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Abstract: Polytetrafluoroethylene/aluminum/molybdenum oxide (PTFE/Al/MoO3) reactive
composites of a volume ratio of 60:16:24 were studied in this research. Quasi-static compression,
dynamic compression and drop-weight experiments were performed to explore the mechanical
response and the shear-induced initiation properties of the composites. Mesoscale images of the
specimens after sintering demonstrate that PTFE, Al and MoO3 powders were evenly mixed and no
chemical reaction occurred after the materials were stirred, pressed and sintered. The yield stress
and compressive strength of PTFE/Al/MoO3 specimens are sensitive to strain rate within the range
of 10−3~3 × 103 s−1, and the yield stress shows a bilinear dependence on the logarithm values
of strain rate. The established Johnson-Cook constitutive model based on the experimental data
can describe the mechanical response of PTFE/Al/MoO3 material well. Drop-weight tests show
that the PTFE/Al/MoO3 specimens can react violently when impacted, with the characteristic drop
height (H50) calculated as 51.57 cm. The recovered specimens show that the reaction started from the
outer edge of the specimen with the largest shear force and the most concentrated shear deformation,
indicating a shear-induced initiation mechanism. The reaction products of PTFE/Al/MoO3 specimens
were AlF3, Al2O3, Mo and C, demonstrating that redox reaction occurred between PTFE and Al,
and between Al and MoO3.

Keywords: mechanical response; PTFE/Al/MoO3 materials; split Hopkinson pressure bar (SHPB);
constitutive model; shear-induced initiation

1. Introduction

Reactive materials (RMs) are a special type of energetic material, usually composed of at least
two components which are not active on their own. These materials mainly consist of combinations
of thermites, intermetallics, metal/polymer mixtures, metastable intermolecular composites (MICs),
matrix materials or hydrides [1,2]. When subjected to external loads, RMs can undergo huge exothermic
reactions, with plenty of chemical energy released. Of all the different types of RMs, mixtures of PTFE
(polytetrafluoroethylene) and Al have been extensively studied, because of their large heat of reaction
and the excellent combinations of performance that PTFE exhibits such as low friction coefficient, high
thermal stability, high electrical resistance, high chemical inertness, high melting point and easiness of
forming [3]. Therefore, many scholars have carried out extensive and in-depth researches on PTFE/Al
materials. Raftenberg et al. [4] studied the deformation properties and compressive mechanical
responses of solid rods of PTFE/Al composites with a mass ratio of 74:26, and the experimental data
were obtained by conducted quasi-static Instron compression tests and split-Hopkinson pressure bar
(SHPB) experiments. Based on these data, a fit to Johnson-Cook model was determined. In their
studies, finite element simulation, using the Johnson-Cook model established above, has also been
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performed to compare with experimental values. Ge et al. [5] conducted two-dimensional microscale
finite element analyses to study the mechanical behavior of PTFE/Al composites, and the real
microstructure-based models and simulated microstructure models were both used. In order to
improve the density and strength of the PTFE/Al materials, many researchers have tried to add
tungsten (W) into the PTFE/Al composites. Cai et al. [3] performed dynamic compression tests
in a drop-weight apparatus to explore the behavior of a PTFE/Al/W mixture at a high-strain and
high-strain rate. They found that the initiation and propagation of cracks originate from the separation
of the W particle-PTFE interface and PTFE nanofiber formed in specimens which were extensively
deformed. The dynamic mechanical properties of PTFE/Al/W with different W particle sizes were
also studied by Cai et al. [6], and they found that materials with fine particles have higher mechanical
strength. Combining simulation and experiments, Herbold et al. [7,8] investigated the influence of
particle size and sample porosity on the dynamic mechanical properties, including strength, failure
and shock behavior, of the PTFE/Al/W granular composites. They discovered that force chains can
be formed in the specimens with fine metallic particles under dynamic loading, which accounted for
the increased strength of these specimens. Other scholars also carried out studies of the PTFE/Al/W
composites from other perspectives using different techniques, including quasi-static and dynamic
compression, scanning electron microscope (SEM), X-ray diffraction (XRD), and differential scanning
calorimetry (DSC) [9–13].

However, in the above FTFE/Al/W experiments, no reaction between Al and W was observed,
only a small amount of WC and W2C formed, which were activated by the high heat as a result of
fluorination of Al [11]. In addition, literatures about the addition of metal oxides, such as CuO, MoO3

and Fe2O3, into the PTFE/Al are scarce. But the heat generated by the reaction between Al and metal
oxides (thermites) cannot be neglected. Al/MoO3 is a kind of high energy density thermite, with a
heat of reaction of 4.7 kJ/g and an adiabatic temperature of 3253 K, which is higher than that of other
common thermites such as Al/CuO, Al/Fe2O3, Al/MnO2 and Al/Bi2O3 [14]. However, the Al/MoO3

mixture is difficult to form, and it is generally used as a powder for combustion. The addition of
PTFE to Al/MoO3 can greatly increase the burning rate [15] and the PTFE/Al/MoO3 composites
can be processed into a specific shape. Therefore, based on Al/MoO3, PTFE is used as a binder to
prepare PTFE/Al/MoO3 multifunctional structural reactive materials, which have the dual properties
of PTFE/Al and Al/MoO3. Furthermore, because PTFE is easy to form, the PTFE/Al/MoO3 materials
also can be processed into a structural body with a certain strength, which greatly expands the
applications of thermites.

In order to ensure the stability and safety of the reactive materials in the process of manufacturing,
transportation, storage, and the reliability during applications, it is necessary to understand the
mechanical response and reaction performance of the reactive materials under different loading
conditions. Therefore, in this research, a kind of PTFE/Al/MoO3 reactive material was prepared using
cold-pressing and sintering technology. Firstly, the micro-structures of the as received raw materials
and sintered PTFE/Al/MoO3 specimens were analyzed by the scanning electron microscope (SEM).
Then the quasi-static and dynamic mechanical properties of the specimens at room temperature were
tested using a universal testing machine and split Hopkinson pressure bar (SHPB) system. Finally,
a standard drop-weight apparatus combined with a high-speed camera was utilized to explore the
impact sensitivity and shear-initiation process of the PTFE/Al/MoO3 composites.

2. Experimental

2.1. Specimens Preparation

In this study, a kind of PTFE/Al/MoO3 composite was prepared with a volume ratio of 60:16:24.
The ratio is based on the chemical equilibrium ratio of Al and MoO3, and PTFE is used as a binder.
The original average sizes of the three raw materials were: PTFE: 25 µm (3M, Shanghai, China);
Al: 1~2 µm (NAO, Shanghai, China); MoO3, 3 µm (NAO, Shanghai, China). The preparation process
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of the specimens can refer to Nielson’s work [16], which includes powder mixture, cold isostatic
pressing and sintering, and is shown in Figure 1. The sizes of the specimens were Φ 10 mm × 10 mm,
Φ 10 mm× 5 mm, and Φ 10 mm× 3 mm, which were used for the quasi-static compression, SHPB and
drop-weight experiments, respectively. The properties of the specimens are greatly influenced by the
sintering process [17], and the sintering process in this study is based on those described in [10,18,19].
The detailed process is as follows: The pressed specimens were put into a vacuum furnace, being
heated from 25 ◦C to 360 ◦C at 90 ◦C/h, incubated for 240 min, then cooled to 325 ◦C at the rate of
50 ◦C/h, kept for 120 min, and finally cooled to 25 ◦C at the same rate. The sintering process curve is
shown in Figure 2.
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Figure 2. Sintering curve.

2.2. Quasi-Static Compression Experiments

The quasi-static compression experiments were carried out by the microcomputer-controlled
universal testing machine (CMT5105, MTS, Eden Prairie, MN, USA) with a maximum load of 100 kN.
The head of the testing machine travels downward at a speed of 0.6 mm/min, 6 mm/min and
60 mm/min, respectively, corresponding to the strain rate of the specimen of 0.001 s−1, 0.01 s−1 and
0.1 s−1. Before tests, all contact surfaces of the specimens were coated with vaseline to eliminate the
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effect of friction. Three specimens were tested under the same conditions to ensure the accuracy of
the results.

2.3. SHPB Experiments

The dynamic compression properties of PTFE/Al/MoO3 specimens were tested using a split
Hopkinson pressure bar (SHPB) system (AOC, Hefei, China). SHPB technology was originally
proposed by Hopkinson [20] and later improved by Kolsky [21]. The SHPB technique is on the basis of
two assumptions, namely (i) the one-dimensional stress wave assumption and (ii) the specimen is in
force equilibrium and is deforming uniformly. The stress, strain, and strain rate in the specimen could
be calculated as follows: 

σe =
A0
As

E0εt(t)

εe = −2 C0
Ls

∫ t
0 εr(t)dt

.
εe = −2 C0

Ls
εr(t)

(1)

where σe, εe,
.
εe are the engineering stress, engineering strain and strain rate of the specimen, εr(t) and

εt(t) are reflected and transmitted strain histories sensed by strain gages. A0 is the cross-sectional area
of the compression bars, E0 is the Young’s modulus of the bars, C0 is the elastic wave velocity in the
bars. As and Ls are the original cross-sectional area and length of the specimen.

The diagrammatic sketch and actual device of the SHPB test system are given in Figure 3.
The diameters of the striker bar, incident bar and transmitted bar are all 20 mm, and the lengths
are 600 mm, 6000 mm, and 3500 mm, respectively. The distances of the strain gauges in the incident
bar and the transmitted bar from the specimen are 3000 mm and 1300 mm, respectively. Because the
mechanical impedance of PTFE/Al/MoO3 samples is relatively low, the signal in the transmitted
bar is weak. So LC4 aluminum bars were used in the tests to improve the signal-to-noise ratio in the
transmitted bar. If impedance-matched materials are used for the striker bar and the incident bar,
the rise time of the generated pulse (possibly a square wave) will be short when the striker bar hits the
incident bar, which is not conducive to facilitate stress-state equilibrium in the specimens. Therefore,
during the experiments, a soft and deformable pulse shaper, such as rubber, paper, etc., can be placed
on the incident end of the incident bar to increase the rise time of the generated wave. So in this study,
a pulse shaper made of rubber with a thickness of 1 mm and a diameter of 10 mm was used.

2.4. Drop-Weight Experiments

The impact sensitivity of the PTFE/Al/MoO3 material was investigated using a standard
drop-weight apparatus in conjunction with a high-speed camera, and the schematic illustration
and the actual apparatus are presented in Figure 4. The apparatus consists of a stainless steel plate
(mass ca. 10 kg) which can be released from a height of 150 cm. When the drop mass was released,
the high-speed camera was used to record the deformation process and reaction phenomenon of the
specimen, and to determine whether the specimen was ignited based on the recorded images according
to the “up-and-down technique” [22]. Once the suitable range of positive and negative reactions was
found, the tests were performed at 2 cm intervals.
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3. Results and Discussion

3.1. Mesoscale Characteristics

The initial microstructures and element distribution of the raw materials and a sintered specimen
were investigated by scanning electron microscope (HITACHI S-4800, Tokyo, Japan), as given in
Figure 5. It can be seen from the Figure 5a–d that the PTFE is soft and irregular, with an average size of
20–25 µm, Al particles have a regular spherical shape with a particle size of 800 nm to 2 µm, and MoO3

particle is an irregular polyhedron with a smooth surface and a size of 2–5 µm. The PTFE/Al/MoO3

composite material is evenly mixed, with the Al and MoO3 particles in good contact and scattered
in the PTFE matrix. The distribution of Al, C, F, and Mo element (Figure 5e–h) also confirmed the
uniform mixing of PTFE, Al and MoO3 powders.
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In the XRD pattern of the sintered PTFE/Al/MoO3 composite (Figure 6), only the diffraction
peaks of PTFE, Al, and MoO3 were detected, indicating that no chemical reaction occurred after the
material was stirred, pressed and sintered.
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3.2. Mechanical Responses under Quasi-Static Compression

Figure 7a presents the true stress-strain curves for three tests of PTFE/Al/MoO3 specimens at
the strain rate of 0.01 s−1. The results imply that the three curves almost overlapped together, and the
experimental error is 1.02%~3.17%, indicating that the experimental data in this study are repeatable
and reliable.

The true stress-strain curves of PTFE/Al/MoO3 specimens under quasi-static compression at
different strain rates are displayed in Figure 7b, and their corresponding parameters are summarized in
Table 1. The data reveal that the yield stress and compressive strength of the specimens both present an
increasing trend as the strain rate increases. But the failure strains show the opposite trend. However,
the elastic moduli of PTFE/Al/MoO3 specimens remain almost unchanged, demonstrating that the
strain rate has a limited influence on the elastic part of the specimens. PTFE/Al/MoO3 material is
a typical particle-reinforced composite material whose mechanical properties mainly depend on the
PTFE matrix and the interface formed between the matrix and the particles (Al and MoO3). In the
initial stage of loading, the specimens showed linear elastic behavior, but the entire elastic deformation
stage was short and the corresponding maximum strain was about 0.03. After yielding, the specimens
experienced strain hardening. As the compressive load continued to increase, the molecular chains in
the crystallization zone of the PTFE matrix began to slip, resulting in micro cracks, then the matrix and
particles gradually “de-bonded”. When the load reached the maximum value, the specimens failed.
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Figure 7. True stress-strain curves of PTFE/Al/MoO3 specimens under quasi-static compression.
(a) Strain rate 10−3 s−1; (b) Strain rate 10−3~10−1 s−1.

Table 1. Mechanical properties parameters of PTFE/Al/MoO3 specimens. (under quasi-static compression).

Strain Rate/s−1 Elastic Modulus/MPa Yield Stress/MPa Compression Strength/MPa Failure Strain

0.001 851 18 76 1.91
0.01 852 21 82 1.82
0.1 854 24 85 1.75

3.3. Dynamic Compression Performance

The compressive mechanical properties of PTFE/Al/MoO3 specimens at high strain rates were
measured using SHPB system (AOC, Hefei, China). The true stress-strain curves are presented in
Figure 8, and the corresponding dynamic mechanical properties parameters are shown in Table 2. As is
shown in Figure 8, the specimens are strongly sensitive to the strain rates. Same as the values under
quasi-static compression, the yield stress and compressive strength of PTFE/Al/MoO3 specimens
under dynamic compression also have strain rate effects. However, in the elastic stage, the stress-strain
curves of the specimens become steeper as the strain rate increases, that is, the elastic modulus is
sensitive to the strain rate, which is different from that under quasi-static compression.



Materials 2018, 11, 1200 8 of 14
Materials 2018, 11, x FOR PEER REVIEW  8 of 14 

 

 
Figure 8. True stress-strain curves of PTFE/Al/MoO3 specimens under dynamic impact. 

Table 2. Dynamic performance parameters of PTFE/Al/MoO3. (specimens at different strain rates). 

Strain Rate/s−1 Elastic 
Modulus/MPa 

Yield 
Stress/MPa 

Compression 
Strength/MPa 

Critical Strain 

700 1226 39.2 44.9 0.17 
1300 1456 43.2 62.8 0.35 
1800 1895 46 76.3 0.49 
2300 2568 48 100.4 0.59 
3000 3569 52 110.2 0.60 

Figure 9 presents the relationship between the yield stresses of PTFE/Al/MoO3 specimens and 
logarithm values of strain rate. As can be seen from Figure 9, there is a clear bilinear relationship 
between the yield stresses and the logarithm values of strain rate. When the strain rate is greater than 
103 s−1, the slope of the curve suddenly increases. Walley et al. [18] also found this phenomenon when 
studying the mechanical properties of a series of polymers (including PTFE) at different strain rates. 
As previously discussed, the PTFE matrix is the main component of the PTFE/Al/MoO3 specimens, 
therefore, its mechanical properties have a great influence on the mechanical responses of 
PTFE/Al/MoO3 specimens. 

 
Figure 9. Relationship between yield stresses and logarithm train rates. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

120

T
ru

e 
st

re
ss

/M
P

a

True strain

 700
 1300
 1800
 2300
 3000

strain rate/s-1

-6 -4 -2 0 2 4 6 8
15

20

25

30

35

40

45

50

55

Y
ie

ld
 s

tr
e
ss

(M
P

a
)

ln( )ε

Figure 8. True stress-strain curves of PTFE/Al/MoO3 specimens under dynamic impact.

Table 2. Dynamic performance parameters of PTFE/Al/MoO3. (specimens at different strain rates).

Strain Rate/s−1 Elastic Modulus/MPa Yield Stress/MPa Compression Strength/MPa Critical Strain

700 1226 39.2 44.9 0.17
1300 1456 43.2 62.8 0.35
1800 1895 46 76.3 0.49
2300 2568 48 100.4 0.59
3000 3569 52 110.2 0.60

Figure 9 presents the relationship between the yield stresses of PTFE/Al/MoO3 specimens and
logarithm values of strain rate. As can be seen from Figure 9, there is a clear bilinear relationship
between the yield stresses and the logarithm values of strain rate. When the strain rate is greater than
103 s−1, the slope of the curve suddenly increases. Walley et al. [18] also found this phenomenon
when studying the mechanical properties of a series of polymers (including PTFE) at different strain
rates. As previously discussed, the PTFE matrix is the main component of the PTFE/Al/MoO3

specimens, therefore, its mechanical properties have a great influence on the mechanical responses of
PTFE/Al/MoO3 specimens.
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A piecewise function can be used to describe the relationship between the logarithm values of
strain rate and the yield stress, because there is a strain rate transition point at which the sensitivity of
the yield stress to the strain rate changes greatly, as shown in Figure 9. The function can be expressed as:{

σy = 1.62 ln(
.
ε) + 28,

.
ε < 103 s−1

σy = 12 ln(
.
ε)− 43.9,

.
ε ≥ 103 s−1

(2)

where σy is the yield stress, MPa;
.
ε denotes strain rate, s−1. The correlation index R2 between the

experimental values and the fitted equation is 0.98119 and 0.99939, respectively, indicating that the
fitting results agree well with the experimental values. The linear fitting results of yield stresses and
logarithm values of strain rate are shown in Figure 10.
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3.4. Johnson-Cook Constitutive Model

The Johnson-Cook (JC) constitutive model is an empirical constitutive model based on a large
number of practical applications. The data obtained in this study have been used to fit the JC
constitutive equation. The specific details of the model are described in the researches of Johnson,
Cook and Holmquist [23,24], and are briefly reviewed below.

σ = (A + Bεp
n)[1 + Cln(

.
ε/

.
ε0)](1− T∗m) (3)

where εp denotes plastic strain,
.
ε is the strain rate,

.
ε0 is the reference strain rate. A, B, n, and C are all

material constants. Since the tests in this study were all conducted at room temperature, regardless of
the temperature softening effects of the material, so the JC equation is simplified to:

σ = (A + Bεp
n)[1 + Cln(

.
ε/

.
ε0)] (4)

Figure 9 shows that there is a bilinear relationship between the logarithm values of strain rates
and yield stresses of PTFE/Al/MoO3 specimens, and the critical strain rate is 103 s−1. Therefore,
the fitting process was divided into two parts, and the fitting parameters of the JC model are tabulated
in Table 3.

From Table 3, the JC constitutive equation of PTFE/Al/MoO3 material is:{
σ =

(
18 + 10.23ε0.7169)(1 + 0.084 ln

( .
ε/

.
ε0
))

,
.
ε < 103 s−1

σ =
(
43.2 + 77ε1.21353)(1 + 0.2255 ln

( .
ε/

.
ε0
))

,
.
ε ≥ 103 s−1

(5)
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Table 3. Fitting parameters of the JC model.

.
ε < 103 s−1,

.
ε0 = 10−3 s−1 .

ε > 103 s−1,
.
ε0 = 1300 s−1

Fitting Values Standard Error R2 Fitting Values Standard Error R2

A 18 0 1 43.2 0 1
B 10.2354 0.00492 0.99633 77.0012 0.0062 0.96842
n 0.7107 0.00387 0.99633 1.21353 0.00326 0.96842
C 0.084 0.12302 0.98039 0.2255 0.71825 0.98387

The comparison of the fitting results of the JC model and experimental values at different strain
rates for PTFE/Al/MoO3 specimens is presented in Figure 11. It can be drawn that the fitting results
are in good agreement with the measured values. The established JC constitutive model can describe
the mechanical response of PTFE/Al/MoO3 material well and can provide certain references for the
practical applications of this material.
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3.5. Drop-Weight Tests

Figure 12 shows a sequence of images taken from a high-speed camera of the PTFE/Al/MoO3

specimens under drop-weight tests (drop height is 1.5 m). PTFE/Al/MoO3 specimens can react
violently under the impact of a drop hammer, with intense light and a huge explosion sound. Moreover,
the ignition time is about 100 µs and the burning of specimen lasts approximately 700 µs.
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Unlike the reaction phenomenon of PTFE/Al, strong blue smoke was observed when the
PTFE/Al/MoO3 specimens were impacted by the drop mass, which is probably due to the reaction of
Al with MoO3, while black smoke was found when PTFE/Al reacted [25]. The typical photographs of
the PTFE/Al/MoO3 specimens before reaction and after reaction are shown in Figure 13. From the
recovered specimen (see Figure 13b), it can be seen that the reaction started from the outer edge
of the specimen with the largest shear force and the most concentrated shear deformation [26],
which demonstrates a shear-induced initiation mechanism. Ames [27], Lee [28] and Feng et al. [29] also
observed a similar reaction mode when studying the reaction behaviors of PTFE/Al reactive materials.
The reaction then propagated from the edge to the center of the specimens and quenched. We attribute
the quenching to the rapid densification caused by the drop mass, because the confined space would
limit the further shear deformation in the center of the specimens.
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Figure 13. Typical photographs of the PTFE/Al/MoO3 specimens. (a) before reaction; (b) and
(c) after reaction.

Residues after reactions were collected and analyzed by XRD. Figure 14 presents the XRD pattern
of the reaction products of PTFE/Al/MoO3 specimens. It can be concluded from the figure that the
diffraction peaks of AlF3, Al2O3, and Mo were detected in the products. Moreover, carbon black
(C) is also one of the reaction products and was not detected in the figure because of its amorphous
phase. Therefore, it is probable that the initial chemical reactions of the specimens are triggered by
PTFE and Al composites, followed by the reaction of Al and MoO3. Granier and Pantoya [30] found
that the burning velocity of Al/MoO3 thermite is strongly influenced by the preheat temperature of
the reactants. The adiabatic reaction temperature between PTFE and Al can even reach 4000 K [31],
which can greatly promote the reaction of Al and MoO3. Furthermore, the state of the product metal
(Mo) is also important for the reaction. At the high temperature produced by the reaction of PTFE
and Al, Mo exists in liquid form, which will also facilitate the interaction between Al and MoO3 [32].
Combining the analysis above, the possible chemical reactions process of PTFE/Al/MoO3 can be
described as:

4Al + 3(−C2F4−)→ 4AlF3 + 6C (6)

2Al + MoO3 →Mo + Al2O3 (7)

The sensitivity of PTFE/Al/MoO3 specimens was measured by the characteristic drop height
(H50), when the drop mass is released from this height, the specimen has a 50% probability of ignition.
H50 is calculated by the following formula:

H50 = [A + B(∑ iCi
D
− 1

2
)] (8)
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where A is the lowest height in the tests, B is the height increment, D is the number of reaction
specimens, i is the order of the drop height, and Ci is the number of reaction specimens at the specified
height. The drop-weight tests were performed on 20 PTFE/Al/MoO3 specimens. Figure 15 shows the
experimental results recorded according to the “up-and-down” methods [21]. The characteristic drop
height of the PTFE/Al/MoO3 specimen was calculated as 51.57 cm according to Equation (8).
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4. Conclusions

Quasi-static compression, dynamic compression and drop-weight experiments were performed
to study PTFE/Al/MoO3 reactive composites prepared by cold-pressing and sintering technology.
The conclusions can be drawn as follows:

(1) Mesoscale images of the specimens after sintering obtained by SEM demonstrate that PTFE, Al,
and MoO3 particles were evenly mixed. And no chemical reaction occurred after the material
was stirred, pressed and sintered.

(2) The yield stress and compressive strength of PTFE/Al/MoO3 specimens are sensitive to strain
rate within the range of 10−3~3 × 103 s−1. The elastic modulus is insensitive to the strain rate at
low strain rate, but shows significant strain rate dependence at high strain rate.
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(3) The yield stress shows a bilinear dependence on the logarithm values of strain rate, and the slope
has an increase at the strain rate of 103 s−1. The established JC constitutive model can describe
the mechanical response of PTFE/Al/MoO3 material well and can provide certain references for
the practical applications of this material.

(4) The recovered specimens show that the reaction started from the outer edge of the specimen
with the most concentrated shear deformation, indicating a shear-induced initiation mechanism.
The characteristic drop height of impact sensitivity (H50) of the PTFE/Al/MoO3 specimens was
calculated as 51.57 cm.

(5) The reaction products of PTFE/Al/MoO3 specimens were AlF3, Al2O3, Mo and C, indicating
that redox reaction occurred between PTFE and Al, and between Al and MoO3.
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