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Abstract: In this study, we use a multi-parameter perturbation method to solve the problem of
a functionally graded piezoelectric cantilever beam under combined loads, in which three piezoelectric
coefficients are selected as the perturbation parameters. First, we derive the two basic equations
concerning the Airy stress function and electric potential function. By expanding the unknown Airy
stress function and electric potential function with respect to three perturbation parameters, the two basic
equations were decoupled, thus obtaining the corresponding multi-parameter perturbation solution
under boundary conditions. From the solution obtained, we can see clearly how the piezoelectric effects
influence the behavior of the functionally graded piezoelectric cantilever beam. Based on a numerical
example, the variations of the elastic stresses and displacements as well as the electric displacements
of the cantilever beam under different gradient exponents were shown. The results indicate that if the
pure functionally graded cantilever beam without a piezoelectric effect is regarded as an unperturbed
system, the functionally graded piezoelectric cantilever beam can be looked upon as a perturbed
system, thus opening the possibilities for perturbation solving. Besides, the proposed multi-parameter
perturbation method provides a new idea for solving similar nonlinear differential equations.

Keywords: functionally graded piezoelectric materials; cantilever beams; multi-parameter perturbation
method; piezoelectric coefficients

1. Introduction

Functionally graded piezoelectric materials (FGPMs) have been increasingly used in piezoelectric
sensors and actuators [1,2]. The FGPMs inherit the advantages of functionally graded materials (FGMs)
and piezoelectric materials. The FGMs consist of two or more materials in which the composition of
the materials varies continuously in certain directions, and there is no obvious interface in FGMs [3].
Therefore, the stress concentration problem caused by the bonding of the two materials can be avoided
by using FGMs. The advantage of piezoelectric materials is their good conversion ability between
mechanical energy and electric energy. Piezoelectricity is very suitable for physical sensors and
biosensors construction [4] and there are many valuable applications in engineering fields (for example,
structural health monitoring [5]). Piezoelectric materials characterization is a challenging problem
involving physical concepts, electrical and mechanical measurements, and numerical optimization
techniques [6,7]. Thus, the analysis of piezoelectric materials and structures becomes more and more
important. However, the difficulties in studying FGMs and piezoelectric materials are also inherited
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by FGPMs, and the nonlinear differential governing equations of the FGPM structures are usually
difficult to be analytically solved.

Over the past few decades, researchers have devoted a lot of effort to the problems of FGMs and
FGPMs and have harvested some fruits. Eshraghi et al. [8]. studied the bending and free vibrations
of FGM annular and circular micro-plates under thermal loading. Kim and Reddy [9] derived
the equations of motion for FGM plates with surface-mounted piezoelectric layers by using
Hamilton’s principle, in which the gradient elasticity was accounted for through the modified
couple stress model and linear piezoelectricity. Kahya and Turan [10] presented a finite element
model for free vibration and buckling analyses of FGM sandwich beams on the basis of first-order
shear deformation theory. By using Hamilton’s variational principle and the classical plate
theory, Arshid and Khorshidvand [11] studied the free vibration analysis of saturated porous FGM
circular plates integrated by piezoelectric actuator patches via a differential quadrature method.
On the basis of classical plate theory, Zur presented the analysis and numerical results for the
free axisymmetric and non-axisymmetric vibrations of FGM circular plates elastically supported
on a concentric ring [12] and annular plates elastically supported on the ring support [13] via
quasi-Green’s function method. Zhu et al. [14,15] originally introduced the concept of FGMs into
piezoelectric materials, and successfully manufactured FGPM actuators. Shi et al. presented
the solution of FGPM cantilever beams subjected to different loadings [16], and investigated the
electrostatic behavior of piezoelectric cantilevers with a nonlinear piezoelectric parameter [17].
Huang et al. proposed a piezoelasticity solution for FGPM cantilever beams under different
loading conditions [18] and a unified solution for an anisotropic FGPM cantilever beam subject
to sinusoidal transverse loads [19]. Zhong and Yu obtained a solution for FGPM cantilever beams
under different loadings by assuming that the mechanical and electrical properties of the material
have the same variations along the thickness direction [20], and proposed a general solution
for FGPM cantilever beams with arbitrary graded material properties along the beam thickness
direction by expressing the Airy stress function and the electric potential function in finite power
series [21]. Yang and Xiang [22] and Komeili et al. [23] investigated the static bending FGPM beams
under combined thermo-electro-mechanical loads. Based on the modified strain gradient theory
and Timoshenko beam theory, Li et al. [24] developed a size-dependent FGPM beam model by
using variational formulation, and solved the static bending and free vibration problems of a simply
supported FGPM beam. Lin and Muliana [25] studied the nonlinear electro-mechanical responses
of FGPM beams undergoing small deformation gradients. Pandey and Parashar [26] investigated
the static bending of the FGPM beam under electromechanical loading, in which the effective
material properties of the FGPM beam are graded according to sigmoid law distribution.
Duc et al. [27] investigated the nonlinear dynamic response and vibration of an eccentrically
stiffened FGPM plate subjected to mechanical and electrical loads in a thermal environment.
Su et al. [28] dealt with the electro-mechanical vibration characteristics of FGPM rectangular plates
with different boundary conditions based on first-order shear deformation theory. More recently,
He et al. [29] presented an electroelastic solution for FGPM beams with different moduli in tension
and compression. Given that there are many relative works in this field, we do not review them
in detail.

From the above studies, we may see that in the analysis of FGPM beams, the number of basic
equations used for the solution of the problem is so large that it is difficult to solve them analytically;
at least the process is relatively complex. In addition, the basic equations are generally presented in
the form of a high-order partial differential equation, which further aggravates the complexity of the
solution. For this purpose, we need to seek an effective mathematical method for similar boundary
value problems.

The parametric perturbation method (PPM) proposed by Poincaré [30] is one of the standard
analytical methods used for the solution of nonlinear problems in applied mechanics and physics.
Many studies have indicated that this method is a general analytical method for obtaining approximate
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solutions of nonlinear differential equations in initial or boundary value problems. In PPM, the solution
of the nonlinear differential equation is constructed by developing an asymptotic series with
respect to a certain parameter. The so-called perturbation is generated in the neighborhood of
the solution of the unperturbed equation, so that the known properties of the unperturbed linear
system can be used to obtain the solution of the perturbed system. More recently, this basic idea of
perturbation was demonstrated again by Lian et al. [31], in which the Hencky membrane problem
without a small-rotation-angle assumption was solved by perturbation to the corresponding classical
small-rotation-angle problem. Originally, there was only a single perturbation parameter in the PPM,
which was called the single-parameter perturbation method (S-PPM), and many classical works were
based on the PPM. Later, as the method was continuously studied, scholars began to discover if
multiple parameters are introduced, the perturbation solution characterized by these parameters may
well describe the separate influence of each parameter on the nonlinearity of the problem. The earlier
work can be seen from Nowinski and Ismail [32], in which a multi-parameter perturbation method
(M-PPM) was proposed to solve the deformation problem of a cylindrical orthotropic circular plate.
The pioneer work in nonlinear beam problems was done by Chien [33], in which a biparametric
perturbation method (B-PPM) was initially applied to solve the classical Euler-Bernoulli equation of
beams with a height difference between the two ends from a practical engineering problem. Later,
He et al. successfully used the so-called B-PPM to solve large deflection beam problems which
Chien dealt with [34] and large deflection circular plate problems with a bimodular effect [35]. However,
the application of the real M-PPM which contains three or more perturbation parameters has not been
found yet.

In this study, we extended the traditional S-PPM and B-PPM to M-PPM which contains three
perturbation parameters and solved the governing equations of the FGPM cantilever beam under
combined loads. The piezoelectric coefficients are selected as perturbation parameters. Thus, from the
point of view of the perturbation idea, if the pure FGM cantilever beam is regarded as an unperturbed
system, the FGPM cantilever beam can be looked upon as a perturbed system. In the next section,
the mechanical model of a FGPM cantilever beam under the combined action of a uniformly distributed
load, concentrated force, and bending moment is presented. In Section 3, the perturbation solution
of the FGPM cantilever beam is obtained. In Section 4, based on a numerical example, the variations
of the elastic stresses and displacements, as well as the electric displacements, are shown and some
important issues are discussed. Section 5 is the concluding remarks.

2. Mechanical Model and Basic Equations

In this study, the mechanical model of the FGPM cantilever beam is established by using
two-dimensional elastic beam theory and neglecting shear deformation, since what we consider
here is a relatively shallow beam. Generally speaking, the mechanical and electrical parameters of
FGPMs change along one direction only. In this study, we assume that the mechanical and electrical
parameters of the FGPM cantilever beam vary along the thickness of the FGPM cantilever beam.
As shown in Figure 1, an FGPM cantilever beam is fixed at its right end and subjected to uniformly
distributed loads g on its upper surface, a concentrated force P, and a bending moment M at its left end,
in which [, b, and h (h << I) denote the length, width, and height of the beam, respectively. A rectangular
coordinate system is introduced with the upper and lower surfaces of the beam lying inz = —h/2
and z = h/2. The mechanical and electrical parameters of the FGPM cantilever beam vary along the z
coordinate, such that

0 h 0 h 0 h
Sij = Sijeaz/ ,di]' = dl-jelxz/ //\ij = )\l-jelxz/ , (1)

where « is a gradient exponent; Sijs dij, and /\ij are the elastic coefficient, piezoelectric coefficient,

and dielectric coefficient, respectively; and S%, d?j, and A?j are values of the corresponding material
parameters at z = 0, respectively.



Materials 2018, 11, 1222 4 0of 20

| v

z

Figure 1. Scheme of a functionally graded piezoelectric cantilever beam.

By neglecting body forces and free charges, the mechanical equation of equilibrium and the
electrical equation of equilibrium are

a X a ZX —
%+ 5= =0
OTzy doy __ 0 (2)
o T oz —
and aDy D
x z _
o + e 0, 3)

where 0y, 0;, and T,y are the stress components; and D, and D, are the electric displacement
components. The constitutive equations of the materials are

€x = 5110x + 8130z +d31 E;

€; = $130x + 83307 + d33E;

Yzx = S44Tzx + di5Ex ’ 4)
Dy = d15Tzx + A1 Ex

D; = d310x + d330z + A3E;

where ¢y, €;, and 7,y are the strain components; and E, and E, are the electric field components.
The geometric equations give

e w 5
R T S e R N T

where u and w are the displacement components. The strain compatibility equation is

e, 0%,  0%vu
o2 "oz azax ©)

The relationships between the electric field components and the electric potential are

0o o0®

Ey=-——, E,= ——
X axl z aZ’

@)
where @ is the electric potential function. By introducing Airy stress function U(x, z), we may express
the stress components as
U_a2ua_azur _ ol ®)
T2 R a2 T ozox’
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Substituting Equations (4), (7), and (8) into Equations (3) and (6), the governing equations for the
Airy stress function U(x, z) and the electric potential function ®(x, z) are

0 U d o*u o’u d od %P
55 (d31 57 5.2 )+ 55 (A= 532 ) — 55 95, = 55 (A3 5-) tAugg )
and R \ .
o7 (511 azz +5135 axz 5) + 5 (Saa ;) 5135057 T 535 (10)

2
(d31 ) +dsz 2 axzaz - 2 (d1522)
where dgl, dg3, and d15 in the piezoelectric coefficients d,;, d3;, and d;5 may be selected as the
perturbation parameters. When d}, = dJ; = dJ; = 0, Equation (10) may be regressed into the
governing equation of the pure functionally graded cantilever beam (Equation (11) in [36]), i.e.,

2?2 9°U U, 9 U otu tu
921 Fongg) g (Suza )ty e eng g =0 (1)

The mechanical and electrical boundary conditions are given as follows:

h/2 p h/2 h/2 M
/ Todz = —, / oxdz =0 and/ zovdz = —, atx =0, (12)
—h/2 b J-ns2 —h/2 b
0, =T =0, atz="h/2 (13)
0;=q, T,y =0, atz = —h/2 "’
fﬁszdz:O, atx=0and x =1 (14)
D, =0, atz=h/2andz = —h/2
and 3
u:w:£:0,atz:0andx:l (15)
3. Perturbation Solution
Substituting Equation (1) into Equations (9) and (10), we have
0 ad*U 0 ad*U 0 U 0 0\ PU _ 10 add 0 ?*® 0 @
A5 52 H a3 i 58 +d% 58 + (d3 —dYs) g = A% E 5 + AL 5SS +AL S
0 «%*U 0 a%*U U 0 0 Pu o*u 0 2*U
29 +shair 5 + 259 ¢ az3 + (250 + ) s TSN 5 T 5% 5 : (16)
0 0\ o*u _ 40 0 a *P 0 °® 0 0 \ 2°® 0 a P
+ (s +25%) 575y = dS; ﬁz G T 2457, 57 T A5 55 + (A3 — dis) 305 — A5, 557

From the piezoelectric parameters of the five kinds of piezoelectric materials listed by Ruan et al. [37],
it can be seen that the piezoelectric coefficients are usually very small. So, they can be selected
as perturbation parameters to meet the requirement of convergence in perturbation expansions.
Thus, from the point of view of the perturbation idea, if the pure FGM cantilever beam is regarded
as an unperturbed system, the FGPM cantilever beam can be looked upon as a perturbed system.
By selecting d9;, d3;, and d% as perturbation parameters, we may expand ® and U with respect to d3;,
dg3, and d%, as follows:

2 2
D = D) + DY, + PydY; + Py + DY (dY;)” + DY (d3)

17)
+<I>Il(d(1)5) +q)IIdO dO +q)IIdO dO +q>IIdO dO

and
U = U9 + UldY, + UbdY, + Uldds + U (d2,)* + UL (dy)?

, (18)
+ U () + U s + UE Sy -+ UfldGds
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where <I>8 and Ug, CD% and LIZ«I (i=1,2,3),and CD}I and UlH(i =1,2,3,...,6) are unknown functions of
x and z.

Substituting Equations (17) and (18) into Equation (16), as well as into the boundary conditions,
Equations (12)-(14), we may obtain a series of decomposed differential equations and the corresponding
boundary conditions by comparing the coefficients of the same power of d3,, d3;, and d{s.

1. By comparing the coefficients of (dgl)o, (dg3)0, and (d(l)S)O in Equation (16), we may obtain the
differential equations for CI>8 and UY,

0 aacbg 0 82<I>8 0 92 <I>0 o

A3haz TAsa2 T M52 =0

0 292 UO 0 a2 32U0 0 ,,(a O « 33118

Si2 2 TS 13;?2sz + 280§ S + (2593 +50,) f 5 (19)

0 o4 UO 0 UO ot U _
151152 T 5335 + (894 +2503) 5z = 0

which may be solved under the boundary conditions

h/2 a2u0 /2 2110 12 82118 M
/—h/z 7828x v / h/2 022 Cdz = 0and / 255 dz = o atx =0 (20)
220 U0
axzo = azag =0, atz="h/2 o
o*uy U
52 =0 —am9x =0, atz=—h/2
and
h/2 09), B B
—h/2( d15 azax —AM152)dz=0, atx =0and x =
22Ul 92 u q>o . (22)
d31 3220 +dz3 ax2 —Asz3 az =0, atz=h/2andz = —h/2
Suppose oo
{ @) = x2¢9(z) + xg5(z) + &3 (2) -
2 7
ug = 5 £(z) + xf2(2) + £3(2)

where ¢%(z) and f?(z) (i = 1,2,3) are unknown functions of z. After Substituting Equation (23) into
Equation (19), it is found that

g1(z) = BY + Bje 1

89(z) = B + Ble™ (24)
0 .

§3(z) = BY + Ble i — 2%%&8?2 +21k 2})1 BYze™ h*

and .

£(2) = €0+ Cz + () + Chae i

Az) =C2+Cz+ (CY + coz)e*%Z

£ =+ G+ @+ e - e 3 eadicgn © &)
60 (3513CO 3544hC0+513C0 Y~ i

where B? ¢ =1,273,..,6) and CZQ i = 1,2,3,..,12) are undetermined constants which can be
determined by Equations (20)—(22), please see Appendix A.
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2. Similarly, by comparing the coefficients of (dgl)l, (dg3)1, and (61(1)5)1 in Equation (16), we may

obtain the differential equations for ®! and Ul (i = 1,2,3), respectively, for term (dgl)lz

0 « 0P} 0 PP} 0 PP} ,xazug o*uy

Moo tA%o2 tMige = a2 T o

0 20U | 0 a20°U 0 aPUj 0 ya U | o U

Stz oz 50302 a2 T 25010 + (2503 + 540 T o 51 A
0 o*uj Ul 4209) n 020) | 9%f

+55 G + (St + 2%) 50 =z oz 20 a2 + o

for term (dg3)1:

0 o 0P} 0 9%} 0 P ,,(a uy | o*uy
)\33h oz +/\33 922 + All x2 ~ h 9x? + 0x20z
2 2771
Oaauz leZauz Oaauz 0 \a
iz 52 + 50 5 + 280 5 + (295 + 59 F 5z
o o*ul | o U} otul %)

51158 TS5 + (584 +25%) 575 = 577

1
and for term (dY)":

0 a 0P} 0 %@} 0 Py Pu
Atz T A% 52 T A5 = — 52
0 a2 UL £2 02U} 0 adU} x UL
iz 52 TS g + 2505 5 + (2% +s9) G g
4 0 2 50
03U3 081,13 9113_ ad)o aa‘bo
+sh ot 5% 5 + (s +25%) 5 = — 5 — f o

which may be solved under the boundary conditions

h/2 92Ul p /2 92U! h/2 a2u}d
— =0, = 0 1/2/3 7 t = 01
/fh/z azax) z /4,/2 0z2 2=0(i= ) atx
o2u! o2u!
52 = —amx =0 atz=h/2
2u ou (i=123)
szl = ~%zox =0,atz=—h/2
and '
h/2 02 LI lox
2/2( dlSazax Alla—;)dz:o,atxzoandx:l (i—]23)
2711 =1,2,3).
ds; azz’ + d33aajl;2[ /\338;; =0, atz=h/2andz = —h/2
Suppose

{ ! = x2gL o(z) +xgh;_1(z) + g5:(2) (i=123),

Ul = 1, (2) +xfh(2) + fh(2)

(26)

(27)

(28)

(29)

(30)

(1)

(32)

where g}(z) and f}(z) (i = 1,2,3, ...,9) are unknown functions of z. After Substituting Equation (32)

into Equations (26)—(28), it is found that

Clze™ i

gi(z) = B} + Ble™i* —
gh(2) = B + Bje h* —

ZhAO

gze iz

hAO

" $0
gé(z):BI—l—BIe’ﬁz—z[i%(f%C 544C0+2/\‘1)1BI) °Ia Cz]

0 0 0
Ass 2A3357

+Z[EL(_EKC° 54‘1*C2 - %Cg — 4CY, +29; B)

33 511

513a 0 _ 513+544 0 0 593 a0,21,— %z
( 2C3 St C)— C)Z+60A0 7Cyzle

(33)
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g4(z) = BL + Bie i*

8h(z) = By + Bloe i* .Gy
85(z) = Bl; + Bl,ei* + Ao l(FC = 228, BY)z + 3 §C327 + (29, By — C)ze i)

§7(2) = By + Bjye” i

8(z) = Bis + Bige * ANES)
$h(z) = B, + Blee i — ég(co +2ABla)z + i (4819, Bl, —2C9 — C9z)ze i

f3i-2(2) = Clyi_11 + Claj_10% + (Clyi_o + Clai SZ)E_ZZ (i=1,2,3) (36)
f3i21(2) = Cly;_7 + Cly;_¢z + (Cly;_5 + Cly;_y2)e” i
and

fi(z) = Ch+ Clyz + (Cly + Clyz)e % — T(sswcl +350,5CL+ 6121 B0 1 50.Clz)

oc )LO
— —(3513CI 3524’1CI +s9,Clz)e” iz
_a 2
fo(z) = Chy + Chyz + (Chs + Chyz)e % — Z*0(35(1)3C +3s9,2Cl, +535C1,2)

. (37)

65 (35(1’3C 3524ZC + 65 BO+S(1J3C ¢z)e” iz

fo(z) = Cly+ Clyz+ (Clg + Clez)e 1% — 6@(3593@5 + 359, 1Cls + 61BY +59,Chz)

z 0 1 0 hel 0 I —4%z
- @(3513(:27_3544&C28+513C282)€ !

where Bll-(i =1,2,3,...,18)and C}(i =1,2,3,...,,36) are undetermined constants which can be determined
by Equation (29)-(31), please see Appendix A.

3. Similarly, by comparing the coefficients of (dgl)z, (dg3)2, (d(1)5) d%d%;, d3,d)s, and d%,d% in
Equation (16), we may obtain the differential equations for CD}I and UIH (i=1,2,3,..,6), respectively,
for term (dgl)zz

e e e
s(1)1% s 52 + (1)3Z§ U 42 ?1%% + (251 +524)%% +5?1% ’ 38)
+5 aax4 + (s +25%) aaxzbalzz = %ag; —2j a;f;l + %
for term (dg3)2:
M AT AT = 15
it + ol T + 20 BT+ (2 + s T (39
+s) aaLiz + 238 L (s +2513)aa:2g§2 = gig%
for term (d?S)z:
1955 + AL + A S = — S
815 azle 94 aailzs +250,4 aagas + (25 + 524)%335 +5%) a:ig ’ (40)

0 & u3 tul 9%l aazqﬂ
tS33 5 t+ (st +2513)axzaz2 o
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0 40 .
for term d3, d5s:

0 a0® 0 ol 0 Pl Ul | Ul | potul | Ul
)L33h 0z +/\33 0z2 +A11 ox2 ~— h 922 + 023 + h 0x2 + axZaz
0 2 PUN | o g2 97Ul 0 a UYL LUl | o otul
S11712 32 S13 w2 x2 + 25713, = T (2513 + 544) hoxoz T 511 9A
o otuy Uy 42 099) 0?0 | 2P0l | Pl
+533 oxt + (544 +2513)[9)c21922 T h2 oz + 2h 92 + 823 + 0x20z

0 40 .
for term d31d15.

0 ad®5 | 0 POF | 4o PeT P PUup U
/\33}1 az Jr)\33 922 /\11 ox2 T h 922 + 9z3 0x20z
0 20Ul sY o2 Ul 0 o 0°Ul o PUl 0 otuf
Shiz 5t TS5 3z T 250 5 + (250 +50) i 525 +5h 5 ’
o o*tuft Ul 200 p @) | el Pol 20l
+533 ox* + (344 +2:;13)&(2822 T K2 oz +2h 922 + 823 o szaz Rarra

and for term dO do

0 0Py 0 ?Pg 0 Py _ 407Uy Puy Pub

Az TAB 2 T M2 = a2 T o antes

Q0 a2 2Ug o 23 PUL | 50w PUg 0 4 0 adUd | o Uy

SNz 52 T513i2 92 T 2515 5 T (2513 +50) G552 + 51154
o o*tul aul _ Pol Pl 070l

+S33 ox4 + (544 +2513) xzaz2 T 9x20z 0x20z h 9x?

which may be solved under the boundary conditions

h/2 aZUH h/2 azuH h/2 ZuII
/ (- 'dz)zo,/ dz—Oand/ Sz =0(i=123,..,6), atx =0,

—n/2 " 0z0x _h/2 0z2
aZUlH . aZuH . .
oax2 ~ Jz0x =0, atz="n/2 (i—123 6)
BZUIH aZUH — Ly ey Iy
Fr ~9mx — =0,atz=—h/2
and
h/2 2
72/2( d15azax )\113 )dz—Oatx—Oandx—l (i=123,..6
aZ 1T 82 H 11 T L ers ey .
do S0 + s T — A% =0, atz=h/2andz = —h/2
Suppose

{ cpn_nggZ (z) + 28 1 (2) +8%(z) (i=123,..6)

qu— T fai o (2) +xf3i 4 (2) + f3i(2)

9 of 20

(41)

(42)

(43)

(44)

(45)

(46)

(47)

where gl(z) and f(z) (i = 1,2,3, ..., 18) are unknown functions of z. After Substituting Equation (47)

into Equations (38)-(43), it is found that

g ,(z) =Bl . +B, iz
8% 1(2) = B 5+ By ,e” i (i=1,2,3,..6),

I _ plI m,—4%z h)‘u II H 4z
83i(z) = Bg;_, + Bge 1% =21 B 52+2aAO Bg_4ze

(48)
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=Cll+24 BIz—i—sz—f[Z BI+C SA (%2 4+ 1)+ ClE (%2 4 1))e 3"
11

O o
s?li% (%z+1) + CllE (%2 +1)]eh?

_ I 1 11 11
2 = C5 +§B3Z+C627E[QB4+C7 —

SO SO SO
3= C + Cloz + §-Biz — 5 (25 3 #BY + PO + 18 C))

: : , (49)
S
25111 )\010 Z(Sl3zco +53,C9 + 270, B} )2 ﬁ(%B% +3C2°
- Aslg C)2 — (bR + Gy + 215 Hy + 6151 + LGz + 215 Hyz
11 “*33°11
+ 6%[12 + %lez + 3%1122 + %1123)6752
=cl. 4+ ClL 24 (CL  +CIL  z)ei?
{ 3 12i-11 12i-10 (H 12i—9 T Cipi_gz)e .. (i=2,3..6) (50)
31 1 —Clzz 7+C121 62+ (Chpi 5+C121 j2)eh
and
g:cgl Chz+ (C 4 Clz)e” hzf—(3sl3c{g+3s24hcﬂ +s9,ClLz)

(350 clL —3524ZCH6 +s9,CIL z)e” %
o= c L+ Cllz + (CI + Cllz)e % — (35(1)3C +3s9, Bl + 64 Bl +59,Clkz)
62?(35(1)3@17 353, 2Chy +SI3C182)€ i

12*C41115 C162+ I th_j(slscn +hs44cf§8 ig CO)Z 6 ( 0.0, CO Slscgs) _(%FZ

, (51
+”—G2+2h—H2+6h—Iz+QG22+ZZ—H22+611—122+EH22 +SZ—21222+§122 e~ i oD
5= [c + 59, Clkz + Bl,z — B! Z—WQ(CO—FZA%Bh)
( F3+ 2Gs + 210 Hy + Gz + 215 Hyz + I Hyz?)e 7]
L= ng+c1 z+ (Ch 4 Clhz)e™h? — 7(3 9,Cll +3s9,1ClL +59,Clz)

@(%%C —3s9,5cl +s9,Clz)e”

where F; (1 =1,2,3),G; (i =1,2,3),H; (i = 1,2,3),and I; (i = 1,2) can be found in Appendix A, and BlI-I
i=1,2,3,..,36)and CZH (i=1,2,3,..,72) are undetermined constants which can be determined by
Equations (44)-(46) , please see Appendix A.

Thus, the expression of the electric potential function ®(x, z) and Airy stress function U(x, z)
may be obtained by means of Equations (17) and (18), Equations (23)-(25), Equations (32)-(37),
and Equations (47)—(51). Substituting Equations (17) and (18) into Equations (7) and (8), the electric
field components and the stress components may be expressed as

Ex = —(2xg} + g5)d3; — (2xg} + g5)dls -
E. — — (5201’ 1/ INg0 1740 o1/ 40 (52)
2 (x°g1 +x85 +83 )d3; — 86 433 — 89 415
and
" ” ” " 2 " 2 1" "
Ox = sz +xf3 fO fH (d(3)1) +fH (d(l]S) Jrf” d(3)1d fH dgld(fs
O'Z = fl . (53)

0/ 0/
0

Tox = —X 2
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And substituting Equations (52) and (53) into Equation (4), the electric displacement components
and the strain components may be written as

D, = — [/\(1)1 (2xgh + gh)dd, + A%, (2xgh + gh)d%s + (xfO" + £0")d0yer=/

Dz _ ( 0// + f()// +f0//)dglelxz/h deO etXZ/h (54)
!
—[(2g) + xgh + g8 )Y, + gb'd; + gb'd3s)AGen "

and

ex = [(s) Jsz O s x D 4 s £+ sYf) + (9 A — 22— xgl _gél)(dgl)z

+s01 £ (d(1)5) + (91 — 86 )d(s]ld +(sh /15— 8o )dg1d(1)5] v/

ex = [(s35 5 £ + sBxfO” + 509"+ 53 f0) + 953 (d3)” — 8} (dga) + 513fH”(‘7l(1)5)2 - (35
+(s9 f" — 328k — xgh — g1 )Gy %y + 0, FIL" 9, 05 — &b d3dYs e/

o= Y + 2+ 2+ b)) + ]+ gt

Substituting Equation (55) into the first two items of Equation (5), and integrating with respect to
x and z, respectively, the displacement components may be obtained as

3 1 3 I/ 2 1 2
U= [(%5(1)1 10” 511f0” + xsnfou +3‘5(1)3](1) - (58 + xigz + xg3 - xsllf ”)(dgl) (56)
+x511f91” (d(1)5) - x(g6 - S11f1I ”)d%dgs - x(g9 511f11 ”)dgld?ﬂe“/h +81(2)
and
w = s[4 (—28CY + 2.CY) + x(—24CY + £.CI) + 533cg—2£c0 + 80— 513C0 544’1c0]
13

o
0 rx2a-~0 0, 1533 0 0 3zx 0 544 0_1m 0 _ 0 513 a0
+513[T;TZC +2h2C +2 C +2h2C12 & 7C3 — C C ]z SlSh(650 7C3

2605 +s) 0 59 s9 50 By
45137544 ~0 0 _S13 0,4 0 5330 _ 5130 _ h%3~0 h sy 3 0 33
=) )23 Sta 24, 12 Cz +513a[ C 1C1 aS?3C2+(1 13)a £C)+ (S13

0
- ﬁ)Coz}e”‘z/” + [s94(G1 — $F)z + 513(H1 - G2+ (31 — 32 *Hy)Z3 — ks izt + 5 A[f”’

S35
0 0 2
x (fcg SMCO+ S#CQ—FZ)\%B{ - %Zﬁcgz)e“/h](do )+ MO L [(5A%Bl, +C)z — 14CY22
— (€0~ 1CY+ Chz)e M/h](dg3)2 03l (5l — 2CK)z + 552 Ch? — 215 - Blae/ ") (d;)*
. (67)
+{[%<BI+2§§>2+%<BI+ B)x+ 8L — (R + Ec) - ) — £CY + 280 B)

511

0, +259
+595G2 — fshRlz + [} (H1 — 5;Ga) — AT(TS 3 — 13 0 “CY + Z%CO —AhBY) - tho (2C9x

512 o 259, +59 0
+Cix2)]22 + [ (b — g Ha) + i (B 4G — —4Cl - TECED]? + 4 (Gl 7 CY

0
~ )zt 2 e C?fC8+§:*?§C°+A° BBy + 4 | + (G - )2

2
+ (Hs — 4:G3)z* — #:H3z® — (215 B! + AO a2c0+2Ao 179, BLy) et/ M ad, Y

+ %&[(%A%B{BJFCQ)H 1(C) — 5C9)2% — &C923 + I0(CY + 279, Bl e/ M| d%dds + g2 ()

where ¢1(z) and g»(z) are unknown functions of x and z, respectively. Substituting Equations (56) and (57)
into the third item of Equation (5) yields,

k122 + koz + k3€az/h + kg — dgéz(z) = ks x>+ k6x + kyx + dgczb(c ), (58)
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where
_ 0.4 040 40
ki = h2513c hz;\o Cgdzds,
_ 0 04 g0 ac0 4 070 0 I 0y,70 40
ky = 2513%C 513h2C +54,5Cg + h/i‘o Cgdy dis — (Byj; + h/\o Cg)d3,d3,
_ _plq0 40 I 40 10 0 0
ks = —B3d3 djs — Bisdysdis — 544 Cq
ky = =By dis — s3,C8 + 5045 C) (59)
_ 1420 ~0 _ 1 040 40 ,
ks = g32511C4 — §2th0 Cydzyd3,
ke = %%S%Cg % z Codgldgl
/\O
k7 = 11 hz C12 + 23‘1)3ﬁC0 544C0 - S44hcO (— icg - %S(l)lcgo - Z%Bh
170 70 Ta(0 1 (70 I i 0
+2B;)d3;dis — Bz%(dm) hzsncaé(dw) (2B; — C482511)d31d33
By letting
d d
k12% + koz + k3e®*/ " 4 ky — %@) = ksx® + kex? + kyx + gzi *) _ v, (60)
where v is an undetermined constant, we have
7dg;§z) = k12 4+ kpz + kze®*/ " 4 ky — 0 (61)
dg;}((x) = —ksx® —kex?* —kyx +v .
Integrating Equation (61), one has
91(z) = k2% + ko2 + Ekg,e"‘z/h + kyz — vz + 1y ©2)
(x) = k5x - *kéx — 7k7x + vx + wy

where 1y and wy are undetermined constants. The undetermined constants v, 1y, and wy may be
determined by Equation (15) (please see Appendix A for details). Substituting Equation (62) into
Equations (56) and (57), the final expression of the displacement components may be obtained.

4. Results and Discussions

In the governing equation, Equation (16), U and ® are coupled with each other. By using
M-PPM, Equation (16) is decoupled and simplified, as shown in the decomposed differential equations,
i.e., Equation (19), Equations (26)—(28), and Equations (38)—(43). Thus, the perturbation solution of the
governing equations can be easily obtained under boundary conditions. From Equations (52) and (54),
it can be seen that there are only the first-order perturbation items in the electric field components
(Ex and E;) and electric displacement components (D, and D;), which are deduced from the first-order
perturbation solutions of the electric potential function, CI>§ (i = 1,2,3). While in the stress components
(0x, 0z and Tyx), strain components (ex, €; and 7;y), and displacement components (14 and w),
there are the zero-order and second-order perturbation items, which are deduced from the zero-order
and second-order perturbation solutions of the Airy stress function, Ug and UZ.H (i=123,..6).
This phenomenon can be explained by Figure 2. Figure 2 shows the relationship between the applied
mechanical and electrical loads and the each order perturbation expressions of the Airy stress function
and electric potential function.
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mechanical 0 I, 0
—_— (=123 S (i=1,23,...,6
loads (q, P, M) UO Ul (l = ) Ul (l 949 geey )
electrical 0 I,. m,.
— (=123 S (i=123,..6
loads (0) q)o (D’ (l > ) q)z (l 949D 5enny )

Figure 2. Relationship between the applied loads and the each order perturbation expressions.

From Figure 2, it may be seen that the mechanical loads (g, P, M) give rise to UJ, UJ gives rise
to ®! (i = 1,2,3), and then ®! (i = 1,2,3) gives rise to U/ (i = 1,2,3,...,6), while ®), U} (i = 1,2,3),
and dD}I (i=1,2,3,..,6) have no effect on the stress, strain, displacement, and electric displacement
components because the applied electrical loads are 0. Therefore, for the sake of simplification,
Equations (17) and (18) may also be written as

O = ®idY; + PLdY; + Didds (63)
and 5 ) )
U = Ug + U (d3))” + Uy (d3s)” + U3 (dl5)” + Uyddydls + Us'd3;dls + Ug dgzdls. (64)

Next, based on the presented perturbation solution, let us consider a functionally graded
piezoelectric cantilever beam with / = 1 m and & = 0.2 m subjected to transverse uniformly distributed
loads g = 1 N/m? to discuss some related issues. The elastic, piezoelectric, and dielectric constants at
z = 0 are shown in Table 1 [37].

Table 1. Elastic, piezoelectric, and dielectric constants of the cantilever beam at z = 0.

Elastic Constant Piezoelectric Constant Dielectric Constant
(10~ 12 m?/N) (10~12 C/N) (10—8 F/m)
0 0 0 (0 0 40 40 0 40
511 513 533 544 dyy dzs dis Mq Azs
124 —-552 16.1 39.1 —135 300 525 1.301 1.151

Figure 3 shows the variation of the stress components (oy, 0> and T;x), the horizontal displacement
(1), and the electric displacement components (Dy and D;) of the cantilever beam at x = [/2 with
z/h, and the variation of the vertical deflection w at z = 0 with x/I, when a takes —2, —1, 1,
and 2, respectively.



14 of 20

Materials 2018, 11, 1222

Ue)
— T ]° 2
TT ~~ | | <
4
o | [ /
SERSIESEES ! [
= 1 ! R “
T | | »
i it/ A A Q
B a) N
T T [P o S
| | 1 4
| | o \\
| [ Ly 4]
| Lot |
| Wy |
B e Ll s it Bttt =)
[ R4 | < —
AR A | fem
12 | | ~
WAy I I
Y4 | |
...J\\ | | | vy
4 Vel
>
7 SRR R R §
R4l | | | T <
29 | | |
5
7/ | | | |
| | | |
| | | |
L L L L ' e}
- *® o < N =< =)
[e=] (=] [ (=] .I_._
V4
() ©
" —
(e}
*®
Ve (=]
[q\]
[

0.6

(©)

Figure 3. Variation of stresses, displacements, and electric displacements: (a) Variation of oy with z/h
at x = 1/2; (b) Variation of 0, with z/h at x = 1/2; (c) Variation of 7;x with z/h at x = 1/2; (d) Variation

of u with z/h at x = 1/2; (e) Variation of w with x/I at z = 0; (f) Variation of Dy with z/hatx =1/2;

(g) Variation of D, withz/hatx =1/2.
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From Figure 3a,c,d it may be seen that, oy = 0, u = 0, and the maximum shear stress (i.e., Tzxmax)
take place at the same z/h when « takes the same value, and this z/h moves toward z/h = —0.5 with
the increase of «. For 0y, when & > 0 (or & < 0), the maximum compressive stress (or the maximum
tensile stress) takes place at z/h = —0.5 (or z/h = 0.5), but the maximum tensile stress (or the
maximum compressive stress) does not always take place at z/h = 0.5 (or z/h = —0.5), especially
when the absolute value of « (i.e., |«|) is relatively large. In addition, the maximum absolute value
of oy (i-e., |0xmax|) and Tzxmax always take place at the side of az/h < 0 (which means « and z are
always contrary positive or negative signs since i > 0) and increase with the increase of |«|. It is
easily seen from Figure 3b that ¢, decreases with the increase of a. From Figure 3e, it may be seen
that, when a < 0, w decreases with the increase of «, while a > 0, the regulation is contrary. Besides,
the w when a > 0 is larger than the one when & < 0. From Figure 3f,g, it may be seen that the absolute
value of the maximum electric displacements (i.e., | Dxmax| and |D.max|) always takes place at the
side of az/h > 0 (which means « and z are always identically positive or negative signs since i > 0),
because the piezoelectric coefficient d;; = d%e“/ I at the side of az/h > 0 is larger than the dj; at the
side of az/h < 0. In addition, | Dymax| and |Dzmax| also increase with the increase of |«]|.

5. Concluding Remarks

In this study, by extending the traditional single-parameter and biparametric perturbation
method to the multi-parameter perturbation method, we solved the problem of a functionally graded
piezoelectric cantilever beam under the combined action of uniformly distributed loads, concentrated
load, and bending moment. The following main conclusions can be drawn.

(i) By selecting the piezoelectric coefficients as perturbation parameters, the multi-parameter
perturbation method can be used to decouple and simplify the governing equations of the functionally
graded piezoelectric cantilever beam.

(ii) The expansion expression of the Airy stress function and electric potential function with respect
to the perturbation parameters, i.e., Equations (17) and (18), can be simplified to Equations (63) and
(64), when only mechanical loads are applied on the functionally graded piezoelectric cantilever beam.

(iii) The |oxmax| and Tzxmax always take place at the side of az/h < 0, and the | Dymax| and |Dzmax|
always take place at the side of az/h > 0, but they all increase with the increase of |«|.

It should be pointed out that the analytical results found in the sample example should
be validated by comparison with other numerical methods (e.g., Finite Element results) and/or
experimental tests. Besides, the multi-parameter perturbation method may also be applicable
to the problem of other functionally graded piezoelectric structures under electrical loads or
electro-mechanical loads. In these cases, different boundary conditions concerning mechanical or
electrical properties will inevitably introduce some new influences on the final results. Due to the fact
that the analytical expressions obtained are expressed in terms of the piezoelectric coefficients, we can
see clearly how the piezoelectric effects influence the behavior of the functionally graded piezoelectric
structural element, which is exactly the benefit of parameter-based perturbation solutions. Therefore,
as far as the practical application of the work is concerned, the results obtained in this study may
serve as a theoretical guide for the design of smart structures with functionally graded piezoelectric
structural elements.

Finally, it should be noted here that in our multi-parameter perturbation method, the parameters
are not dependent on each other, thus leading to a large number of independent perturbation equations.
However, in the literature, there exists an alternative and much more efficient method [38—42], in which
all the parameters (irrespective of their number) are perturbed together along straight lines in the
parameter space, thus formally re-conducting the multi-parameter case to that of a single parameter.
At the end of the procedure, however, the parameters can be varied independently, since the exploring
straight line can be freely chosen. It can be expected that this procedure can be used to solve this kind
of problem effectively, and possibly be contrasted to the results obtained in our work. We will study
these interesting issues in the future.
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Appendix A
0 _ g(2e7%—a?-2a-2) ~0 _ qa?
Cl T 2(etev—aZ-2) ’ G = h(e®+e—*—aZ—2)
0 — g(2e* +aet+a—2) 0 ga(e*—1) !
3 7 2en/2(ett om0t —p2—2) T het/2(et et —n2-2)
CO — I o — _ P(2e" +ae+a—2)
6 bh(et+e*—a2-2)’ be=/2 (et e~ —n2—-2)
co— _ Pa(e*—1) 4
8 7 Dbhe~4/2(ette~t—n2-2)
0
o = {7@%@13@ B0, CNy + 1s9,CIN,] (N5 — &Ny) — %(fcg - ﬁgc )N5(N3 — &Ny)
0 0
+(%%$C3 - lmCO 3 SBCO)Ne( — 4 Na) + %%fCE(Na — #Ng)N7 — J1(N3 — §Ny)
0 &0
—[2 %(2513C0h+2524hC0h+s(1)3C0N1)N5 +4 (chg - jﬁgc )N5Ng — %%(%%Cg -
o
—ﬁCE)NSNs ﬁz 65103 CONSNé]}/[(NS + 4 Na) (N3 — Ng) + 7z 2 N5 N3]
h
Y, = (erN it CY N3 + 5 (2513C0h+2524 Ch +s9,CINy)
0
_’_(Z(ﬁCO _ ?ECO)N4 _ *(%TSCO S13C0 S44C0)N5 _ %6513 CON6]
where ’
Ni=0,Ny = Ny =8 — el Ny = § (8 +ef)
N5:hz( -5 _ % 6:§(3_%+€%)1N7:%(3_%_3

BY =B) =B =B} =B =0.

c=cl=cd=c=cl=c=c=c,=c,=0

C13*C14*C5*C16*C8*C9:C£OZC£_3
C25:C26:C27:C28:C30:C31:C:Iu:Cés:Céé:O

Bl = Algzx(cg — 4C9)/Ns

B = (C] — /2%

Bl = — % AO [W*C3 — 2aBl]/Nj
(Cg - ECQ)//\%

1
B4

AY
— B0 BYh+ 1 i Cn2) /A%,

B, = By =By =B}, =0

B12:— *g(co th) ’

o

=Cl,=0.

2 o 2
B! = [—21519,Ble + (—Agco +C% + 2529, BY - Y

3
2

o

h

)

(A)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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where

where

where

g 0
59 $9,—s 0 s0 s
H, 1 % ( 13 ﬁcO 13S 44 Cg 11 CO) (513 BI S13 Cg 0 44C0 g §4CII)
11

Bj; = Mo [a(C] — £C3) — CIN3]/ N3

B{4 = B%6 =0

ﬂf*HM@*%mf@MVM (A9)

Blg = AO -(C3Ns + 3CIN5 — C3 ENg — COLNY)

i
027,

cl=o0,cf =2+ B{,cg = szz =t

CO
0 (J
)L33

Clh = (=2)ih - G1N4 - H1N5 ~ [Ng)/N3 — B} , (A10)
11
ClL = [N3(—KyNy + HiNg + 1N7) — (N3 + Ny) (2]1h + HiNs + 1Ng)]/[(EN3 + Ny) Ny
S

I _ I ~II _ I _ «
=3B G =3 =1

A9 2
—(5ENs + N4+N5)N3}—g7i(—ﬁﬁc° Sﬁcg—félcg—;—zcg’ﬁuglzag)

0 359 A0 2
Gr =t 3 (3RO + HCY - I CY — 12Ch, + 240, BY) + Cy
11 511 11

23 (A11)

%T 13 CO CH)

(
1
:—% L ﬁ(s ’,’;C§’+ ,C0+2A0,s0 Bl)

K=+ 1 513 CO

0
sy 3A%st

Cls = Cly = Ci5 = Cjg = Cls = Cjg = Cy = Cpy = Cpy = (A12)
C%:CH :CI c28_c CHl_Csz—O
Cie = ZagBig,h(Na + %M)/(Ng2 N2 +2 > N5N3)
% =l = Ch = = = Cf = Cly =0
Ciy = —(%%C0h+G2N4+H2N5+12N6)/N3+ ég(co hco)
CAIIIS = [(3/\13 0 CONZ + HyNg + 12N7)N3 — (N4 + h]\@)(igsl Coh + HyNs ’

+1Ne)]/[(Ny + §N3)N4 - ( N3 + hN4 + N5)N3| + L77C0

(A14)

E, = Cl 1 1h CO hCO G, = ClI 1 1 hc0
/\83 [1) ( ), /\83 S(l)l
(A15)

s
1

— 1npl LsH S13*514 II _ _a(1 1 o_m my
Hz = s By + 2 2h s C39 Cyo I2 611(;& 0 Cy C40)

CH — CH — CH — CH — CH4 — CH5 — CH6 =0
Cl = [(22Blh + - 1(C9 + 2A9, BI;)h — G3Ny — H3N5) /N3 — Blg]/s%, ,

AOtX

(A16)

1 1 0 h/\n I
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oc/\O
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I 0 ~IL 0 ~II
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C61 - C62 - C63 - C64 - C66 - C67 - C68 - CI C72 -
B BH — BH — BH BH =0

BY — BY — BY — Bl — bl —0

Bis = Biy = Bjs = Bjg = Biz =0

ol — ot — o8 — ol — B, —0

Bl — B, ~ 5% — 8l — B, 0

I _pll _ pll _ plI _ plI _
B31_B32_B33_B34_B36_0
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(A18)

(A19)

The solving process of undetermined constants v, ug, and wy: substituting Equations (49) and (50)

into Equation (15), we have

_ _Ba0 0 0, 2 2 0 0 0
ul .o = 31515 +% hZSllc + “2511 — s} Cf — 2§59 Chyl + hZSllclll
x=1
+259,C — 19,001 + (9, Ga — s, By + )}) 2CY+ §Biy)ldYd% + (Gs — §F3 + %&Cg
I h I I h 2 B3 I ’
+7iBig — 25 B))1dgdYs + (h2511C35 2%5(1]1C316_2’B{3)l(d(1)5) +[=3(=5B;

CO) 2 2 (- BI

0
x ~0 aply _ h 1 5513 O 544 0 _ Mi1.0
Wl C ) 7 B6 l aA ( 7 11C 511C4 Ag3C4

_%C?z + 279, BI)I + (s9,G1 — #s% F)I(d%))" + 2k + g = 0

ZhAO

0
_h 0 593 ~0 0 S13 10 0 593 ~0 1 KW (.0 a0
w| z=0 —E(533C _513 C _544TEC2) (533C _513 C) "‘[/\0 0 az(513EC1
=1
2513h20h ?3 0 70 1h20 0 Rl \40 40
+59,C3 + 279,59, By) — ATs G+ 4 N Cldg,dg; + o2 2(C3 + 2A7) Bi3)d3,dys

1
0
Ags s
O
11

2 2
-2 zIBh BI + L?LCOJFZLOT”%
11

By )% 05 + (5 12C3 — 3 £ CD) (%)

A%, ucz A, &

h2 1 pl 0 sty S[1)3 K ~0 st 1 12 (S0, St -0 0 pI 0 \2
—2072¥B13513(d15) + [T A0 26— ggﬁ(gﬁq + %Q +2A%;B))](d3;)

—Tksl* — Lkel® — She7I2 + 0l + wy =0
and
ow
dx| z=0
=1

= —ksI® —kgl> —kyl +v = 0.

From Equations (A20)-(A22), it can be obtained that

U= k513 + k612 + k7l,

0_ PBa? 0.0 0 02 0 0 0 ~0 0
Uy = sHC — % 57,C5 — th 511Gy +1 ’XSHC +2"‘511C12l hstCHl 7544Cl
+gsg4cgz (s9,Go — 40\, + A%J hCy+ 1Bl Id3 A% — (Gs — §Fs + c0+ Bl
k770 40 0 ~II 0 ~II h pl 0 \2 I 0
—23B1)1d31d15 - (%2511(:35 —27511C36 _2*313)1(”115) - [_§(_%BZ Zh)\o <)
12 593

0 /\0 2
_L(—apl— mo 0) + aBllfEAT(,%TC%;%?Cngicg—‘;l‘—zc?ﬁz)\nBz)l

2

+(S(1)1G1 - Esnplm (dgl) - &k3
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(A21)

(A22)

(A23)

(A24)
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