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Abstract: A new joining by forming process that combines lancing and shearing with sheet-bulk
compression is utilized to assemble thin-walled crash boxes utilized as energy absorbers. Process design
and fabrication of the new crash boxes are analyzed by finite elements and experimentation. Axial crush
tests were performed to compare the overall crashworthiness performance of the new crash boxes against
that of conventional crash boxes assembled by resistance spot-welding. Results show that the joining
process is a good alternative to resistance spot-welding because the new crash boxes can absorb the
same crushing energy, and because the new process helps to overcome typical manufacturing problems
of welding.
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1. Introduction

An energy absorber is an important element of a vehicle because it protects the lives of passengers
by managing the absorption of energy and collapse of its structure during an accident. One of the
strategies currently employed by vehicle manufacturers to meet the increasing requirements on safety
and the diminishing weight targets is the utilization of energy absorbers made of high-strength
materials in lightweight body structures. However, the search for more effective energy absorbers is
wider and includes new geometries and materials with the potential to enhance the crashworthiness
performance of the structures under different types of loading. These trends are comprehensively
discussed in two recently published state-of-the-art reviews on energy absorbers [1,2].

The search for new processes to manufacture energy absorbers has so far received little attention.
Most of the publications in the field make use of energy absorbers produced by conventional
extrusion [3,4] or by combination of forming and welding [5,6] (or, adhesive bonding) with or without
hydroforming [7]. However, the design of energy absorbers with higher performance and wider
applicability than the existing ones requires the development of new fabrication processes that allows
for a combination of dissimilar materials with different thicknesses and types of surface coatings,
as well as a combination of adhesives.

Joining by forming [8] can also be successfully utilized to fabricate efficient, low-cost, energy
absorbers. Lee et al. [9], for example, made use of self-piercing riveting to assemble thin-walled crash
boxes with double hat-shaped sections made from steel and aluminum formed panels. They analyzed
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the overall crashworthiness performance and concluded that the energy absorbed by the self-piercing
riveted crash boxes is higher than that of the adhesive-bonded. Gronostajski and Polak [10] utilized
two different clinching processes to assemble thin-walled crash boxes with double hat-shaped sections
made of steel formed panels and concluded that clinching can be successfully applied to fabricate
energy absorbers.

Table 1 summarizes the main advantages and disadvantages of the fabrication processes that are
commonly utilized to assemble crash boxes with top-hat and double-hat shaped sections made from
individual formed panels.

Table 1. Main characteristics of the fabrication processes that are commonly utilized to assemble
thin-walled crash boxes with top-hat or double-hat shaped sections.

Process Resistance
Spot Welding

Adhesive
Bonding

Self-Piercing
Riveting Clinching

Materials

Mostly steels.
Metallurgical
compatibility
necessary for

dissimilar metals

Engineering
materials

Engineering
materials with

reasonable ductility
and fracture
toughness

Engineering materials
with reasonable

ductility and
fracture toughness

Coatings
Thick metal and
organic coatings

are difficult

Coatings and
lubricants must be

cleaned

Organic coatings
and lubricants can

affect the
properties of the

joints

Organic coatings and
lubricants can affect

the properties of
the joints

Surface
preparation None Caution

preparation None None

Consumables Electrodes Adhesives
Rivets

(coatings needed
for steel rivets)

None

Environmental
impact

Sparks, fumes,
and noise Chemicals Noise Noise

Aesthetics and
geometry

Indentation on both
sides. Damage of

coatings.
Distortion and

residual stresses due
to thermal cycle

None
Flush in one side

and protrusion on
the other side

Hole in one side and
large protrusion on the

other side

Performance
High shear strength

and medium
peel strength

Low shear and peel
strengths

High shear
strength and

medium
peel strength

Medium shear strength
and low peel strength

Productivity High Low
(long curing time) Intermediate

High
(no pre-

working required)

This paper is focused on the assembly of thin-walled crash boxes with double-hat shaped sections
made from individual formed panels. The aim and objective is to present a new fabrication process that
combines lancing of the tenons, in which specific areas of the panels are sheared and bent in a single
press operation (Figure 1a), shearing of the mortises, in which holes are cut out of the opposite panels
(Figure 1b), and sheet-bulk compression of the tenons during which the two panels are assembled by
means of “mortise-and-tenon” joints placed along the flanges (Figure 1c,d).

The new fabrication process draws from two previous investigations on joining by forming in
which “mortise-and-tenon” joints were successfully utilized to fix two sheets longitudinally in position
by sheet-bulk compression. The two sheets were joined either perpendicular [11] or parallel [12] to each
other. The reason behind the utilization of “mortise-and-tenon” joints as an alternative to resistance
spot-welded or adhesive bonded joints is because they offer the same advantages of self-piercing
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riveted and clinched joints (refer to Table 1) without having the constraints related to organic coatings
and lubricants. Moreover, the “mortise-and-tenon” joints have the ability to be easily combined with
adhesives in order to increase stiffness and are also capable of ensuring higher-peel strength than
self-piercing riveted and clinched joints due to the protrusion of the flat-shaped surface heads of the
tenons above the adjacent sheet panels, after compression.Materials 2018, 11, x FOR PEER REVIEW  3 of 15 
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Figure 1. New fabrication process to assemble the individual formed panels of thin-walled crash boxes
with double-hat shaped sections: (a) lancing (shearing and bending) of the tenon; (b) shearing of the
mortise; (c) sheet-bulk compression of the tenon with a tapered punch; (d) mechanical locking by
sheet-bulk compression of the tenon with a flat punch; (e) cross-section of a “mortise-and-tenon” joint.
Note: the lancing in (a) is upside-down in order to replicate the press movement.

The main challenge of applying the “mortise-and-tenon” joint concept in the assembly of crash
boxes (Figure 1e) derives from the need to compress thin-walled formed panels in the direction
perpendicular to thickness. However, the authors solved the problem by introducing a novel two-stage
variant of the sheet-bulk compression process that makes uses of a tapered heading punch in the
first stage (Figure 1c), and a flat heading punch in the second stage (Figure 1d). The tapered heading
punch ensures a better balance of material displacement and diminishes the risk of buckling during
the initial compression of the panels. The flat heading punch ensures the mechanical locking of the
two individual panels.

The crash boxes assembled with the new proposed “mortise-and-tenon” joint concept are
subjected to static and dynamic axial crushing and its overall crashworthiness performance is compared
against that of resistance spot-welded. Results show that the new crash boxes are a good alternative to
those assembled by resistance spot-welding.

2. Materials and Methods

2.1. Mechanical Characterization

The new proposed joining by forming process can easily assemble thin-walled crash boxes with
individual panels made from dissimilar materials with different thicknesses. However, it was decided
to select a single high-strength low alloy steel (HSLA 340) with 1 mm thickness and 7 µm thickness
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galvanized coating to ensure a fair comparison of the crashworthiness performance of the new crash
boxes against those assembled by resistance spot-welding.

The mechanical characterization of the HSLA 340 steel was performed by means of stack
compression tests [13] due to its capability to characterize the material stress response up to the
large strains that were found in the compression of the flat-shaped surface heads of the tenons.
The stack compression tests were carried out at room temperature in a hydraulic testing machine
(Instron SATEC 1200 kN, Norwood, MA, USA) with a cross-head velocity of 10 mm/min and made
use of multi-layer cylinder test specimens that were assembled by piling up 10 circular disks with
10 mm diameter cut out from the supplied sheets by wire-electro discharge machining (wire-EDM).

2.2. Fabrication of the Crash Boxes

The thin-walled crash boxes with double hat-shaped sections were made from two individual
formed panels that were assembled by sheet-bulk compression with “mortise-and-tenon” joints placed
every 40 mm along their flanges. Table 2 provides the geometry of the crash boxes and a schematic
detail of the new proposed joining by forming process.

Conventional thin-walled crash boxes assembled by resistance spot welding were included in
the experimental work plan for reference purposes. The welding parameters were selected by finite
element modelling (refer to Section 3.2) and the joints consisted of around 5.4 mm diameter spots,
positioned similarly along the flange as the “mortise-and-tenon” joints.

Table 2. Geometry and parameters of the thin-wall crash boxes assembled by sheet-bulk compression
with “mortise-and-tenon” joints and by conventional resistance spot-welding.

Geometry Sheet-Bulk Compression Resistance Spot-Welding

Thickness t 1 mm Tenon width w 5 mm Electric current 7.8 kA

Flange a 24 mm Tenon length h 3.5–6 mm Time (distributed in two pulses) 320 ms

Top section b 36.6 mm Distance between joints d 40 mm Force 3.3 kN

Angle α 120 degrees Tapered punch angle β ~4◦ Resulting nugget diameter D 5.4 mm

Length l 160 mm Tapered punch length c 1.5 mm Distance between welds d 40 mm
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2.3. Axial Crush Tests 

The crash boxes were tested for quasi-static and dynamic axial crushing at room temperature. 
The quasi-static crush tests were performed in the hydraulic testing machine (Instron SATEC 1200 
kN) that had been used in the mechanical characterization of the material. A cross-head velocity 

= 10v  mm/min was utilized, and the tests were stopped after reaching a prescribed crushing 
distance of 55 mm (approximately 1/3 of the initial length of the crash boxes). 

The dynamic crush tests were performed in a drop weight testing machine that was designed 
and fabricated by the authors. The machine and its main components are schematically shown in 
Figure 2a. The mass M  and drop height H of the falling ram can be adjusted up to maximum 
values of 250 kg and 5 m, respectively. 
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2.3. Axial Crush Tests

The crash boxes were tested for quasi-static and dynamic axial crushing at room temperature.
The quasi-static crush tests were performed in the hydraulic testing machine (Instron SATEC 1200 kN) that
had been used in the mechanical characterization of the material. A cross-head velocity v = 10 mm/min was
utilized, and the tests were stopped after reaching a prescribed crushing distance of 55 mm (approximately
1/3 of the initial length of the crash boxes).
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The dynamic crush tests were performed in a drop weight testing machine that was designed and
fabricated by the authors. The machine and its main components are schematically shown in Figure 2a.
The mass M and drop height H of the falling ram can be adjusted up to maximum values of 250 kg
and 5 m, respectively.Materials 2018, 11, x FOR PEER REVIEW  5 of 15 
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Figure 2. The drop weight testing machine: (a) schematic representation and identification of its main
components; (b) photograph of the tool utilized in the crush tests.

The tool utilized in the quasi-static and dynamic crush tests is shown in Figure 2b. The crash boxes
were placed centrally in the tool, without any further support and were subsequently compressed
between the top and bottom flat platens. The tool was instrumented with a load cell based on
traditional strain gauge technology in full wheatstone bridge with a capacity of 500 kN, a nominal
sensitivity of 1 mV/V, and an accuracy class of 0.7. The load cell was connected to a signal amplifier
unit (Vishay 2310B) and a personal computer data logging system based on a DAQ card (National
Instruments, PCI-6115, Austin, TX, USA). The displacement transducer is a commercial linear variable
differential transformer (Solartron LVDT AC15, Farnborough, UK). A special purpose LabView based
software was designed to acquire and store the experimental data from both the load cell and the
displacement transducer.

Table 3 gives a summary of the main operating conditions utilized in the quasi-static and the
dynamic axial crush tests.



Materials 2018, 11, 1118 6 of 15

Table 3. Summary of the quasi-static and dynamic axial crush testing conditions.

Quasi-Static Axial Crush Tests

Equipment Hydraulic testing machine
Velocity v 10 mm/min (1.7 × 10−4 m/s)

Dynamic Axial Crush Tests

Equipment Drop weight testing machine
Ram mass M 82 kg

Upper tool moving mass Mt 45 kg
Height of the fall H 4 m

Efficiency η ~60%
Velocity vi 9.5 m/s

2.4. Finite Element Modelling

The assembly of the individual panels of the thin-walled crash boxes by means of sheet-bulk
compression with “mortise-and-tenon” joints was simulated with the finite element computer program
I-form. The computer program was developed by the authors and is based on the irreducible finite
element formulation,

Π =
∫
V

σ
.
εdV +

1
2

K
∫
V

.
ε

2
VdV −

∫
ST

TiuidS +
∫
S f

 |ur |∫
0

τf dur

dS, (1)

where, the symbol σ is the effective stress,
.
ε is the effective strain rate,

.
εV is the volumetric strain

rate, K is a large positive constant imposing the incompressibility of volume V, S is the surface under
consideration, Ti and ui are the surface tractions and velocities on surface ST , τf and ur are the friction
shear stress and the relative velocity on the contact interface S f between the material and tooling.
Further details on the computer program with special emphasis to contact and frictional sliding
between rigid and deformable objects are available in Reference [14].

The numerical simulation made use of two-dimensional plane strain deformation models and the
cross section of the tenons and mortises were discretized by means of approximately 1000 quadrilateral
elements. The tools were modelled as rigid objects and their geometries were discretized by means of
linear contact-friction elements.

The assembly of the individual panels of the thin-walled crash boxes by means of resistance
spot-welding was simulated with the commercial finite element computer program SORPAS [15],
which is based on an electro-thermo-mechanical formulation as described in details in [14]. The
mechanical formulation follows Equation (1). Solution of the electrical potential Φ is based on
integration of Laplace’s equation, which in variational form can be written as∫

V

Φ,iδΦ,idV = 0, (2)

where subscripts indicate spatial derivatives. The current density, calculated from the derivative of
the potential and electrical resistivity, is used in the calculation of Joule heating during the welding
process. The following variational equation governs the thermal solution for the temperature field T,∫

V

kT,iδT,idV +
∫
V

ρc
.
TδTdV −

∫
V

.
qδTdV −

∫
S

kT,ndS = 0 (3)

The first term is related to heat conduction through the conductivity k, and the second term is
related to the temperature rate

.
T with material properties being mass density ρ and heat capacity c.
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Joule heating and heating from plastic work are included in the heat generation rate per volume
.
q

in the third term. Finally, the last term includes heat generation and loss along surfaces stemming
from frictional heating, convection and radiation. The subscript in the last term refers to spatial
derivative along a surface normal. Further details like treatment of contact conditions are available
in Reference [14].

3. Results

3.1. Mechanical Characterization

The stress-strain curve of the HSLA 340 steel obtained from the stack compression tests is shown in
Figure 3. The enclosed photograph shows the multi-layer cylinder test specimens that were assembled
by piling up 10 circular disks before and after compression. The stress-strain curve is utilized in the
finite element simulation of the assembly of thin-walled crash boxes by sheet-bulk compression with
“mortise-and-tenon” joints.
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Figure 3. Stress-strain curve of the high-strength low alloy (HSLA) 340 steel obtained from stack
compression tests.

3.2. Finite Element Modelling and Experimentation of the Fabrication Process

The reference joining process was simulated by the commercial software SORPAS [15].
The simulation result is shown in Figure 4 in terms of process peak temperature and identification of
weld nugget. The simulation was based on the parameters given in Table 2. The simulation reveals a
weld nugget with a diameter of 5.4 mm across the interface and a proper penetration into both of the
two HSLA 340 sheets.
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The assembly of the thin-walled crash boxes by the novel sheet-bulk compression process with
“mortise-and-tenon” joints required the tenons to be cut and bent out of the panels by lancing
(Figure 1a), and subsequently compressed in the direction perpendicular to thickness (Figure 1c,d).
Figure 5a,b show the finite element computed distribution of effective strain in the tenons at the end of
the first sheet-bulk compression stage. Two different process operating conditions (Table 2) are shown:
a tenon with a free length h = 4.5 mm that is successfully compressed by a tapered heading punch
(Figure 5a) and a tenon with a free length h = 6 mm that fails by buckling (Figure 5b).Materials 2018, 11, x FOR PEER REVIEW  8 of 15 
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Figure 5. Assembling the individual formed panels of the thin-walled crash boxes: (a) effective strain
distribution at the end of the first stage of the sheet-bulk compression of a tenon with a free length
h = 4.5 mm; (b) effective strain distribution at the end of the first stage of the sheet-bulk compression
of a tenon with a free length h = 6 mm.

Successfully compressed tenons are needed for the second stage of the sheet-bulk compression,
during which a flat heading punch assembles the crash boxes by mechanically locking the individual
formed panels to each other.

Figure 6 shows finite element deformed meshes at different instants of the crash box assembly by
means of sheet-bulk compression with “mortise-and-tenon” joints. The case included in the figure
consists of a bent tenon with a free length h = 4.5 mm and corresponds to the working conditions that
were utilized to fabricate all the crash boxes with “mortise-and-tenon” joints that were subjected to the
axial crush tests.

As seen in Figure 6a,b, the tapered heading punch prevents the collapse by buckling at the early
stages of deformation. The flat heading punch (Figure 6c,d) produces the flat-shaped surface heads
(Figure 6e) that will lock the panels to each other and assemble the crash box.

Figure 7 shows the experimental and finite element computed evolution of the force with
displacement for the first and second stages of the sheet-bulk compression with “mortise-and-tenon”
joints. The agreement is good and allows estimating the energy required to perform the first and
second stages of the new proposed joining by forming process.
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Figure 6. Fabrication of the crash boxes by sheet-bulk compression with “mortise-and-tenon” joints
(h = 4.5 mm): (a) finite element mesh at the beginning of the first stage; (b) computed finite element
mesh at the end of the first stage; (c) computed finite element mesh at the beginning of the second stage;
(d) computed finite element mesh at the end of the second stage; (e) crash box with a detail showing
the flat-shaped surface head of a compressed tenon.
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3.3. Axial Crush Tests

Figure 8a shows the force-displacement curves for the quasi-static axial crush tests of the
thin-walled crash boxes with double-hat section assembled by sheet-bulk compression with
“mortise-and-tenon” joints and by resistance spot-welding. As seen, the force increases steeply up to
a peak value where the first fold is formed (initiation of collapse). Then, the force decreases and the
subsequent folds, corresponding to the oscillations of the force-displacement curve, are triggered for
smaller local force peaks.

Figure 8b shows the force-displacement curves for the dynamic axial crush tests of the two types
of crash boxes. The tests were performed in the drop weight testing machine (Figure 2), which converts
the potential energy Ep at the beginning of the fall,

Ep = MgH, (4)

into an axial crush velocity vi at the impact by conservation of linear momentum between the mass M
of the falling ram and the mass Mt of the upper tool part containing the compression platen,

vi = ηM
√

2gH/Mt, (5)

In the above equation, g is the gravity acceleration and η is the efficiency, which accounts for
the air resistance, friction sliding along the columns and type of collision between the falling ram
and the upper tool part (Figure 2a). The mass M and the drop height H of the falling ram were
adjusted to deform the crash boxes by approximately 1/3 of their initial length with an impact velocity
vi ' 16 m/s. Finally, it is worth noting that the impact velocity vi is progressively reduced to zero by
the absorption of energy.

As seen, the overall trend of the dynamic force-displacement curves is similar to that of the
quasi-static tests (Figure 8a) but the peak force to trigger collapse increases from 89 kN to 115 kN,
in case of the crash boxes assembled with “mortise-and-tenon” joints. Similar increase in the peak
force is obtained for the resistance spot-welding joints.
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3.4. Alignment of the “Mortise-And-Tenon” Joints

The crashworthiness performance of the new crash boxes with “mortise-and-tenon” joints raises
the question of the alignment of the protrusions of the flat-shaped surface heads of the tenons above
the adjacent sheet panel, after compression. Should the flat-shaped surface heads be collinear or
perpendicular to the longitudinal axis of the crash box?

Experiments performed by the authors revealed that the flat-shaped surface heads must be
perpendicular to the longitudinal axis of the crash boxes because if they are collinear, they are easily
pulled-out during axial crushing, diminishing the overall performance of the crash box (Figure 9).
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4. Discussion

The evolution of the force with displacement for the quasi-static and dynamic axial crush tests
performed with the two different types of crash boxes allow concluding that the new proposed
“mortise-and-tenon” joints can successfully replace resistance spot-welds. In fact, Figure 8 shows that
the overall trend of the force-displacement curves is similar with peak forces to trigger collapse being
higher in the dynamic crush tests. In case of the crash boxes assembled with “mortise-and-tenon” joints,
for example, the peak values increase from 89 kN to 115 kN when dynamic conditions are applied.

The energy E absorbed by the crash boxes during the axial crush tests are obtained from the areas
below the experimental force-displacement curves of Figure 8,

E =

δmax∫
0

Fdδ, (6)

where δmax = 55 mm is the maximum specified testing distance (refer to Figure 8).
The results are shown in Figure 10 and allow concluding that the new type of crash box can

absorb an overall level of energy similar to that of the resistance spot-welded crash boxes.
The maximum absorbed energy in the dynamic tests, is approximately 30% higher than in

the quasi-static tests. This increase of crashworthiness performance with velocity is attributed
to the strain-rate sensitivity of the HSLA 340 steel [16]. However, it is worth noting that the
maximum absorbed energy in the dynamic tests is approximately 25% smaller than the total energy
provided by the drop weight machine (3.2 kJ) because part of this energy is lost in the conversion
of linear momentum between the mass M of the falling ram and the mass Mt of the tool, in the
elastic deformation of the tool and of the drop weight testing machine, and in the vibration of its
different components.

Another result that is relevant from a manufacturing point of view is the total energy required to
fabricate a “mortise-and-tenon” joint and a resistance spot-welded joint. From the experimental and
numerical evolution of the force with displacement for the first and second stages of the sheet-bulk
compression of the tenons it may be concluded that approximately 7 J and 10 J will be needed to
accomplish both stages. Thus, by considering these values of energy as well as that required to perform
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the lancing operation, it is concluded that the total amount of energy to fabricate a “mortise-and-tenon”
joint is a very small fraction of that required by a resistance spot-welded joint (Figure 11). This is
an important advantage of the new proposed type of crash boxes regarding environmental friendliness.
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Figure 10. Experimental evolution of the absorbed energy with displacement for the axial crush
tests of thin-walled crash boxes with double-hat section assembled by sheet-bulk compression with
“mortise-and-tenon” joints and by resistance spot-welding: (a) quasi-static tests; (b) dynamic tests.
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Figure 11. Energy required to produce “mortise-and-tenon” and resistance spot-weld joints. The energy
required by the mortise-and-tenon joint is referred to the vertical left axis whereas that of the resistance
spot-welded joint is referred to the vertical right axis.

5. Conclusions

The fabrication of crash boxes by sheet-bulk compression with “mortise-and-tenon” joints can
successfully replace conventional production processes based on resistance spot-welding. The crash
boxes with “mortise-and-tenon” joints can absorb the same amount of energy as those with resistance
spot-welding joints in quasi-static and dynamic axial crush tests. They can also avoid the problems
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caused by residual stresses in the resistance spot-welding of panels made from dissimilar materials
with different thicknesses.

The greater applicability of the new crash boxes comes with a disadvantage regarding productivity due
to the multi-stage characteristics of the proposed joining by forming process. However, this disadvantage
can be offset by the environmental friendliness resulting from the total required energy to assemble a crash
box by sheet-bulk compression with “mortise-and-tenon” joints being a very small fraction (1.3%) of that
required by resistance spot-welding.
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