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Abstract: Accurate finite element models of mechanical systems are fundamental resources to
perform structural analyses at the design stage. However, uncertainties in material properties,
boundary conditions, or connections give rise to discrepancies between the real and predicted
dynamic characteristics. Therefore, it is necessary to improve these models in order to achieve a
better fit. This paper presents a systematic three-step procedure to update the finite element (FE)
models of machine tools with numerous uncertainties in connections, which integrates statistical,
numerical, and experimental techniques. The first step is the gradual application of fractional factorial
designs, followed by an analysis of the variance to determine the significant variables that affect each
dynamic response. Then, quadratic response surface meta-models, including only significant terms,
which relate the design parameters to the modal responses are obtained. Finally, the values of the
updated design variables are identified using the previous regression equations and experimental
modal data. This work demonstrates that the integrated procedure gives rise to FE models whose
dynamic responses closely agree with the experimental measurements, despite the large number of
uncertainties, and at an acceptable computational cost.

Keywords: stiffness properties; parameter identification; connections; machine tool; response surface
methodology; design of experiments; modal testing

1. Introduction

Machine tools are stationary, power-driven industrial devices used to manufacture workpieces
under user and technological requirements. The most demanded requirements are accuracy and
precision, which mainly depend on the static deformation and dynamic behavior of the machine tool
under variable cutting forces. Assembly errors, tool trajectory errors, and the effect of thermal sources
are also important issues [1]. Therefore, machine tool manufacturers devote strong efforts to perform
the appropriate static, modal, and dynamic analyses of the machines, in order to determine the stresses
and displacements, natural frequencies, and mode shapes. The final aim is to identify and analyze
the vibration sources under different operating conditions, in order to minimize their effects on the
surface finishing of the workpieces, stop the appearance of regenerative vibrations or chatter, and slow
down the swift wear of the tools [2,3].

Today, the design process of modern machine tools is developed under virtual environments,
where the finite element method (FEM) is widely used and particularly advised. The FEM provides a
discretized model of the machine tool, whose purpose is to reproduce the real behavior of the structure.
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Unfortunately, this approximate model shows physical uncertainties in the material properties and
loads, and numerical uncertainties in the modeling and meshing processes, limiting the quality and
reliability of the results achieved by this method. In addition, the dynamic modeling of the machine
tool connections is quite complicated, because of their non-linear characteristics, which are functions of
the interface pressure, contact area, and surface finishes. Therefore, it is essential to devote efforts so as
to improve these models, so that their dynamic characteristics resemble the real ones in the frequency
range of interest.

Updating techniques [4,5] are appropriate for achieving this objective, as they allow for improving
the finite element (FE) models of mechanical systems by using experimental modal data. Bais et al. [6],
Houming et al. [7], and Garitaonandia et al. [8,9] have successfully applied these techniques to
machine tools. Nevertheless, when the number and range of uncertainties in the FE model are
large, which leads to a poor correlation with experimental data, ill-conditioning problems and
non-uniqueness solutions may arise, and definitely lead to a failure in the model updating procedure.
Moreover, the updating techniques are associated with high computational costs, especially those
based on sensitivity calculations.

In order to solve these problems, first, it is convenient to find out which design variables have the
greatest influence on the dynamic characteristics of the mechanical system. In this respect, a review
of the state of the art machine tools is presented by Brecher et al. [10]. Also, in the literature [11–13],
the most significant design variables for different types of machine tools are introduced.

An adequate technique to perform this task is the design of experiments (DoE) methodology [14]
and subsequent analysis of variance (ANOVA). The DoE statistically analyzes the effect of several
factors and their combinations on a process or system, and allows for determining the significant ones.
Also, it is a powerful tool to bring out the interactions between the variables.

On the other hand, an alternative option to address the time-consuming and numerical problems
inherent to any iterative updating process involving FE computations, is to replace that model by an
approximate model, a so-called surrogate or meta-model, which provides a more simple mathematical
relationship between design variables and model responses. For instance, the coefficients of these
mathematical formulations are a matter of concern for Lamikiz et al. [15], and are focused on complex
new approaches for alternative processes on ruled surfaces [16].

The models developed through the response surface methodology (RSM) are widely used as
meta-models [17]. This methodology is very useful in the design and optimization of new processes
and products [18–20], especially if is affected by several variables, due to its low computational effort.
Also, it can be used in an inverse sense, for the system identification applications, to find out the true
values of the design variables that are inaccurately defined in a finite element model, with the help of
experimental responses.

Some research related to the previous application of RSM can be found in the literature.
Guo and Zhang [21] introduced the general procedure and applied it so as to update the stiffness
values of three elements of the FE model of an H-shaped structure. In comparison with the traditional
sensitivity-based model updating methods, the RSM-based method was found to be much more
cost-efficient, providing, at the same time, accurate results. Later, Rutherford et al. [22] used RSM to
perform stiffness and damping identification in two simple five degree of freedom systems, one linear
and the other nonlinear. The final purpose was to demonstrate the suitability of this methodology for
damage identification in civil structures. In conclusion, the procedure worked efficiently to determine
the stiffness and damping coefficients in the simple linear system, while limited success was achieved
in the nonlinear case.

Ren and Chen [23] updated the elastic modulus of the FE model of a full-size precast continuous
box girder bridge and the cross-sectional area of two connections elements using response surface
methodology. The results showed that the frequencies of the updated model were closer to the
experimental ones, but there were still differences (up to 12%). Afterwards, Fang and Perera [24] used
RSM to identify the structural damages in civil engineering structures. The procedure was tested on
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two real civil structures, a reinforced concrete frame and the I-40 bridge, and, in conclusion, it was
found that the damage predictions in both structures agreed well with the experimental observations.

Recently, Sun and Cheng [25] updated the shear moduli of a honeycomb sandwich plate.
That work focused on the analysis of the optimum number and position of the DoE samples, which,
in conjunction with an adequate approximation algorithm, led to building the most accurate response
surface model. In the end, the updated moduli were included in the FE model and the results of the
dynamic analysis of this model corresponded with the experimental ones.

A common feature of these approaches is that few design variables are identified. In this regard,
Ren and Chen [23] state that RSM is still not well tested in complex structures, such as machine
tools, where there are a large number of uncertain parameters and the relationships between these
parameters and responses are more intricate. Another drawback is that the number of responses is
small, and when the modal frequencies are selected, it is always assumed that the identified values
of the design variables leads to a preservation or, even, an improvement of the correlation features
between the numerical and experimental mode shapes. This is true in the modeling processes were
beam elements, spring elements, and lumped masses are primarily used, leading to simple mode
shapes. However, according to Fang and Perera [24], in complex structures, the correlation between
the mode shapes must be taken into consideration, because in these systems, multiple (coupled) modes
or different sequences between the experimental and FE modes shapes could appear. Furthermore,
Gallina et al. [26] state that when changes in the values of the design variables are introduced in
a mechanical system, its modal responses may be affected by degenerative phenomena, such as,
mode crossing, mode veering, and mode coalescence. Therefore, it is necessary to keep this problem
in mind, because otherwise the quality of the RS model could be greatly affected and, as a result,
could lead to important difficulties when comparing numerical and experimental mode shapes.

Finally, in these approaches, it is assumed that all of the selected design variables affect all of
the responses. This is not necessarily true, and could cause an erroneous estimation of the response
surfaces, due to the presence of redundant terms in the polynomial functions.

Therefore, the aim of this paper is to present a consistent methodology so as to identify the values
of the design parameters that better reproduce the dynamic responses in the mechanical systems, with a
large number of uncertainties, at a reasonable computational cost, and maintaining the correlation
characteristics. Firstly, parameter screening using two-level fractional factorial designs is conducted in
order to determine the design variables that specifically affect each modal response, because when
there are many variables, not all of them influence all of the responses. Then, second order regression
equations relating the design variables and responses are attained by means of central composite
design-based RSM methodology and least squares techniques. In order to look simultaneously
for the best adequacy and predictive capability of these functions, the non-significant terms are
removed. For that purpose, a procedure based on statistic indicators, coefficients of determination R2,
and the t-statistic, is performed and, as a result, the number of terms in these equations is optimized.
Next, using these functions, which temporarily replace the FE model, the updated values of design
variables are identified by minimizing the residuals between numerical and experimental responses.
In this study, a particular application of the so-called desirability function has been used to accomplish
this task. Finally, the identified values are placed in the finite element model and the new dynamic
responses are determined.

The proposed methodology is applied on a machining center and the comparison of the obtained
results to the experimental ones demonstrates its efficiency and efficacy to update the FE models of
complex mechanical systems with numerous uncertainties.

2. Dynamic Characteristics of the Machining Center

2.1. Finite Element Model

In this section, the dynamic characteristics of the DANOBATGROUP DS630 (DANOBATGROUP,
Elgoibar, Spain) high speed horizontal machining center are presented. This machine tool has three
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linear axes and is made up of four main modules, namely, a bed frame, column, framework, and ram,
which slide over roller type linear guideways. Two servo motors, directly coupled to ball-screws
supported by bearings at both ends, provide the displacement along Y- and Z-axes, while the movement
in the X-axis is performed by a linear motor. The machine is joined to a concrete basement by anchor
bolts and leveling elements adjust and align the bed frame.

Firstly, a FE model of the machine tool has been defined (Figure 1), which consists of 12,804 nodes
and 14,983 elements, mainly shell and solid brick elements. The connections between the different
components and the connection to the foundation have been modeled by linear spring elements. In this
way, the contact elements and friction coefficients in the FE formulation are avoided, reducing the
complexity and keeping the model linear. These linear springs characterize the previously mentioned
linear guideways, ball-screws, and bolts, and are incorporated into the FE model in their locations.
The anchor bolts connecting the bed frame to the basement behave rigidly, so high stiffness spring
elements have been used in the modeling process. Linear guideways have been modeled assigning
average stiffness values in two directions, perpendicular and transverse to the direction of movement,
based on the stiffness curves provided by the guideway supplier [27], and very low stiffness values
along the directions where the movement is developed. A similar modeling has been followed for the
ball-screws, although, in this case, low stiffness values have been set in perpendicular and transverse
directions to the main movement [2,28,29]. Moreover, the tool holder has been simulated as a beam,
and spindle, servo motors and the face milling cutter as lumped masses. Finally, solid brick elements
have been used to model the primary and secondary sections of the linear motor with a spring element
between them. Table 1 describes the main parameter values of the FE model.
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Lumped mass 120 kg Spindle. 

Lumped mass 1.5 kg Face milling cutter. 
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Lumped mass 100 kg Servo motor Z. 

Figure 1. Finite element (FE) model of the machine tool.

Table 1. Main parameter values of the finite element (FE) model.

Parameter Value(s) Description

Stiffness X,Y,Z 750,750,750 N/µm Connections foundation-bed frame.

Stiffness X,Y,Z 1,720,750 N/µm Connections bed frame-column (guideway).

Stiffness X,Y,Z 720,1,750 N/µm Connections column-framework (guideway).

Stiffness X,Y,Z 560,750,1 N/µm Connections framework-ram (guideway).

Stiffness X 110 N/µm Connection between primary and secondary
sections of the linear motor.

Lumped mass 120 kg Spindle.

Lumped mass 1.5 kg Face milling cutter.

Stiffness Y 176.7 N/µm Y ball-screw.
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Table 1. Cont.

Parameter Value(s) Description

Lumped mass 100 kg Servo motor Y.

Stiffness Z 172.7 N/µm Z ball-screw.

Lumped mass 100 kg Servo motor Z.

E, ρ 125 GPa, 7100 kg/m3 Young’s modulus (E) and mass density (ρ) of the
bed frame and column (cast iron).

E, ρ 175 GPa, 7100 kg/m3 Young’s modulus (E) and mass density (ρ) of the
framework and ram (cast iron GGG70).

E, ρ 210 GPa, 7850 kg/m3 Young’s modulus (E) and mass density (ρ) of
specific parts of the machine tool.

Then, using the Lanczos solver, the free motion of the structure has been analyzed by calculating
the natural frequencies and mode shapes from the assembled mass and stiffness matrices of the
numerical model. As the connection between the bed frame and the basement is considered in the FE
model, these modal parameters correspond to the in situ configuration of the machine. According to
several tests developed under chatter conditions [30], the frequency range of interest has been defined
as 10 Hz to 120 Hz. The natural frequencies are shown in Table 2.

Table 2. Natural frequencies of the initial FE model. FEA—finite element analysis.

f FEA1 f FEA2 f FEA3 f FEA4 f FEA5 f FEA6

33.7 60.4 69.7 73.9 87.5 112.3

2.2. Experimental Modal Analysis

In order to experimentally determine the dynamic characteristics of the machining center,
a multiple reference impact test was performed, using, as references, point 5 along X and Y directions
and by exciting the system with an instrumented hammer. The translational acceleration responses
in the X-, Y-, and Z-axes were measured in 75 points using triaxial accelerometers, so the accelerance
frequency response functions (FRFs) corresponding to 225 degrees of freedom were obtained. The total
number of measured FRFs was 450. Figure 2 shows a wire frame model representation of the test
structure. The references are identified with arrows.
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From the measured FRFs, a polyreference Least Squares Complex Frequency (pLSCF) estimator
was used to extract the system modal parameters. Table 3 shows the natural frequencies and a brief
description of the different mode shapes.

Table 3. Natural frequencies and mode shapes obtained by experimental modal analysis.

Mode Order f exp
(Hz)

Damping
Ratio (%) Description of the Mode Shape

1 33.7 4.8 Rotation of the whole structure around the X-axis.

2 60.5 3.3 Translation along Y of the framework and ram.

3 65.9 3.5 Rotation of the upper part of the machine around the Y-axis.

4 77.2 5.4 Rotation of the upper part of the machine around the Y-axis,
but now ram is in counter-phase.

5 84.0 5.1 Rotation of framework and ram around the X-axis.

6 106.5 3.3 Rotation of the whole structure around the Y-axis. Ram is in
counter-phase.

2.3. Comparison between FE and Experimental Modal Data

At this point, there are two sets of different results, related to the numerical and experimental
models. The next step is to evaluate the correspondence between them, because it is necessary that
both models show a considerable degree of correlation, in order to improve the FE model successfully.

Firstly, the geometrical correlation has been developed to match the different coordinate and unit
systems used in the models, and, then, the mode shape correlation has been performed to establish a
reliable pairing between the numerical and experimental modes. A very useful indicator to compare
and contrast the modal vectors from the different sources is the modal assurance criterion (MAC) [31].
The MAC shows the degree of linearity between two modal vectors, ϕFEA (FEA—finite element
analysis) and ϕexp, as follows:

MAC
(
∅FEA,∅exp

)
=

(
∅T

FEA·∅exp
)2(

∅T
FEA·∅FEA

)
·
(
∅T

exp·∅exp

) (1)

The MAC can take on values from 0, showing a lack of correspondence between the modal vectors,
to 1, which means that the modal vectors are the same.

Table 4 shows the frequency differences and MAC values between the FE and experimental
responses, wherein the MAC values corresponding to the paired mode shapes have been bolded.

Table 4. Frequency differences and modal assurance criterion (MAC) values.

FEA
Order

f FEA
(Hz)

f exp1
33.7

f exp2
60.5

f exp3
65.9

f exp4
77.2

f exp5
84.0

f exp6
106.5

Diff.
(Hz)

Diff.
(%)

Pair
Number

1 33.7 96.6 0.6 0.3 0.0 1.9 0.1 0.0 0.0 1
2 60.4 1.7 98.8 1.2 0.0 1.3 0.1 −0.1 −0.2 2
3 69.7 0.0 0.0 76.3 4.3 0.0 1.5 3.8 5.8 3
4 73.9 0.1 0.0 30.3 89.0 1.3 3.7 −3.3 −4.3 4
5 87.5 1.9 0.1 1.2 0.9 91.0 0.1 3.5 4.2 5
6 112.3 0.0 1.0 0.1 0.0 0.1 70.3 5.8 5.4 6

These correlation results can be considered sufficient for a large number of practical
applications [32,33], as the mean frequency difference is 3.3%, and the mean MAC value is 87.0%.
Nevertheless, there are still moderate differences between several natural frequencies, which confirm
that it is necessary to improve the FE model. Therefore, the main goal of the following procedure will
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be to match the numerical frequencies to the experimental ones, while maintaining or improving the
MAC pairing values.

3. Methods: Design of Experiments, Response Surface Methodology, and Desirability Functions

3.1. Two-Level Designs for Parameter Screening

Among the different types of experimental designs [14], the factorial designs are widely used to
identify, at the initial stages, the main variables that affect any process or system (i.e., as screening
experiments). The basic design is a two-level or 2k design, where k is the number of variables and each
of them takes an upper and a lower level. A complete trial of such a design needs 2k runs and allows
for estimating the linear effects of the k variables and their interactions.

Nevertheless, as the number of variables, k, increases, the number of runs in the trial also increases,
but dramatically, and interactions between three, four, and more variables appear. Assuming that the
highest interactions are negligible, it would be possible to obtain information concerning the effects of
the variables and low-order interactions by running a part or fraction of the complete factorial design,
2k−p, where p indicates the fraction chosen (1/2p). The so-called resolution V design is especially
interesting, which provides information about the contribution of variables and two-factor interactions,
mixed with higher-order interactions. As these are negligible, the fractional designs are better than the
complete factorial designs, because the number of runs diminishes considerably.

Once the trial has been finished, the next step is to identify the significant factors and interactions
by performing an analysis of variance on the results. According to ANOVA, the variability of the
results in an experiment that is dependent on several variables, is the sum of variability due to each
factor, plus that contributed by the interaction between the factors, and that added by the internal
error. Also, using ANOVA, the sum of squares (SS) can be used as a measure of the overall variability,
so that the greater the SS due to a factor, the larger its importance on the process or system. Thus,
it will be possible to find out which variables and interactions are the most significant.

3.2. Response Surface Methodology to Develop an Optimal Mathematical Model

The purpose of response surface methodology is to build an explicit function to approximate
the actual relationship between the variables, xi, and a response, y, involved in an engineering
problem. That function, preferably a low-order polynomial, is in fact a regression model, less expensive
to evaluate, which can be used to predict the response developed in the system under a specific
combination of variables.

In general, the behavior of the industrial processes and mechanical systems cannot be explained
by linear functions [19,23,34], so, in the following section, the second-order models (Equation (2)) and
the experimental designs that are preferable to adequately estimate these models will be examined.

y = β0 +
k

∑
i=1

βi·xi +
k

∑
i=1

βii·x2
i +

k−1

∑
i=1

k

∑
j=i+1

βij·xi·xj + ε (2)

In Equation (2), β0 is the average value of response; y, βi, βii, and βij are the partial regression
coefficients; ε is the error term; and k is the number of variables.

One of the most popular designs for fitting second-order models is the central composite design
(CCD). It is built in a sequential way, based on a two-level factorial (2k) design, plus 2k axial and
nC center points. The points added to factorial design allow an efficient estimation of the possible
curvature of the model.

Firstly, a set of responses y is obtained on the completion the experiments of the central composite
design. Then, the values of these responses and design variables are substituted in Equation (2),
and rewritten in matrix form as follows:

y = X · β + ε (3)
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Equation (3) is solved using the least squares method, by minimizing the sum of the squares of
the errors εi. That leads to a least squares estimator of β, as follows:

b = (XT · X)−1 · XT · y (4)

At this point, an initial second-order model is completely defined using all of the design variables
and interactions. Then, it is necessary to perform an analysis of variance to check the significance of
each parameter and the adequacy of the regression model. For this last purpose, various statistical
parameters can be used, such as, the coefficient of determination R2, the adjusted R2, and the predicted
R2 [17]. These coefficients are all expected to be close to 1.0, which would mean that the regression
model, yRSM, explains the response, y, properly and that it also predicts adequately new responses.

Nevertheless, if there are substantial differences between them, the least significant parameter
is removed using the t-test, and a new regression model, Equation (2), is built and the analysis is
repeated until the remaining parameters are all significant. On the completion of the iteration process,
the optimum response surface model can be considered as adequate to carry on the next stage of the
improvement procedure.

3.3. Identification of Updated Values of the Design Variables using the Optimum RS Model

Once the mathematical relationships between the design variables and responses have been
established, the final step is to identify those values of the design variables that lead to the responses
that better fit the experimental ones. This is actually an inverse multi-objective constrained optimization
problem, and nonlinear programming techniques can be used to solve it.

Another alternative approach is based on the so-called desirability function [35], which is
explained in the following. Firstly, each estimated response, yRSMi, is turned into a desirability
function, di, as follows:

di =

(
yRSMi − yLOWi
yOBJi − yLOWi

)S
, yLOWi < yRSMi < yOBJi (5)

di =

(
yRSMi − yUPi
yOBJi − yUPi

)T
, yOBJi < yRSMi < yUPi (6)

di = 0, yRSMi < yLOWi and yUPi < yRSMi (7)

where yOBJi is the target experimental response, and yLOWi and yUPi are the lower and upper limits for
each response (Figure 3).
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Then, a global desirability function, D, is built as the geometric mean of individual desirabilities,
di, as follows:

D = (d1 · d2 · . . . · du)1/u (8)

where u is the total number of the experimental responses.
Finally, the results are ranked in decreasing desirability order and the values of the design

variables that maximize the global desirability D are selected.

4. Case Study

4.1. Initial Selection of Candidate Design Variables

In order to improve the FE model, first, it is necessary to select the design variables to work with.
There are a large number of design parameters to be considered in this machining center, but, in fact,
the main uncertainties in the FE model are concentrated on connections, as follows:

1. Stiffness values of the connection elements between main components of the machine tool
(Figure 4);

2. Stiffness values assigned to the elements that attach the machine tool to the foundation
(Figure 5); and

3. Stiffness value along X direction of the connection element, between the primary and secondary
sections of the linear motor.
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Nevertheless, the number of variables is still large, three stiffness values for the joints to the
foundation, the stiffness value for the inner connection of the linear motor, and six stiffness values
for the connections between the modules of the machining center (Table 5). Therefore, first, it is
necessary to determine which variables affect, to a large extent, each model response and, hence,
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remove those whose influence is negligible. For this purpose, a resolution V design would be the
most convenient (i.e., in our case, a 210−3 fractional design with 128 runs) [14]. However, it is still too
laborious to manage such a number of runs. Furthermore, some parameter combinations could lead to
inappropriate model responses, due to the presence of the constraints among them. Thus, in order to
facilitate the analysis and gain a progressive comprehension of the significance of each design variable
and interaction, instead of a single 210−3 fractional design, an alternative trial with seven 25−1 designs
(16 runs each) has been performed (Table 5). Each variable has been paired up with the rest at least
once, so that after the completion of the whole set of 25−1 experiments, it has been possible to look into
the effects of all of the design variables and two-factor interactions by means of ANOVA.

Table 5. List of variables used in fractional factorial designs 25−1.

Connection Design
Variable Code Lower

Bound
Nominal

Value
Upper
Bound

25–1

Design

Foundation—bed frame Stiffness X kX21 600 750 1050 1,3,5,6
Foundation—bed frame Stiffness Y kY22 600 750 1500 1,3,5,6
Foundation—bed frame Stiffness Z kZ63 600 750 1050 1,3,5,6

Linear motor (inner) Stiffness X kX210 80 110 160 2,4,6
Bed frame—column Stiffness Y kY3 450 720 1125 2,4,5,7
Bed frame—column Stiffness Z kZ4 400 750 900 2,4,5,6

Column—framework Stiffness X kX11 450 720 1125 2,3,7
Column—framework Stiffness Z kZ13 400 750 900 2,3,7

Framework—ram Stiffness X kX8 210 560 900 1,4,7
Framework—ram Stiffness Y kY9 450 750 1000 1,4,7

Prior to conducting the fractional designs, the range of each variable was decided (Table 5)
according to load–deformation curves [27] and previous works [30].

On completion of the trial, the total corrected sum of squares, SST (Figure 6), and the sum of
squares of each factor and the two-factor interactions, mixed with higher interactions (SSi and SSij)
(Figures 7 and 8), have been obtained as a measure of the variability, for all of the frequencies and
MAC values. Firstly, for each response, the SST has been examined, as some designs add much more
variability than others, because of the variables involved. Thus, Figure 6 shows that MAC1 and MAC2

are not affected by the changes in the design variables, and that the variability of f FEA2 is negligible.
As this frequency matches its experimental pair (Table 4), it has been omitted in later analyses.
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Figure 8. Percentage contribution for MAC values in design number 4: 1–5, design variables kX210, kY3,
kZ4, kX8, and kY9, respectively; 6–15, two factor interactions kX210–kY3, kX210–kZ4, kX210–kX8, kX210–kY9,
kY3–kZ4, kY3–kX8, kY3–kY9, kZ4–kX8, kZ4–kY9, and kX8–kY9, respectively.

In order to determine which variables and two-factor interactions provide the largest influence
on the variability of natural frequencies and mode shapes, SSi and SSij have been gradually analyzed
in each 25−1 design. As an example, Figures 7 and 8 illustrate the percentage contribution of each
parameter in design number 4.

From Figure 7, it is found that the design variables (1–5) have a larger influence on the natural
frequencies than the two-factor interactions (6–15). For instance, design variable 2 (kY3) dominates
the 1st and 2nd natural frequencies, design variable 4 (kX8) has a huge influence on the 6th natural
frequency and an important weight on the 3rd and 4th natural frequencies, and design variable 5 (kY9)
governs the 5th natural frequency. However, only parameter 8 (interaction kX210–kX8) slightly affects
the 3rd and 4th natural frequencies. Also, design variable 3 (kZ4) does not seem to have a notable
influence on any natural frequency.

On the other hand, from Figure 8, some of the interactions play significant roles in MAC values
(3, 4, and 6, mainly). In fact, MAC4 is heavily affected by parameter 8 (interaction kX210–kX8), which also
provides an important contribution to the variance of MAC3. Also, parameter 11 (interaction kY3–kX8)
causes approximately 35% of the total variability to MAC6. Nevertheless, in general, the individual
design variables have a greater influence than the interactions.
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This analysis has been repeated for each 25–1 design, so that it has been possible to gradually gain
a better insight into the influence of the design variables and two-factor interactions on the responses.
Finally, those factors providing more than 99% of the total variability for the frequencies, and 97.5%
for the MAC values have been selected (Tables 6 and 7) to continue with the improvement procedure.

Table 6. Summary of variables affecting responses.

Connection Design Variable Code f FEA1 f FEA3 f FEA4 f FEA5 f FEA6 MAC3 MAC4 MAC5 MAC6

Foundation—bed frame Stiffness X kX21
Foundation—bed frame Stiffness Y kY22 X X X X
Foundation—bed frame Stiffness Z kZ63 X X X

Linear motor (inner) Stiffness X kX210 X X X X X
Bed frame—column Stiffness Y kY3 X X X X X X X X
Bed frame—column Stiffness Z kZ4 X X X X X X X

Column—framework Stiffness X kX11
Column—framework Stiffness Z kZ13 X X X

Framework—ram Stiffness X kX8 X X X X X X
Framework—ram Stiffness Y kY9 X X X

Table 7. Summary of two-factor interactions affecting responses.

Responses Interactions

f FEA1 kY22–kY3
f FEA3 kX210–kY3, kX210–kZ4, kX210–kX8, kY3–kX8
f FEA4 kX210–kZ4, kX210–kX8, kZ4–kX8
f FEA5 kY22–kZ63, kY22–kY9, kZ63–kZ13, kZ63–kY9
f FEA6 kY3–kZ4, kY3–kX8, kZ4–kX8
MAC3 kX210–kY3, kX210–kZ4, kX210–kX8, kY3–kZ4, kY3–kX8, kZ4–kX8
MAC4 kX210–kY3, kX210–kZ4, kX210–kX8, kY3–kX8
MAC5 kX21–kX11, kX21–kX8, kY22–kZ63, kY22–kZ13, kY22–kY9, kZ63–kZ13, kZ63–kY9, kY3–kY9, kZ13–kY9
MAC6 kY22–kZ63, kY22–kZ4, kX210–kY3, kX210–kX8, kY3–kZ13, kY3–kX8, kZ4–kY9, kX11–kY9, kZ13–kX8

Several conclusions can be inferred from Tables 6 and 7, as follows:

• The fractional factorial experiments have allowed for finding out the design variables and
interactions that affect the responses. Therefore, the screening experiment has satisfactorily
achieved the initial goal.

• Two design variables do not influence the natural frequencies, namely the stiffness kX11 and
horizontal stiffness kX21 of the connections to the foundation.

• Three design variables are only significant for one natural frequency (f FEA5), namely the transverse
stiffness kZ63 between the bed frame and foundations, and two stiffnesses between the modules
of the machine tool, kZ13 and kY9.

• MAC5 and MAC6 are affected by the largest number of interactions. Furthermore, some of
them include design variables that do not influence them individually, for example, interaction
kX11-kX21. This situation only appears in these two responses. In addition, the total number of
design variables, considered both individually and in interactions, which affect each of these
responses is nine (i.e., almost all). Nevertheless, along the complete set of fractional designs,
the MAC5 values were always larger than 80% and the MAC6 values ranged from 68% to 73%.
Thus, it has been decided not to carry on with the study of these responses, because the number
of involved variables would lead to a costly analysis in the next step, while the benefits would be
quite poor.

• The natural frequencies f FEA3 and f FEA4 and the corresponding MAC values depend on the same
group of design variables, kX210, kY3, kZ4, and kX8. In addition, the natural frequency f FEA6

is dependent on three of these variables, kY3, kZ4, and kX8. Therefore, in the next step of the
improvement process, these three natural frequencies will be analyzed together, so as to reduce
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the number of experiments necessary to define their meta-models. In addition, it is interesting to
note that the mode shapes associated to these frequencies take place in plane XZ.

• The natural frequency f FEA5 is affected by four variables that do not have any influence on
the frequencies f FEA3, f FEA4, and f FEA6, and, vice versa, the variables that affect these three
frequencies do not provide any variability to the natural frequency f FEA5. Moreover, some of the
design variables representing stiffness in the X direction, kX8 and kX210, do not affect the 1st and
5th mode shapes, whose principal movement is in plane YZ. Thus, it is concluded that the design
variables are working collectively.

4.2. Development of Explicit Relationships between Design Variables and Responses

The next step of the improvement procedure is the definition of the mathematical functions that
relate the variables and responses of Tables 6 and 7, using response surface methodology.

Taking into consideration the conclusions drawn in the previous section, referring to the collective
influence of the design variables on te responses, three different central composite designs have been
developed, as follows:

• Central composite (CC) design 1: including f FEA1 and design variables kY22, kY3, and kZ4.
Although it would seem unnecessary to search for this relationship, because f FEA1 is already
matched, as it is influenced by the design variables that also influence other frequencies,
any change on them would affect this frequency too. So, it is indispensable to know
this relationship.

• CC design 2: with the following responses f FEA3, f FEA4, f FEA6, MAC3, and MAC4, and design
variables kX210, kY3, kZ4, and kX8.

• CC design 3: including f FEA5 and design variables kY22, kZ63, kZ13, and kY9.

Each central composite design has been developed through 2k points from the factorial design
with k factors; 2k axial points face centered, where one variable takes the upper and lower limits and the
others have mean values; and finally one central point. Thus, a total number of 65 experiments (15, 25,
and 25, respectively) have been completed. Also, prior conducting the experiments, the design
variables must be normalized to values (−1), (0), and (+1), which stand for the lower bound,
mean value, and upper bound of each variable, respectively (Equation (9)).

Xi = 2·
(

ki − kLOWi
kUPi − kLOWi

)
− 1 (9)

where kUPi and kLOWi are the upper and lower limits defined in Table 5.
Firstly, the study has focused on the relationship between f FEA1 and the variables that affect it.

Using the results obtained from the central composite design, an initial second-order model with all of
the design variables and interactions have been developed, namely Equation (10), as follows:

f RSM1 = 34.9265 + 1.1893 · XY3 + 1.3810 · XY22 + 0.1806 · XZ4 + 0.1531 · XY3 · XY22 +
+ 0.0065 · XY3 · XZ4 + 0.0177 · XY22 · XZ4 − 0.4593 · (XY3)2 − 0.5171 · (XY22)2 − 0.0559 · (XZ4)2 (10)

where f RSM1 is the estimated response corresponding to the first natural frequency, f FEA1.
Then, the significance and the predictive capability of the regression model as well as the

significance of the individual regression coefficients have been examined by means of the coefficients
of determination, R2 and t-tests (Tables 8 and 9).
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Table 8. Significance and predictive capability of the regression models.

Coef. Initial Model Model 2 Model 3

R2 0.9997 0.9997 0.9996
adjR2 0.9984 0.9986 0.9985

predR2 0.9974 0.9982 0.9981

Table 9. Significance of individual regression coefficients: t-statistic.

Term Coef. Initial Model Model 2 Model 3

Constant b0 1410.7606 1521.1830 1482.9372
kY3 b1 81.6470 88.0377 85.8242
kY22 b2 94.8073 102.2280 99.6577
kZ4 b3 12.3961 13.3664 13.0303

kY3–kY22 b12 9.4043 10.1404 9.8854
kY3–kZ4 b13 0.4007 - -
kY22–kZ4 b23 1.0838 1.1686 -

(kY3)2 b11 −5.9900 −17.2415 −16.8080
(kY22)2 b22 −18.0039 −19.4131 −18.9250
(kZ4)2 b33 −1.9461 −2.0984 −2.0457

In Table 8, the R2 coefficients for the initial model show that the regression function explains the
observed responses in the central composite design experiment quite well. Also, predR2 suggests that
the model will fit new responses remarkably.

In order to test the significance of the different terms of Equation (10), the t-statistics [17] for
coefficients bj of the initial model have been calculated (Table 9). Using a 95% confidence level (α = 0.05),
these terms must be larger than the value of the t-distribution t0.025,5 = 2.571, and it is shown that the
corresponding t-statistics for b13, b23, and b33 are smaller. Thus, these three terms are non-significant
in the regression model and can be removed. As it is convenient to eliminate one term in each step,
b13 has been picked out first, as its t-statistic was the smallest one.

Then, the same procedure, explained in previous paragraphs, has been repeated for this new
model, without the term b13. The results in Table 8 (model 2) show that both adjR2 and predR2 have
increased slightly. Therefore, as expected, removing the non-significant terms in the regression
model has led to a more adequate model. Nevertheless, in the regression equation still there are
non-significant terms (Table 9), as some t-statistics are smaller than t0.025,6 = 2.447. So, coefficient b23

has been removed, and a new model (model 3) has been made. In this case, adjR2 and predR2 have
reduced slightly. Although the differences are totally negligible, considering that this regression model
would lead to poorer results than the previous one, the iteration process has been stopped and the
preceding regression model has been selected. In Table 10, the results of analysis of variance (ANOVA)
of the final model are summarized.

Table 10. Analysis of variance (ANOVA) for the response surface model.

Source Sum of
Squares

Degree of
Freedom Mean Squares F Value p Value

Regression 36.114 8 4.514 2473.8 0.000
Residual 0.011 6 0.002 - -

Total 36.125 14 2.580 - -

From Table 10, it is shown that the model is highly significant (p < 0.001), and confirms that it can
be used to simulate the response adequately.
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So, the final regression equation for the first natural frequency is as follows:

f RSM1 = 34.9265 + 1.1893 · XY3 + 1.3810 · XY22 + 0.1806 · XZ4 + 0.1531 · XY3 · XY22 +
+ 0.0177 · XY22 · XZ4 − 0.4593 · (XY3)2 − 0.5171 · (XY22)2 − 0.0559 · (XZ4)2 (11)

In this case, only one bj element has been removed and the optimum model is very similar to the
initial one. As it will be shown later, in some regression equations, more bj elements will be eliminated,
mainly those referred to in second-order terms (see, for example, Equation (17)).

A similar procedure has been followed for f FEA5. In this case, the regression equation is as follows:

f RSM5 = 87.4450 + 0.7551 · XY9 + 0.5414 · XY22 + 2.3563 · XZ13 + 0.7345 · XZ63 +
+ 0.0618 · XY9 · XY22 + 0.1096 · XY9 · XZ63 + 0.0785 · XY22 · XZ63 + 0.0725 · XZ13 · XZ63 −

− 0.2318 · (XY9)2 − 0.1674 · (XY22)2 − 0.8645 · (XZ13)2 − 0.2321 · (XZ63)2
(12)

The coefficients of determination, R2 = 0.9989, adjR2 = 0.9977, and predR2 = 0.9984 (Table 11),
have led again to a reliable model.

Table 11. Summary of coefficients of determination. RSM—response surface methodology.

Coefficients of
Determination f RSM1 f RSM3 f RSM4 f RSM5 f RSM6 MACRSM3 MACRSM4

R2 0.9997 0.9910 0.9870 0.9989 0.9995 0.9304 0.9271
adjR2 0.9986 0.9845 0.9805 0.9977 0.9993 0.8956 0.9080

predR2 0.9982 0.9746 0.9750 0.9948 0.9986 0.8692 0.8816

Finally, the rest of the responses, f FEA3, f FEA4, and f FEA6, along with MAC3 and MAC4, have been
analyzed altogether, because the variables that affect them were the same. The final regression
equations are shown in Equations (13)–(17), and the coefficients of determination in Table 11.

f RSM3 = 71.1723 + 2.3373 · XX8 + 2.2295 · XX210 + 0.4979 · XY3 + 0.4722 · XZ4 +
+ 1.3206 · XX8 · XX210 + 0.2019 · XX8 · XY3 − 0.1702 · XX210 · XY3 + 0.1562 · XX210 · XZ4 −

− 2.1869 · (XX8)2 − 0.6804 · (XX210)2
(13)

f RSM4 = 76.7443 + 2.6736 · XX8 + 1.7965 · XX210 + 0.6450 · XY3 + 0.5125 · XZ4 −
− 1.3133 · XX8 · XX210 + 0.3977 · XX8 · XZ4 −0.1550 · XX210 · XZ4 − 1.2361 · (XX8)2 (14)

f RSM6 = 118.5952 + 8.1498 · XX8 + 0.3207 · XY3 + 1.0787 · XZ4 − 0.1247 · XX8 · XY3 −
− 0.2232 · XX8 · XZ4 + 0.1697 · XY3 · XZ4 − 3.2813 · (XX8)2 − 0.2193 · (XY3)2 − 0.3628 · (XZ4)2 (15)

MACRSM3 = 63.4984 − 9.4610 · XX8 + 8.9519 · XX210 + 2.1027 · XY3 − 3.8195 · XZ4 +
+ 10.4715 · XX8 · XX210 + 1.1365 · XX8 · XY3 − 2.6332 · XX8 · XZ4 + 3.0198 · (XZ4)2 (16)

MACRSM4 = 84.2937 + 5.9049 · XX8 − 5.2622 · XX210 − 1.0676 · XZ4 + 12.2980 · XX8 · XX210 −
− 9.2492 · (XX8)2 (17)

In Table 11, the coefficients of determination for f RSM1, f RSM5, and f RSM6 are very close to 1.0,
while the coefficients for f RSM3 and f RSM4 are slightly lower, although greater than 0.974, and all of them
are similar or better than those attained by the authors of [22–24]. On the other hand, the coefficients
of determination for MACRSM3 and MACRSM4 are lower, in some cases under 0.9. In this case, it is not
possible to compare them to others, because, to the best of our knowledge, in the literature, there are
no results using RSM to simulate MAC responses. Nevertheless, those values are also superior to the
coefficients obtained by the authors of [22–24] for other responses. So, in conclusion, the approximate
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functions in Equations (11)–(17) were judged as good enough to accurately relate the design variables
and responses, and are adequate to use in the subsequent phase of the improvement procedure.

4.3. Determination of Updated Values of Design Variables

Once the explicit relationships between the design variables and model responses have been
determined, the next step is to identify the most adequate stiffness values for the connection elements
of the FE model, so that the new model simulates accurately the experimental dynamic behavior.

However, prior to performing this step, it is interesting to have a look at Table 12, which shows the
responses obtained and the combinations of variables in the CC design 2, and wherein the frequencies
inside the range (f expi − 1 Hz) < f FEAi < (f expi + 1 Hz), and where MAC values higher than the initial
ones have been bolded.

Table 12. Variables and responses in central composite design 2.

Run f FEA3 MAC3 f FEA4 MAC4 f FEA6 kX8 kX210 kY3 kZ4

1 75.2 71.8 80.0 86.8 124.3 900 160 1125 900
2 73.8 84.0 78.8 88.1 121.9 900 160 1125 400
3 74.2 64.4 78.8 83.6 123.3 900 160 450 900
4 73.0 81.3 77.4 87.6 122.1 900 160 450 400
5 68.3 37.5 79.1 75.0 124.2 900 80 1125 900
6 67.9 47.6 76.9 78.7 121.8 900 80 1125 400
7 66.4 32.0 78.2 71.9 123.2 900 80 450 900
8 66.1 40.0 75.9 74.9 122.0 900 80 450 400
9 67.5 73.0 76.8 50.2 108.5 210 160 1125 900

10 66.3 72.8 76.8 51.3 105.7 210 160 1125 400
11 67.2 72.8 75.3 49.2 107.5 210 160 450 900
12 66.0 72.5 75.3 50.2 104.9 210 160 450 400
13 66.1 79.1 70.5 88.3 108.3 210 80 1125 900
14 65.0 80.3 70.3 86.4 105.5 210 80 1125 400
15 65.2 75.2 69.0 88.1 107.3 210 80 450 900
16 64.3 79.8 68.6 89.3 104.7 210 80 450 400
17 66.7 76.4 73.0 67.7 107.2 210 120 787.5 650
18 67.5 43.9 76.3 77.7 118.5 555 80 787.5 650
19 70.4 56.8 76.0 81.8 118.0 555 120 450 650
20 70.7 74.8 75.8 88.3 117.5 555 120 787.5 400
21 71.6 52.8 78.4 80.4 123.5 900 120 787.5 650
22 73.8 84.1 78.0 88.7 118.6 555 160 787.5 650
23 71.7 66.8 77.1 86.0 118.8 555 120 1125 650
24 71.5 58.3 77.3 82.8 119.0 555 120 787.5 900
25 71.3 63.8 76.8 84.7 118.5 555 120 787.5 650

Initial 69.7 76.3 73.9 89.0 112.3
Obj 65.9 100 77.2 100 106.5

From Table 12, several conclusions can be drawn, as follows:

• The natural frequency f FEA3 approximately matches its experimental pair and, at the same time,
the corresponding MAC value is higher than the initial one, only when the design variable kX8

is at its lower boundary. If kX8 takes the central or upper values, it is not possible to adequately
accomplish the pairing.

• Also, the natural frequency, f FEA6, needs lower kX8 values to match its experimental pair.
• However, on the other side, at lower kX8 values, it is not viable to adjust the natural frequency f FEA4

while maintaining accurate values of MAC. Intermediate or upper values of kX8 are necessary to
improve f FEA4, although they give rise to MAC values slightly poorer than initially.

These facts suggest that it is not possible to develop a FE model that fits those three frequencies and
that provides acceptable MAC values with a unique value of design variable kX8. In fact, Wu et al. [36]
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have also addressed a similar behavior in other machine tool with roller type linear guideways.
Therefore, it will be necessary to identify one kX8 value to match, in combination with kX210, kY3,
and kZ4; natural frequencies f FEA3, f FEA6; and necessarily MAC3, as well as other kX8 value to match
f FEA4 and MAC4, taking into account that design variable kX8 does not affect the rest of the responses
(Table 6).

For that purpose, the desirability function has been used, as explained in Section 3.3. Two types
of desirability functions have been defined (Figure 9), one for natural frequencies and the other one for
MAC values.Materials 2018, 11, x FOR PEER REVIEW  17 of 21 
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These functions can be expressed in mathematical form as follows:

di = 1 − 20 · ABS(f RSMi − f expi), (f expi − 0.05 Hz) < f RSMi < (f expi + 0.05 Hz) (18)

di = 0, f RSMi < (f expi − 0.05 Hz), f RSMi > (f expi + 0.05 Hz) (19)

dMi = 1 − 100 − MACRSMi
100 − MAC0

, MAC0 < MACRSMi < 0 (20)

dMi = 0, MACRSMi < MAC0 (21)

where MAC0 has been selected taking into consideration Tables 4 and 12.
Finally, the global desirability function D, Equation (22), is composed by combining one

global desirability function for the frequencies, Df, and another function for the MAC values, DM,
and applying weighting coefficients wf and wM to each of them.

D = wf · Df + wM · DM = wf · (d1 · d3 · d4 · d5 · d6)1/5 + wM · (dM3 · dM4)1/2 (22)

Table 13 shows the updated values of the normalized design variables Xi, and the corresponding
natural values ki. As mentioned before, two stiffness values kX8 have been estimated, namely: (1) is
valid for the frequency ranges from 0 Hz to 72 Hz, and from 100 Hz to the upper limit of the range of
interest, and (2) is adequate for the remaining range, which includes the 4th natural frequency.
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Table 13. Updated values of the design variables. Units of ki are N/µm.

XY22 XZ63 XX210 XY3 XZ4 XZ13 XX8 (1) XY9 XX8 (2)

−0.920 −0.250 −0.695 1.000 −0.540 −0.800 −1.000 −0.300 0.485
kY22 kZ63 kX210 kY3 kZ4 kZ13 kX8 (1) kY9 kX8 (2)
636 769 92 1125 515 450 210 642 722

These values have been driven into the FE model and the posterior FE analysis has led to the
frequencies and MAC values, indicated in Table 14. For the sake of comparison, the simulated
responses, f RSMi and MACRSMi, obtained in Equations (11)–(17), when the updated values of the design
variables are substituted, are also shown.

Table 14. Final frequency and MAC values.

FEA Order f RSM f FEA f exp Diff. (Hz) Diff. (%) MAC MACRSM kX8

1 33.7 33.7 33.7 0.0 0.0 96.7 - (1)
2 - 60.5 60.5 0.0 0.0 98.7 - (1)
3 65.9 65.8 65.9 −0.1 −0.2 78.9 76.5 (1)
4 77.2 77.0 77.2 −0.2 −0.3 80.6 83.9 (2)
5 84.0 84.1 84.0 0.1 0.1 80.9 - (2)
6 106.5 106.1 106.5 −0.4 −0.4 70.0 - (1)

From Table 14, it can be seen that the quadratic regression equations have provided values
of the simulated frequencies that almost coincide with the values obtained after the completion
of the FE analysis. In fact, the maximum distance is 0.4 Hz in the 6th frequency, which is really
insignificant. The difference in the simulated MAC values is greater, which is in accordance with
Table 11, where it was suggested that the predictive capability of the MAC regression equations was
inferior. Therefore, both the regression meta-models and also the statistic indicators, R2 and t-statistic,
have performed adequately.

Finally, once the identified values of design variables have been incorporated into the FE model,
the resultant dynamic responses have shown a closer match to the experimental results, proving
the adequacy of the conducted procedure. Thus, in Figure 10, two synthesized FRFs obtained from
the updated FE model are compared to the corresponding experimental FRFs in reference point 5
(Figure 2), and the agreement is quite reasonable.
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5. Conclusions

This paper presents a consistent methodology to improve the FE models of complex mechanical
systems using, in an integrated way, different numerical and experimental techniques. The procedure is
applied in a machining center with numerous uncertainties in the internal connections and supporting
conditions. In this methodology, the complete design space is encompassed, so that the selection of
the initial values of the design variables, which is one of the major drawbacks of the sensitivity-based
methods, due to the variable sensitivity values along the design space, is avoided.

Firstly, it is demonstrated that the two-level fractional factorial design is an effective tool to
perform parameter screening, as the most significant parameters and two-factor interactions are
detected. For this purpose, instead of using one cumbersome resolution V design, more simple
fractional designs with fewer parameters are gradually completed and examined. This procedure
allows for removing high-order interactions and to circumvent the presence of constraints between the
variables, and leads to a better comprehension of the influence of the design variables on the behavior
of the mechanical system.

Also, in this step, it is shown that the design variables perform a kind of collective work, as groups
of them affect groups of responses. In addition, some of them can be satisfactorily removed, in contrast
to other findings reported in literature, where it is assumed that the complete set of the selected
design variables is significant. This is a key feature of the proposed methodology, as it allows for
diminishing the complexity of the subsequent regression equations, due to a substantial drop in the
number of terms.

In the second step, it is demonstrated that the relationships between the stiffness parameters
and the modal responses of the machine tool can be accurately expressed by second-order functions.
A combined procedure using coefficients of determination and the t-statistic is applied to remove
the non-significant terms, and thus the accuracy of regression equations is increased. At this point,
the assessment of the predictive capability of the regression meta-models plays an important role.
The regression equations for the MAC values are also used to ensure the correspondence between the
numerical and experimental responses, because if only the frequency values are matched, it could lead
to unacceptable MAC values. So far, this issue has been overlooked in the literature.

Also, the use of central composite designs allows for developing quadratic regression equations at
an acceptable cost. In addition, these designs have led to detecting that the stiffness of one connection
is dependent on the relative movement between the modules of the machining center.

It is proved that the quadratic regression equations are adequate to accurately identify improved
values of the design variables, because when these values are included in the FE model, minimal
differences between the FE and experimental responses are found. Also, because of the substitution of
the full FE model by polynomial functions, the identification step, usually a costly iterative procedure,
is accelerated. The use of desirability functions and weighting factors facilitates the progress of
this step.

Finally, the presented methodology can be generalized to any machine tool and any design
variable (damping in connections, Young’s modulus, mass density, etc.) and will allow for obtaining an
updated finite element model, which would serve as a starting point to optimize the machine design
and eliminate stability problems under operating conditions.

Potential future research directions include the analysis and implementation of other designs
(orthogonal, Latin Hypercube, and D-optimal) for fitting second-order models with constraints in the
design space. Another possible direction is the use of techniques of model reduction or transformation
to modal space to diminish the time-consuming DoE runs.
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