2 ∑

j 6=j′

e2

|rj − rj′ |
. (6)

The operator of the local electron density is defined as

ρ(r, t) = 〈Ψe(t)|∑
j

δ(r− rj)|Ψe〉 (7)

where Ψe is the electron wave function, Ne is the number of collective electrons, rj and m are their
positions and mass. The ion field is approximated as averaged background charge density and
described as ne(r)|e| = neΘ(a− r)|e|, where Θ is the Heaviside step function, a is the radius of the
MNP and ne = Ne/V.

The first term in the Hamiltonian stands for the kinetic energy of electrons, the second for
interaction between electrons and positive background charges (approximating the ion lattice potential)
and the last for electron-electron Coulomb interaction.

Taking into account the sharp form of the positive charge density ne(r), one can decompose
Equation (5) into two parts corresponding to the inside and outside of the NP, which leads to
two separate solutions describing the surface and bulk plasmons. This description is valid for NPs
larger than ca. 5 nm for which the surface is well defined and the spill-out effect is negligible.

δρ̃(r, t) =

{
δρ̃1(r, t), for r < a,
δρ̃2(r, t), for r ≥ a,(r → a+)

. (8)

The electron density fluctuations are then described with the formulas

∂2δρ̃1(r, t)
∂t2 =

2
3

εF
m
∇2δρ̃1(r, t)−ω2

pδρ̃1(r, t) (9)

and
∂2δρ̃2(r, t)

∂t2 = −
[

2
3

εF
m

r
r
∇δρ̃2(r, t)+

ω2
p

4π

r
r
∇
∫

d3r1
1

| r− r1 |
(δρ̃1(r1, t)Θ(a− r1) + δρ̃2(r1, t)Θ(r1 − a))

]
δ(a + ε− r)

− 2
3m
∇
{[

3
5

εFne + εFδρ̃2(r, t)
]

r
r

δ(a + ε− r)
}

. (10)

where εF is the Fermi energy.
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The structure of the above equations is of an harmonic oscillator, which allows including
a damping term in phenomenological manner by adding to the right hand side −2/τ0∂ρ̃1(2)(r,t)/∂t.
The damping 2/τ0 = γp + γK includes collision effects and Kreibig damping due to the
particle boundary.

Assuming homogeneity of the external electric field E(t) inside the NP (dipole approximation),
the solution for surface modes reduces to a single dipole mode

δρ̃(r, t) =
1

∑
m=−1

Q1mY1m(Ω), for r ≥ a,(r → a+) (11)

and for bulk modes δρ̃(r, t) = 0 where r < a.
The function Q1m(t) (m = −1, 0, 1) represents dipole modes, Ylm(Ω) is the spherical function.

The former can be related to the vector q(t) via Q11 =
√

8π/3qx(t), Q10 =
√

4π/3qx(t), Q1−1 =
√

8π/3qy(t)
satisfying the equation [

∂2

∂t2 +
2
τ0

∂

∂t
+ ω2

1

]
q(t) =

ene

m
E(t). (12)

Then the plasmon dipole can be defined as

D(t) = e
∫

d3rrδρ(r, t) =
4π

3
eq(t)a3. (13)

Knowing this, the damping caused by electric field irradiation can be simply added to the right
hand side of Equation (12) as additional field EL = 2/3c3∂3D(t)/∂t3 hampering charge oscillations and
can be rewritten in the form

[
∂2

∂t2 + ω2
1

]
D(t) =

∂

∂t

[
− 2

τ0
D(t) +

2
3ω1
√

ε0

(
ωpa

c
√

3

)3 ∂2

∂t2 D(t)

]
. (14)

The above equation is a third order linear differential equation and the exponents ∼eiΩit of
its solutions are given in Equation (3). A perturbation approach can be applied to Equation (14)
for small particles using ∂2D(t)/∂t2 = −ω2

1D(t). Then the resulting damping term takes the form
γ = 2/τ0 + (ω1/3

√
ε0) (ωa/c

√
3)3. The comparison of both damping terms is shown in Figure 7 justifying

the usage of the perturbation formulation for (gold) particles with radii up to ca. 30 nm, where the
second term proportional to ∼a3 still fulfills the perturbation constrain.
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Figure 7. Comparison of RPA damping rates. The perturbative solution (red) and exact Lorentz
friction (blue) for a Au nanoparticle in water.
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For larger radii, the discrepancy between both solutions grows rapidly since the irradiation losses
within the perturbation approach scale as a3. Therefore, the radiative losses dominate plasmon damping
for large nanospheres. On the other hand, scattering is more important for smaller nanospheres scaling
as 1

a . One can observe thus the size-dependent crossover in Figure 3a of the damping at ca. 12 nm for
gold.

4.2. Electron Dynamics with the Hydrodynamic Model

In recent years, a great effort to theoretically [41,43,44,46–51,53–56,59] describe and subsequently
to experimentally [25–27,29] verify the effect of spatial dispersion in metals was made. In the
hydrodynamic approach, coupling the electromagnetic wave equation

∇×∇× E− k2εbE =
4πik2

ω
jind (15)

to the (linearized) Navier-Stokes equation

jind =
i

ω + iγp

(
ω2

p

4π
E−

(
β2 + D(γp − iω)

)
∇ρind

)
(16)

allows treating the conduction band electrons as a plasma subject to short-ranged interaction such as
the Coulomb force included in the pressure term p = β2ρind and electron diffusion via the diffusion
coefficient D. It is convenient to abbreviate β2

GNOR = β2 + D(γp − iω) (where GNOR refers to the
Generalized Nonlocal Optical Response model [55,56]). With this, we can write the wave equation in a
compact form

∇2E + k2ε⊥E = ηρind, (17)

where η = 4π

(
1
εb
− k2β2

GNOR
ω(ω+iγ)

)
and ε⊥ = εb − ω2

p/ω(ω+iγp). Together with the continuity equation

∇jind = iωρind, we readily obtain a separate wave equation for the induced charges

−β2
GNOR∇2ρind =

ε⊥
εb

ω(ω + iγp)ρ
ind, (18)

where ∇E = 4π/εbρ
ind was used. This yields the wave vector of the longitudinal field and motion

of electrons

q =
1

βGNOR

√
ε⊥
εb

ω(ω + iγp). (19)

Nonlocal theories predict finite distributions of induced charges at an illuminated metal
surface—in contrast to classical electrodynamics—with a characteristic penetration depth Im(1/q)
comparable to the electron spill-out [41,76].

Thus, this system of coupled equations yields an additional wave solution, longitudinal in
character, and can be solved for different geometries leading to nonlocal extensions of Mie [41,48] and
Fresnel coefficients [51], including for charge carriers in electrolytes [12]. Typically, hard-wall boundary
conditions are assumed for the additional boundary condition n̂jind ≡ 0 prohibiting electrons to
trespass through the particle surface into the dielectric surrounding, using a uniform electron density
n0 = ω2

pm/4πe2 inside the material and neglecting the electron spill-out. However, it was shown that
a smooth surface distribution of electrons can be taken into account accurately [57,65] and that the
hydrodynamic model is capable of dealing with the spill-out by solving the above equations with
position-dependent material parameters ωp(z)2 = 4πn0(z)e2/m.
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The main observations of nonlocal theories are a blueshift of the plasmon resonance with respect
to the common local approximation and plasmon broadening, in particular tied to the diffusion
coefficient which can be set to fully capture the broadening found with Kreibig damping [55,56]. In the
present work, we have adopted the diffusion coefficients as deduced in Ref. [56] for the different
materials, reflected, for instance, in the correspondence between the Kreibig and GNOR result for gold
in Figure 3a. Moreover, we add the Lorentz friction result from the RPA technique summarized in
Equation (1d) to our GNOR calculations.

Next, we present the derivation of nonlocal Mie scattering coefficients of individual spheres and
nanoshells described with the hydrodynamic model [41] starting from Equation (17) which describes
the evolution of the electric field, together with Equation (18) which is the wave equation for the
induced charge. The resulting scattering matrices can be used to investigate interacting spheres
with a multiple scattering method [67]. The hydrodynamic model has no free parameters which
makes the resultant nonlocal response for the short distances involved in the interaction (Coulomb
force, diffusion) between the charges of MNPs the sole source of these effects, in contrast to the
quantum-confinement picture for plasmon broadening presented by Kreibig.

It is convenient to use an expansion of the electric field into scalar functions [77] as

E = (1/k)∇ψL + LψM +
∇× L

ki
ψE, (20)

where L = −ir×∇ is the angular momentum operator, and the superscripts E, M, and L indicate
electric, magnetic, and longitudinal components, respectively. The additional boundary condition,
Equation (16), becomes with r̂j = 0

β2
GNOR

∂

∂r
ρind =

e2n0

mk

(
∂

∂r
ψL +

1
r

l(l + 1)ψE
)

(21)

in terms of the scalar functions and the angular momentum number l using the identity
−r · (∇× L) = (−ir×∇) · L = L2 = l(l + 1). The boundary conditions for the electric and magnetic
field components result in the continuity of ψM, (1 + r ∂

∂r )ψ
M, ψL + (1 + r ∂

∂r )ψ
E, and εψE for the

scalar functions.
The magnetic and electric scalar functions ψν (ν = {E, M}) obey a Helmholtz equation of the

form (∇2 + k2ε⊥)ψ
ν = 0 and can therefore be expanded in terms of spherical Bessel functions

ψν = ∑L ψν
L jL(k⊥r). Similarly, the electron density is expanded into ρind(r, ω) = ∑L ρL jL(qr), with the

longitudinal wave vector q given by Equation (19). The longitudinal scalar function satisfies a different
wave equation, namely ∇2ψL = 4πk/εb, which we find from the Coulomb law ∇εbE = 4πρind.

Note that the above analysis is needed for the metal region, where the electric (ν = E) and
magnetic (ν = M) field are given by Aν

l jL, with jL = jlm(k⊥r). Outside the particle, the longitudinal
scalar function vanishes since there are no induced charges in the dielectric surrounding. Therefore,
the electric scalar field is given by jlm(k0r) + tν

l h+lm(k0r) with unknown parameters Aν
l and scattering

matrix tν
l . Exploiting the boundary conditions stated above, we find a set of linear equations for the

magnetic and electric scattering matrices. Interestingly, the magnetic scattering matrix is unchanged
with respect to the local theory, indicating that magnetic modes are not sensitive to the induced
longitudinal modes. The scattering matrix for the electric scalar function is more complicated than in
the local approximation due to the appearance of ψL in the metal region that contains information on
the nonlocal response. The additional boundary condition yields a prescription to calculate ρL.

The local scattering matrix can then be extended by a single parameter describing nonlocal
behavior of the electron motion in the conduction band

gl =
l(l + 1)jl(θ⊥)jl(qa)

qaj′l(qa)

(
ε⊥
εb
− 1
)

(22)
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and becomes with θ0 = ka
√

ε0 and θ⊥ = ka
√

ε⊥.

tE
l =

−ε⊥ jl(θ⊥)[θ0 jl(θ0)]
′ + ε0 jl(θ0)([θ⊥ jl(θ⊥)]′ + gl)

ε⊥ jl(θ⊥)[θ0h+l (θ0)]′ − ε0h+l (θ0)([θ⊥ jl(θ⊥)]′ + gl)
, (23)

where the primes indicate differentiation with respect to the θ variables. The scattering coefficients tν
l

fully contain the optical response of the particle for an external observer.
Note that the nonlocal parameter g vanishes under the assumption of local response

(βGNOR → 0⇒ gl → 0) fully recovering the original Mie coefficients [15,78]. This allows us to study
the electro-optical properties of NPs with only a small correction in available numerical procedures,
see for instance Figure 5.

Likewise, for a nonlocal metal nanoshell, the magnetic response is insensitive to the nonlocal
properties of the material. The electric part, however, mixes with the longitudinal components from
the two interfaces of the metal intermediate layer. For the electric scalar functions, we obtain a linear
system of six equations and analytical solutions exist for the metal nanoshell [41,79].

4.3. Simulations

The modeling presented in this article was obtained by both using the commercial software
COMSOL Multiphysics (http://www.comsol.com) and in-house numerical code to evaluate Mie
coefficients, from Equation (23).

To make predictions that can be compared to experiments, the expressions obtained are used to
calculate e.g., the extinction cross section of an individual sphere via

σext =
2π

k2ε0
∑

l
(2l + 1)Im(tE

l + tM
l ). (24)

Note that only the electric scattering matrix is sensitive to nonlocal contributions.
The scalar electric field is obtained from jlm(k0r) + tE

l h+lm(k0r) outside the particle, with the
corresponding spherical Bessel and Hankel functions and the related vector field from Equation (20).

The analytic damping expressions Equations (1a)–(1d) are directly introduced as damping terms
in the permittivity of the different material permittivities, Equation (2).

For dimers, we use a multiple elastic scattering approach [67].
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