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Abstract: Different-shaped ultrafine MoNbTaW high-entropy alloy powders were firstly prepared by
a convenient mechanical alloying method. The phase composition and microstructure of the powders
were characterized. The powders are ultrafine with nano-sized grains and a good homogeneous
microstructure. All the powders have a single body-centered cubic solid solution phase and form
the high-entropy alloy during mechanical alloying. These powders with different shapes are
quite attractive for developing high-performance MoNbTaW high-entropy alloy bulk and coatings
combined with a following sintering, spraying, or additive manufacturing technique.
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1. Introduction

Traditional alloying strategy is that ternary or higher-order intermetallic compounds form
unexpectedly in multicomponent alloys, which typically result in a reduction in mechanical properties,
corrosion resistance, and microstructure stability. Thus, the conventional alloys normally have a
base element that dominates the chemistry, even for the superalloys, which contain as many as 12
elements in a single alloy [1–4]. Recently, a novel alloying concept, multi-principal element alloys
or high-entropy alloys (HEAs), has been proposed. The HEAs, composed of five or more elements
with near equiatomic ratios, exhibit a simple solid solution microstructure unlike the conventional
alloys and have received considerable attention because of their unique properties, such as high
hardness and strength, good thermal stability, and excellent corrosion resistance [5,6]. Among them,
refractory HEAs are made of refractory elements with high melting temperatures around 2000 ◦C or
higher and implemented for high-temperature applications [7]. Recently, Senkov et al. [8,9] explored
a body-centered cubic (BCC)-structured MoNbTaW HEA, attaining a yield strength of 405 MPa and
high heat-softening resistance at 1600 ◦C. Zou et al. [10,11] reported the MoNbTaW HEA thin film and
small-sized pillars exhibiting extraordinarily high-yield strengths, which represents a new class of
materials in small-dimension devices potentially for high-stress and high-temperature applications.
Thus, the attractive performance of the MoNbTaW HEA has drawn more and more attention. Until now,
the refractory HEAs have mostly been prepared by the arc melting technique, which has been widely
studied in the published literature [12–14]. Because the alloys contain multiple elements, it is hard to
avoid the compositional segregation of high-melting elements and the evaporation of low-melting
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elements. In addition, HEA ingots have limited shapes and sizes with dendritic microstructures.
There is a high demand to explore new fabrication methods for refractory HEAs. Mechanical alloying
is a practical method to synthesize the nanocrystalline and ultrafine powders. Bulk ultrafine-grained
materials with large sizes and various shapes can be fabricated, combined with a following sintering,
spraying, or additive manufacturing technique. There have been several attempts to synthesize HEAs
using the mechanical alloying method. Mohanty et al. [15] synthesized AlCoCrFeNi high-entropy
alloy by high-energy ball milling and characterized the microstructure of the as-produced powder.
Cai et al. [16] prepared a NiCrCoTiV HEA powder by mechanical alloying and then fabricated the
bulk HEA alloy by vacuum hot-pressing sintering. Joo et al. [17] produced an ultrafine-grained
CoCrFeMnNi HEA by mechanical alloying and spark plasma sintering. The previous investigations
on the mechanical alloying of HEAs are mainly focused on the late transition metals, such as Fe, Co,
Cr, Al, Cu, and Ni. Very little research is available on the refractory HEAs. Regarding the excellent
performance of the MoNbTaW HEA, mechanical alloying was proposed to prepare the MoNbTaW HEA
powder in the present investigation. Near-spherical and lamellar-shaped MoNbTaW HEA powders
were prepared and the microstructure of the powders were characterized.

2. Materials and Methods

Pure elemental powders, Mo, Nb, Ta, and W, commercially available from Shanghai Naiou
Nanotechnology Co. Ltd. (Shanghai, China), with high purity (>99.9 wt %) and uniform particle size
(300 mesh) were used as the starting materials. The starting elemental powders were mechanically
alloyed using a planetary ball milling machine (TENCAN, Changsha, China) in a protective argon
(Ar) atmosphere with steel vials and balls. In order to obtain a homogeneous microstructure and
composition, the vials were horizontally circumgyrated at the same time of turning at 360 degrees.
The powders were milled for up to 60 h at the speed of 300 rpm with a ball-to-powder ratio of 10:1.
Prior to the milling, the vials containing the powder and balls were evacuated and refilled with high
purity (99.9%) argon gas. The milling operation was stopped 10 min after running every 20 min
to ensure the protective atmosphere was retained inside the vials during milling. Different process
control agents, including ethanol and stearic acid, were added during the mechanical alloying process.
The as-milled powders were annealed at 1200 ◦C for 2 h in the Ar atmosphere to characterize the
stability of the as-milled powders. The micro-morphologies of the HEA powders were observed by
scanning electron microscopy (SEM, FE-SEM, Zeiss Ultra55, Zeiss, Oberkochen, Germany) operating
at 15 keV. Phase composition and crystal structures were examined using an X-ray diffractometer
(XRD, RIGAKU D/MAX-2500, Rigaku, The Woodlands, TX, USA) with Cu–Ka radiation. The chemical
composition was observed by energy dispersive X-ray (EDS) equipped in the SEM. The structure
of the powders was analyzed in transmission electron microscopy (TEM, FEI, Hillsboro, OR, USA).
The samples were prepared by placing a drop of the milled powder solution on a carbon-coated copper
grid and then drying it at room temperature.

3. Results and Discussion

Figure 1 shows the XRD patterns of the initial mixed pure powders and the MoNbTaW HEA
powders prepared by mechanical alloying with different process control agents. The initial mixed pure
powders exhibit the XRD patterns of Mo, Nb, Ta, and W. The patterns of Nb are quite close to that
of Ta, and the patterns of W are quite close to that of Mo. All the as-milled powders are composed
of a unique BCC solid solution, indicating that high-entropy alloys have been formed without any
residual pure elements. Crystallite size, lattice constant, and strain of the as-milled powders were
calculated based on the XRD data and listed in Table 1. As shown, the crystallite size of the powder
prepared without any process control agents is the smallest, 11.8 nm, which is much smaller than
that prepared with ethanol or stearic acid, 24.2 and 14.7 nm, respectively. In addition, the strain of
the powder prepared without any process control agents is the largest. The above results indicate
that dry balling without process control agents has the highest milling energy. During mechanical
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alloying, flattening, cold-welding, fracturing, and rewelding occurred repeatedly, and the force of the
impact severely deformed the powder particles [18]. The elements in the starting powders diffused
fast, and the size of the powders was gradually refined [18,19]. Finally, a relatively thermodynamically
stable powder with fine grains was formed.
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Figure 1. XRD patterns of the initial mixed pure powders and the MoNbTaW high-entropy alloys
(HEA) powders prepared by mechanical alloying with different process control agents.

Table 1. Crystallite size, lattice constant, and strain of the MoNbTaW powders prepared with different
process control agents.

Powders Prepared with Different Process Control Agents Crystallite Size (nm) Lattice Constant (Å) Strain (%)

None 11.8 3.1636 0.688
Ethanol 24.2 3.1549 0.483

Stearic acid 14.7 3.1648 0.590

The BCC solid solution structure formation of the MoNbTaW alloy during mechanical alloying
could be explained by the high-entropy effect in the system. The mixing entropy (∆S) of the
equiatomic MoNbTaW alloy calculated by Equation (1) [20] is 11.5 J/(K·mol), which is muchlarger
than that of a traditional binary alloy (5.64 J/(K·mol)). According to the Gibbs free energy formula,
Gmix = Hmix − TSmix, free energy of the system will be smaller with higher mixing entropy, and thus,
the solid solution is more favorably formed [21]. Furthermore, several parameters, such as mixture
enthalpy (∆H) [20], atomic size mismatch (δ) [22], valence electron concentration (VEC) [23],
and thermodynamic parameter (Ω) [20] are employed to predict the phase formation and stability of
single-phase solid solution in HEAs. They are defined and calculated based on the following equations:
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VEC =
n

∑
i=1

ci(VEC)i (4)

Ω =
∆Smix

|∆Hmix|

n

∑
i=1

ci(Tm)i (5)

where R is the gas constant, ∆Hmix
ij is the mixture enthalpy of the ith and jth components, ci and

cj are the atomic percentage of the ith and jth components, respectively, ri is the atomic radius of
the ith component, (VEC)i is the VEC of the ith component, and (Tm)i is the melting temperature
of the ith element. Normally, the formation of simple BCC solid solutions in HEAs is concluded:
−22 ≤ ∆Hmix ≤ 7 kJ·mol−1, 0 ≤ δ ≤ 6.6, VEC < 6.87, and Ω > 1.1 [20,22,23]. The above parameters
∆H, δ, VEC, and Ω for the MoNbTaW alloy in the present investigation were calculated to be
−6.5 KJ/mol, 2.78, 5.5, and 5591, respectively, well meeting the criterion for the formation of a
single BCC solid solution structure. Therefore, the MoNbTaW alloy tends to form a BCC single-phase
structure rather than a complex structure alloy during mechanical alloying.

Figure 2 shows the XRD patterns of the as-milled HEA powders prepared without process control
agents and the powders annealed at 1200 ◦C. No obvious change was found before and after annealing,
demonstrating that the HEA powders have a good stability. As mentioned above, the mixing entropy
(∆S) of the MoNbTaW HEA alloy is much larger than that of the traditional binary alloys, which may
be the main reason for the good phase stability of the HEA powders [21].
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annealing at 1200 ◦C.

Figure 3 shows the micro-morphologies of the starting powder and the MoNbTaW HEA powders
prepared by mechanical alloying with different process control agents. As can be seen, the starting
powder is composed of nonuniform powders with different shapes and sizes. After mechanical
alloying, all the powders show relatively homogeneous sizes and shapes. The HEA powders prepared
with stearic acid and without any process control agents have a near-spherical shape, while the
powder prepared with alcohol exhibits a lamellar morphology. Detailed morphologies of the powders
show that the spherical powders are composed of many nano-crystalline grains (Figure 3d), which is
consistent with the XRD analysis.
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process control agent, (e,f) stearic acid, and (g,h) ethanol.

Figure 4 shows the EDS analysis of the MoNbTaW HEA powders. As can be seen, the powder is
composed of approximately equiatomic Mo, Nb, Ta, and W elements in addition to very little amounts
of Fe and Cr (total 1.2 at %). These Fe and Cr elements should be from the steel vials and balls during
the mechanical alloy process. However, their amounts are very little, indicating that the HEA powders
were not obviously contaminated by the steel vials and balls under the present mechanical alloying
process. The tiny content of Fe and Cr may be the reason why the Fe and Cr diffraction peaks were not
detected in the XRD pattern in Figure 1. The mapping EDS analysis of the powder shows a uniform
distribution of the Mo, Nb, Tam and W elements, further demonstrating the homogenous formation of
the HEAs.
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TEM analysis was performed to further characterize the microstructure of the MoNbTaW HEA
powders, and the results are shown in Figure 4. Selected area electron diffraction (SAED) analysis
of a small powder exhibits a polycrystalline ring diffraction of the BCC structure, indicating that the
powder is composed of very small nano-crystalline grains. These results are in good agreement with
the XRD analysis in Table 1 and further confirm the BCC solid solution structure of the HEA powders
prepared by mechanical alloying.
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4. Conclusions

Mechanical alloying is demonstrated to be a practical fabrication process for uniform MoNbTaW HEA
powders. Near-spherical and lamellar-shaped HEA powders with a good homogeneous microstructure
and ultra-fined grains were prepared via mechanical alloying, respectively. The powders are ultrafine
and have a single BCC solution structure.
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