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Abstract: Nanoparticles with controllable sizes of ferrite spinel CoFe2O4 were formed by thermal
treatment of cobalt-iron glycerolate. Thermal behavior during the heating was studied by differential
thermal analysis combined with thermogravimetry. The precursor, as well as the prepared nanoparticles,
were analyzed by a broad spectrum of analytic techniques (X-Ray photoelectron spectroscopy (XPS),
X-Ray diffraction (XRD), Energy dispersive spectroscopy (EDS), Atomic absorption spectroscopy (AAS),
Scanning electron microscopy (SEM), and Raman spectroscopy). The particle size of nanoparticles was
obtained from Transmission electron microscopy and also calculated using Scherrer formula. A vibrating
sample magnetometer (VSM) in a Physical Property Measurement System was used to analyze the
magnetic properties of nanoparticles.
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1. Introduction

As a part of the ferrite family, magnetic CoFe2O4 spinel is in the focus of research because of its
potential use in various applications. Due to its magnetic properties, CoFe2O4 nanoparticles may be
employed in catalysts [1,2], cathode electrocatalyst of microbial fuel cells [3], or in various functional
composite materials [4,5], including advanced adsorbents, for the removal of anionic pollutants from
water [6]. Cobalt ferrite has been also considered as a good candidate for biomedical applications [7–9],
especially for hyperthermia treatment, because of its high magneto-crystalline anisotropy [7].

Nanosized ferrites may be synthetized in many ways. A usual synthetic technique for preparation
of magnetic CoFe2O4 nanoparticles is the co-precipitation method [1–13], but also hydrothermal [14–17],
sol-gel auto-combustion [18,19], and microwave assisted [20,21] methods can be applied.

Thermal treatment of glycerol-based organometallic compounds (glycerolates) can be used for
synthesis of nanoparticles with variable sizes, e.g., cobalt oxides [22], iron oxide [23], manganese
oxides [24,25], and chromium oxide [26]. In addition, mixed ferrites, such as NiFe2O4 [27], have been
synthetized and, through the use of a reduction atmosphere, some pure metallic nanoobjects, e.g., cobalt
nanofoam [28], can be prepared. As a solvent, template compound or chelation agent, e.g., glycerol,
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is particularly advantageous. It exhibits a high boiling point and its viscosity is notably dependent
on temperature and water dilution, therefore it is easily controllable for the purpose of nanoparticle
stabilization. Furthermore, it is extra affordable in comparison with similar compounds and accessible
in large quantities—therefore, the methods relying on glycerol-based precursors may have a good
outlook for large-scale industrial application.

In our contribution, we focused on the synthesis of CoFe2O4 nanoparticles. Cobalt-iron glycerolate
and CoFe2O4 nanoparticles were analyzed in detail by a broad spectrum of analytic techniques.
The main focus was given to magnetic properties of CoFe2O4 spinel.

2. Materials and Methods

Cobalt-iron glycerolate was synthesized by a reaction of glycerol (in excess) with Fe(NO3)3

and Co(NO3)2 mixed in the target molar proportion 2:1. The synthesis was performed under reflux
of glycerol (boiling, 290 ◦C) for four hours without using any additional atmosphere. After the
heat treatment, the mixture was put into water and the solid phase was subsequently obtained by
centrifugation. The obtained solid material was washed using distilled water and ethanol and dried.
The prepared glycerolate was labeled as Co-Fe-GLY. The synthesized cobalt-iron glycerolate was
thermally decomposed in the tube furnace in a dynamic air atmosphere (pO2/p0 = 0.21, p0 = 101 kPa).
The temperatures applied were the following: 500 ◦C, 600 ◦C, 700 ◦C, or 800 ◦C for 1 minute
(rates 10 K min−1). The prepared nanoparticles were termed as Co-Fe-500, Co-Fe-600, Co-Fe-700,
and Co-Fe-800, accordingly.

X-Ray diffraction (XRD) patterns were measured using Bruker D2 Phaser (Bruker, Karlsruhe,
Germany) powder diffractometer (Bragg-Brentano geometry) using CoKα radiation (λ = 0.1789 Å,
U = 40 kV, I = 30 mA).

X-Ray photoelectron spectroscopy (XPS) was measured with ESCAProbeP (Omicron Nanotechnology
Ltd, East Grinstead, UK) spectrometer using a monochromatic aluminum X-ray radiation source (1486.7 eV).

Scanning electron microscopy (SEM) with a FEG electron source (Lyra, Tescan, Brno,
Czech Republic) was used to investigate the morphology. Elemental composition was performed using
an Energy dispersive spectroscopy (EDS) analyzer (X-MaxN) with a 20 mm2 SDD (Silicon Drift Detector)
(X-MaxN, Oxford instruments, Abingdon-on-Thames, UK) and AZtecEnergy software (v 2.1, Oxford
instruments, Abingdon-on-Thames, UK). Measurements were carried out using 10 kV electron beam.

Atomic absorption spectroscopy (AAS) was used to determine the concentration of metal elements
using Agilent 280FS AA device (Agilent Technologies, Mulgrave, Australia) with a flame-atomization
technique. The used wavelengths were 240.7 nm for cobalt and 248.3 nm for iron. Acetylene-air flame
was used for the measurement.

Raman spectroscopy was measured using confocal Raman microspectrometer Renishaw inVia
Reflex (Renishaw, Wotton under Edge, UK) equipped with a diode laser (excitation line 785 nm).

The thermal behavior was probed by simultaneous thermal analysis (STA) using Linseis STA
PT1600 apparatus (Linseis Messgeraete GmbH, Selb, Germany) with the heating rate 10 K min−1 in
dynamic air atmosphere.

Transmission electron microscopy (TEM) was performed using microscope JEOL JEM-1010 (JEOL,
Tokyo, Japan) at an accelerating voltage of 80 kV. The micrographs were acquired by SIS MegaView
III digital camera (Soft Imaging Systems, Münster, Germany) and analyzed by means of AnalySIS
v. 2.0 software.

Vibrating sample magnetometer (VSM) installed in Physical Property Measurement System
(PPMS, Quantum Design, San Diego, CA, USA) was used for the measurements of the magnetization
curves (µ0H = +7 to −7 T, T = 4.5 and 300 K) and for the magnetic susceptibility in the temperature
range 4.5–340 K (applied magnetic field µ0H = 0.1 T). The field cooled (FC) susceptibility was acquired
on cooling in the magnetic field in a sweeping mode (cooling rate 5 K min−1), while the zero-field cooled
(ZFC) susceptibility was measured on heating (heating rate 5 K min−1) after cooling the sample in zero
field and then switching on the field. The vibrating frequency was 60 Hz and the amplitude 1 mm.
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3. Results and Discussion

The successful synthesis of cobalt-iron glycerolate (Ni-Fe-GLY) was confirmed by XRD.
The observed XRD pattern is shown in Figure 1. Similar to manganese glycerolate [24], a wide reflection
(at 2θ = 12.78) was observed, confirming that the synthetized glycerolate was highly non-crystalline
or nanostructured.
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Figure 1. Diffractogram of Co-Fe-GLY.

Cobalt-iron glycerolate was studied using SEM and EDS. Large agglomerates with a size over
20 µm were found; only few particles were of sub-micron size (see Figure 2). Let us note that a
similar structure has been also obtained for other glycerolates [22–24]. SEM-EDS spectrum is shown
in Figure 3, confirming the presence of carbon, oxygen, iron, and cobalt. Gold, originating from the
sputtering, was also detected. The obtained composition Co1Fe2.02C10.7O7.76 (Co stoichiometry was
fixed to 1) was determined as an average from four measurements. The corresponding C/O ratio was
~1.38:1, which was further confirmed by AAS. Similarly, the ratio of metals in cobalt-iron glycerolate
1:2.08 as obtained from AAS is in line with SEM-EDS results.
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The Co-Fe-GLY composition was examined by XPS (Figure 4). The Co2p, Fe2p, C1s, and O1s
peaks were identified in the obtained survey spectrum. The first peak corresponding to C1s was
obtained at ~286.5 eV. A peak corresponding to O1s was found at ~531.6 eV. A third peak observed at
~712.5 eV can be attributed to Fe2p. The last peak was found at ~782.4 eV, this Co2p peak confirmed
the presence of cobalt in the glycerolate. The observed positions for Co2p and Fe2p are in good
agreement with the literature [29]. Chemical composition Co1Fe1.80C42.06O25.57 (Co being fixed to
1) was calculated from the spectrum. The C/O ratio ~1.64:1 was slightly higher to that determined
by SEM-EDS. The composition of bulk cobalt-iron glycerolate probed by XPS is slightly different
compared to EDS results due to a surface sensitivity of XPS.
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Thermal behavior was studied by thermal analysis. As seen from Figure 5, one exothermic
effect was observed; however, this effect is clearly composed of three partial transitions. The first
exo-peak started at ~150 ◦C and reached its maximum at 185 ◦C, the second major exo-effect reached
the maximum at 298 ◦C, while the third one was indicated at 399 ◦C. The thermal decomposition led
to a formation of pure nanoparticles, which will be discussed later. The decomposition/oxidation was
accompanied be a weight loss of ~45 wt. %. Assuming the formation of pure CoFe2O4, we can estimate
the glycerolate molar mass as 425.6 g mol−1, corresponding well with the chemical composition
determined by EDS.
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Based on the XRD analysis, it can be confirmed that nanocrystalline CoFe2O4 was obtained
(Figure 6) [30]. Next, Scherrer formula was used to determine the crystallite sizes. The results
confirmed the expected behavior: At higher temperatures, nanocrystal growth took place, hence
bigger nanoparticles were formed. The calculated crystallite sizes of CoFe2O4 were ~6.2 nm, ~9.7 nm,
~17.5 nm, and ~28.2 nm for the samples Co-Fe-500, Co-Fe-600, Co-Fe-700, and Co-Fe-800, respectively.
The evolution of particle size with temperature is obvious. The acquired diffraction patterns are in
good agreement to the literature [29,31].
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(d) Co-Fe-800.

Transmission electron microscopy (TEM) was applied in order to prove the calculated particle
diameters (Figure 7). While the nanoparticles Co-Fe-500 and Co-Fe-600 are ultrafine with homogenous
particle size distribution, the other two samples prepared at higher temperatures significantly differed
due to crystallite growth resulting in larger nanoparticles with different shapes and divergent particle
sizes. However, it was proved that particle diameters are growing with increasing temperature.
The histograms showing the particle size distribution of the selected area are also shown in Figure 7.

The Raman spectroscopy confirmed the presence of an inverse spinel structure Fe[CoFe]O4 [32–34],
without any indication of signals belonging to impurity phases, such as those corresponding to
precursors. The Raman spectra are shown in Figure 8. The bands at 1325 and 1135 cm−1 are assigned
to the A1g and T2g modes of the 2nd order. The next bands at 692 cm−1 and at 615 cm−1 correspond to
A1g symmetric stretching (tetrahedral breath mode) of oxygen atoms with respect to Fe and Co ions.
T2g modes (asymmetric stretching and bending, respectively) are assigned to bands at the 553 and
473 cm−1, and the T2g mode at 183 cm−1 belongs to a translation motion of the whole tetrahedron.
The band at 297 cm−1 is assigned to Eg symmetric bending of Fe(Co)-O. The results of Raman analysis
are also summarized in Table 1.
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CoFe2O4 in a bulk form is known to exist predominantly in the inverse spinel structure (with only
10–20 per cent of Co occupying the tetrahedral sites). Considering of a 90◦ superexchange interaction
between both types of cations occupying the octahedral sites (Co2+-3d7 and Fe3+-3d5, both occurring
in high spin state) leading to parallel spin ordering, and an antiferromagnetic coupling between the
tetrahedral (spin S = 5/2) and octahedral positions (S = 4), we can anticipate a ferrimagnetic behavior
with a saturated magnetic moment Msat ~3 µB (S = 3/2) per formula unit (f.u.). Such behavior is
indeed observed below the Curie temperature TC ~793 K. These experimental findings are in line with
our DFT calculations (GGA+U, APW+lo, as implemented in Wien2k), confirming the inverse spinel
structure (favored by 50 kJ mol−1 with respect to normal spinel) and the AF interaction between the
tetrahedral Fe3+ and mixed Co2+/Fe3+ octahedral sites. The integrated density of states for spin-up
and spin-down channel, as shown in Figure 9, yields the net magnetic moment 3 µB.
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The magnetization curves measured at T = 300 K and at T = 4.5 K (Figure 10) reveal a saturation,
though not complete, at higher magnetic fields, which is substantially suppressed compared to the bulk
form and decreases with reducing crystallite size. The main parameters of the obtained magnetization
curves are summarized in Table 2.
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Table 2. Coercivity filed µ◦Hc, remanent magnetization Mr, magnetic moment at the maximum
field M7T obtained from the magnetization curves measured at 300 K and 4.5 K, and the blocking
temperature TB determined as a furcation point between field cooled and zero-field cooled (FC and
ZFC) curves of magnetic susceptibility.

Co-Fe µ◦Hc
(300 K) mT

Mr (300 K)
µB/f.u.

M7T (300 K)
µB/f.u.

µ◦Hc
(4.5 K) T

Mr (4.5 K)
µB/f.u.

M7T (4.5 K)
µB/f.u. TB K

500 45 0.20 2.00 1.95 1.36 2.23 340
600 90 0.51 2.41 1.58 1.72 2.65 328
700 138 0.81 2.89 1.28 2.13 3.15 300
800 130 1.20 3.20 0.99 2.47 3.46 300

Only a small hysteresis is observed on the magnetization curves recorded at T = 300 K (coercivity
field ranging from µ◦Hc = 45 mT to µ◦Hc = 130 mT for Co-Fe-500 and Co-Fe-800, respectively).
This behavior, together with a notable difference between the zero-field cooled (ZFC) and field cooled
(FC) magnetic susceptibility below room temperature (see Figure 11), suggests a superparamagnetic
(SPM) behavior. Superparamagnetic behavior of nanoparticles (5–8 nm) at room temperature was
already identified by Repko et al. [35].

Interestingly, the FC susceptibility of Co-Fe-500 sample undergoes an upturn from the slightly
decreasing trend at 300 K before merging the ZFC curve at the blocking temperature TB ~340 K.
(determined as a furcation point of the ZFC-FC curves). Blocking temperatures in the range 200–400 K
have been reported for various CoFe2O4 nanoparticles [35].

At lower temperatures, the slow relaxation brings about a pronounced hysteresis, which increases
with reducing particle size and reaches the highest coercivity field µ◦Hc = 2 T for Co-Fe-500 and
the highest remanence Mr ~2.5 µB/f.u. for Co-Fe-800. Let us note that much smaller hysteresis
(µ◦Hc = ~120 mT) and also a lower blocking temperatures TB have been recently found in NiFe2O4

inverse spinels [27] with comparable particle sizes. This can be in part interpreted in terms of larger
magnetic anisotropy of CoFe2O4 (K1 = 2 × 106 as compared with K1 = −5 × 104 for NiFe2O4 [36]),
bringing about a higher blocking temperature, however, magnetic frustration due to competing
exchange interactions, as well as site and displacive disorder associated with the surface states, might
be at the origin of this huge hysteresis.
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Figure 11. Field cooled (FC) and zero field cooled (ZFC) magnetic susceptibility of Co-Fe-500 sample
measured in the temperature sweeping mode at a heating and cooling rate 5 K min−1.

The observed magnetic behavior makes cobalt ferrite nanoparticles excellent candidates for
hyperthermia treatment and other medicinal applications. The particle size control, as demonstrated on
the proposed thermal decomposition of glycerolates, is indeed essential for tailoring the nanomaterial
magnetic properties

One of the main advantages of the described synthesis method of CoFe2O4 nanoparticles in
comparison with co-precipitation or hydrothermal methods is the absence of other elements and
ions, e.g., Na+ ions in the case of co-precipitation methods or various capping agents in the case of
usual hydrothermal techniques. The ability to control the nanoparticles size also represents a great
advantage of the present method. Moreover, the method operates with affordable, non-toxic and
available precursors, and is usable even for preparation of larger amounts of the material, therefore
with the possibility for further development for applications on an industrial scale.

4. Conclusions

Cobalt ferrite spinel nanoparticles with stoichiometry CoFe2O4 were synthesized by thermal
decomposition of cobalt-iron glycerolate. Nanoparticles’ sizes were controlled by temperature of
decomposition of previously synthesized glycerolate precursor in the range from 6.2 to 28.2 nm.
Both precursor and product were characterized by various means, including Raman spectroscopy,
XRD, SEM-EDS, TEM, AAS, and XPS. The CoFe2O4 spinel nanoparticles exhibit a pronounced hysteresis,
a suppressed saturated magnetization, and high blocking temperatures due to large magnetic anisotropy
and nanosizing effects. Our method may be applied for preparation of high volumes of magnetic CoFe2O4

nanoobjects of selected sizes with a surface free of surfactant or other contamination.

Author Contributions: V.B., O.J. and D.S. wrote the manuscript. V.B. and O.J. prepared samples. V.B., D.S.,
Š.H., M.Š., P.U. and O.J. analyzed the samples.Funding: This work was supported by Czech Science Foundation,
grant no. 17-13161S and by Ministry of Education of the Czech Republic, grant number 20/2018 for specific
university research.

Conflicts of Interest: The authors declare no conflict of interest, the funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish
the results.
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