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Abstract: Local corrosion damage of steel structures can occur due to damage to the paint-coated
surface of structures. Such damage can affect the structural behavior and performance of steel
structures. Compressive loading tests were, thus, carried out in this study to examine the effect of
local corrosion damage on the structural behavior and strength of tubular members. Artificial cross-
sectional damage on the surface of the tubular members was introduced to reflect the actual corroded
damage under exposure to a corrosion environment. The compressive failure modes and compressive
strengths of the tubular members were compared according to the localized cross-sectional damage.
The compressive loading test results showed that the compressive strengths were affected by the
damaged width within a certain range. In addition, finite element analysis (FEA) was conducted
with various parameters to determine the effects of the damage on the failure mode and compressive
strength of the stub column. From the FEA results, the compressive strength was decreased
proportionally with the equivalent cross-sectional area ratio and damaged volume ratio.

Keywords: residual compressive strength; tubular member; cross-sectional damage; corrosion;
compressive loading test; FEA

1. Introduction

Circular steel members have been used as major structural components in various structural
systems. In energy power facilities, circular steel members have been used as pipeline or structural
members of main platforms or substructures [1–4]. In offshore and maritime structures, they have
been used as the main structural components for structural platforms on oilrigs, observation facilities,
and wind and power plants. In addition, for infrastructures, circular steel members have been used
in bridges, buildings, and plant systems, etc. Generally, paint coating has been applied to these
circular members for corrosion protection, aesthetics, and sustainable maintenance. However, due to
deterioration or localized damage of the paint-coated surface of circular members, localized corrosion
commonly occurs on paint-coated surfaces exposed to atmospheric corrosion environments [5–7].
This localized corrosion damage to the surface of circular steel members can affect their structural
safety, performance, and durability, because corrosion damage is related to the cross-sectional damage
on the surface of the member.
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The corrosion pit under a pipeline was investigated by electrochemical impedance techniques
(EIS) and the corrosion behavior of iron and steel was evaluated depending on carbonate solution,
chloride, and carbon dioxide [8–10]. Experimental and numerical studies have been conducted to
examine the variation of structural performance of structural members according to cross-sectional
damage induced by corrosion [11–16]. Additionally, the reinforcement or rehabilitation method has
been used to examine cross-sectional damaged members [17,18]. Some studies have considered the
ideal corrosion model for examining even cross-sectional damage on structural member surfaces.
To consider the irregular cross-sectional damaged surfaces due to corrosion, compressive loading
tests have been conducted on inclined and vertical circular steel members with both uneven and even
cross-sectional damage. In these tests, damage was artificially induced by a mechanical process and
hand drills to compare the differences between the compressive resistances and cross-sectional damage
condition caused by corrosion [19].

In these previous studies, half- and fully-damaged cases of cross-sectional corrosion of the outer
circumference of circular steel members [19] were considered. Based on the decreased compressive
strength ratios from these compressive loading test results, an equation of residual compressive factors
was suggested, depending on the cross-sectional damage ratio [20]. However, it was difficult to
determine the effects of local cross-sectional damage caused by corrosion on the compressive behaviors
of the members, since relatively widely distributed cross-sectional damage and full damage of the
circumference occurred on the surface of the tubular section, as discussed in the previous study [19,20].
The major variables affecting the compressive strength and behavior of the structural members were
not able to be determined.

In this study, artificial cross-sectional damages with various damaged widths and heights were
induced on the surface of tubular specimens to examine the major variables that affect the compressive
behaviors of circular tubular members. After compressive loading tests of the circular tubular
specimens, their compressive failure modes and compressive resistant capacities were evaluated
and compared. To more clearly evaluate their compressive resistant capacities, FEA was additionally
conducted to determine the parameters of various cross-sectional damages. Using a range of FEA
models, the major variables that affect the compressive strength of the specimens were found and
it was, therefore, not necessary to use a large number of specimens for the experiments. A total of
120 FEA models were constructed and used for analysis in this study. After performing the analysis,
the failure modes were checked to determine the major factors and the compressive strength values of
the members were evaluated to determine the variables affected by the damages. Finally, the effect of
the localized cross-sectional damage condition on the compressive resistance of the circular tubular
members was quantitatively evaluated.

2. Compressive Test Conditions

2.1. Localized Cross–Sectional Damaged Tubular Specimens

To consider the various cross-sectional damaged conditions on the surface of the circular tubular
members compared to those on the specimens used in the previous study [19,20], a small circular
tubular pipe 89.1 mm diameter (thickness: 3.2 mm) was selected for the compressive loading test
specimens. Since the dimensions of the tubular pipe can differ from the official dimensions from the
fabrication process, the tubular pipe dimension was measured and its actual diameter was 90 mm.
Circular tubular specimens were cut to a 600 mm height and steel plates of 120 mm width and 10 mm
thickness were attached to each end of the tubular specimen as shown in Figure 1. These circular
tubular specimens were designed as stub columns with a slenderness ratio (λ) of 9.87. The steel grade
of the tubular specimens was STK 400, having a yield stress of over 216 MPa and a tensile strength of
over 400 MPa.

In this study, the yield stress was chosen to be 310 MPa in accordance with the material
test. To replicate the corrosion damage occurring in certain areas of the section in the tubular
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member, artificial damages with continuous pitting shapes were induced on the surface of the
tubular specimens using a hand drill with a 12 mm diameter drill bit. Artificial cross-sectional
damage condition was determined considering relative ratio to the diameter for circular specimen.
Thus, a total of 18 specimens were fabricated according to the abovementioned artificial cross-sectional
damage conditions.
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Figure 1. Dimensions of the compressive specimens (unit: mm).

To investigate the major variables for the compressive behaviors of the specimens, the width of
the artificial cross-sectional damage of specimen was changed from D/3 (about 30 mm) to 1.6D (about
150 mm) and the height was also changed from D/3 (about 30 mm) to 1.0D (about 90 mm), as shown
in Table 1. Table 1 summarizes the compressive loading test specimens. In the fabrication process,
the weight of each specimen was also measured to check the cross-sectional damage before and after
inducing artificial damage to the tubular specimens. In particular, in order to examine the uncertainty
of the artificially damaged section, CD-H7.5W series specimens having an artificial damage with
a height of 75 mm were fabricated. The artificial cross-sectional damage was not calculated at the
design level of the specimen, and the weight loss was only measured after the contrived cross-sectional
damage. Thus, the cross-sectional losses of the CD-H7.5W series specimens were not quantitatively
dependent on the cross-sectional damaged condition, unlike those of the other specimens. From their
measured weight loss, the equivalent cross-sectional areas of the specimens were also calculated for
the artificial damaged region of the specimens.
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Table 1. Summary of the tubular specimen with localized cross-sectional damage.

Specimens Damaged Height
(H)/Width (W) (mm)

Weight Loss after Artificial
Cross-Sectional Damage (g)

Equivalent Cross-
Sectional Area (mm2)/(%)

Artificial Cross-Sectional
Damaged Volume (mm3)

CR-H0W0-1 - 0 990.2/100 0
CR-H0W0-2 - 0 990.2/100 0
CR-H0W0-3 - 0 990.2/100 0

CR-H0W0_mean - 0 990.2/100 0
CD-H3W3 30/30 14 930.7/93.99 1783.4
CD-H3W6 30/60 32 854.3/86.28 4076.4
CD-H3W9 30/90 42 811.8/81.99 5350.3

CD-H3W15 30/150 69 697.2/70.41 8789.8
CD-H6W3 60/30 28 930.7/93.99 3566.9
CD-H6W6 60/60 65 852.2/86.07 8280.3
CD-H6W9 60/90 83 813.9/82.2 10,573.2

CD-H6W15 60/150 139 695/70.19 17,707.0
CD-H7.5W3 75/30 24 949.4/95.88 3057.3
CD-H7.5W6 75/60 40 922.2/93.14 5095.5
CD-H7.5W9 75/90 63 883.2/89.2 8025.5

CD-H7.5W15 75/150 82 850.9/85.94 10,445.9
CD-H9W3 90/30 42 930.7/93.99 5350.3
CD-H9W6 90/60 83 872.7/88.14 10,573.2
CD-H9W9 90/90 125 813.2/82.13 15,923.6

CD-H9W15 90/150 209 694.3/70.12 26,624.2

From the weight loss after the artificial cross-sectional damage, the equivalent damaged thickness
of the tubular member was also calculated along the damaged width of the tubular specimen. For the
names of the specimens in Table 1, “C” refers to the compressive test, “R” is the reference, “D” indicates
a damaged specimen, “W” indicates the width of the damage, and “H” indicates the height of the
damage. The number following “W” and “H” represents the damaged ratio determined from the
diameter of the circular specimen. Thus, specimen CD-H3W3 is the compressive test specimen with an
artificial damage of 30 mm height and 30 mm width.

2.2. Loading Test Conditions

To examine the compressive resistant behaviors of the tubular specimens with localized
cross-sectional damage, an electric hydraulic servo system (Shimadzu, Kyoto, Japan) with a 5000
kN capacity universal testing machine (UTM) was used to apply compressive loading to the specimens.
To control the compressive load, displacement load control was used at a rate of 1.5 mm/min.
Compressive loading was applied to the test specimens until the occurrence of compressive failure, such
as a local buckling failure. During compressive loading to the tubular specimens, their compressive
behaviors were recorded using a video camera to observe the failure behaviors depending on the
applied load level. Figure 2 shows the test setup of the compressive loading test for the CR-H0W0-2
and CR-H7.5W3 specimens.
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3. Test Result Evaluation

3.1. Failure Modes

In this study, the localized artificial cross-sectional damage determined from the relative ratio
of the diameter of the tubular specimen was considered to investigate the major variables affecting
compressive behaviors related to failure modes and the variation of compressive strengths. It was
found that the failure modes could be affected by major variables, such as height, width, and damaged
depth related to their cross-sectional damaged condition. Thus, the damaged width and height were
changed from D/3 (about 30 mm) to 1.6D (about 150 mm for width) and 1.0D (about 90 mm for
height). After compressive loading tests, the failure modes among the CR-H0W0 series specimens
were compared to determine the specified failure modes. Figure 3 shows the compressive behaviors of
the representative tubular specimens depending on the applied load level (at yield load, at compressive
loading, and at final failure).

The failures of the tubular specimens without artificial cross-sectional damage were initiated
by local buckling near the loading plate, which was accompanied by lateral buckling of the tubular
specimen after the initial local buckling, as shown in Figure 3a–d. On the other hand, the tubular
specimens with artificial cross-sectional damage showed various final local buckling failure modes
that were squashed or folded in the artificial damaged section depending on their cross-sectional
damaged condition as shown in Figures 4–8. In the case of the CR-H3W6 specimen, with a relatively
lower cross-sectional damage height, as shown in Figure 4, a local buckling failure mode was found
with the fold in the artificial cross-sectional damage region. In the case of specimens with a certain
cross-sectional damage height of 60 mm and width of 60 mm, a local buckling failure mode with
unusual deformation (such as shear failure mode of thin plate) was observed due to the cross-sectional
damaged condition, as shown in Figures 5 and 6. For the specimen with the wider cross-sectional
damage of 1.6 D (about 150 mm for width), the buckling failure mode showed irregularly crushed
failure in the artificially damaged section as shown in Figures 7 and 8.

These differences between failure modes could be due to the cross-sectional resistance and
stress distribution on the surface of the damaged section caused by localized corrosion damage.
From these failure modes, it can be assumed that the cross-sectional damaged shape and condition
can be influenced by various forms of compressive failure modes that are affected by localized
corrosion damage.
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compressive strength; and (d) at final failure.
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Figure 5. Compressive failure process of specimen CR-H6W6: (a) before load; (b) at yield load; (c) at
compressive strength; and (d) at final failure.
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Figure 7. Compressive failure process of specimen CR-H7.5W15: (a) before load; (b) at yield load; (c)
at compressive strength; and (d) at final failure.
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Figure 8. Compressive failure process of specimen CR-H9W15: (a) before load; (b) at yield load; (c) at
compressive strength; and (d) at final failure.

3.2. Compressive Loading Results

3.2.1. Summary of Compressive Loading Tests

In order to quantitatively compare the change in the compressive strengths of circular tubular
member specimens according to the localized cross-sectional damage condition, the compressive
load-displacement relationships of the specimens are presented in Figure 9. All compressive loading
test specimens showed typical compressive loading resistance behaviors, as shown in Figure 9.
The CR-H0W0 series specimens showed a relatively larger ductile behavior after yield loading than
that of the tubular member specimen with artificial cross-sectional damage. For the tubular member
specimen with artificial cross-sectional damage, compressive displacements relatively decreased
from yield load to failure; this tendency was greatly affected by the specimens with the higher
cross-sectional damage as shown in Figure 9. The compressive loads of the tubular member specimens
with artificial damage to the sections affected the cross-sectional resistance condition, as determined
by the cross-sectional damaged level. Thus, it is inferred that the compressive loads decreased
according to the cross-sectional resistance condition determined from the cross-sectional damaged
level. Table 2 summarizes the maximum compressive load of each test specimen to quantitatively
show the compressive load and displacement relationships.
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Table 2. Summary of test results of the tubular specimen with localized cross-sectional damage.

Specimens Damaged Height
(H)/Width (W) (mm)

Damaged
Volume (mm3)

Converted Cross-
Sectional Area (mm2)

Compressive
Strength (kN) Displacement (mm)

CR-H0W0-1 - 0 990.2/100 0 12.0
CR-H0W0-2 - 0 990.2/100 0 10.0
CR-H0W0-3 - 0 990.2/100 0 10.9

CR-H0W0_mean 0 990.2/100 0 4.2
CD-H3W3 30/30 1783.4 930.7/93.99 1783.4 4.0
CD-H3W6 30/60 4076.4 854.3/86.28 4076.4 4.7
CD-H3W9 30/90 5350.3 811.8/81.99 5350.3 3.4

CD-H3W15 30/150 8789.8 697.2/70.41 8789.8 4.5
CD-H6W3 60/30 3566.9 930.7/93.99 3566.9 6.3
CD-H6W6 60/60 8280.3 852.2/86.07 8280.3 4.3
CD-H6W9 60/90 10,573.2 813.9/82.2 10,573.2 2.5

CD-H6W15 60/150 17,707.0 695/70.19 17,707.0 5.3
CD-H7.5W3 75/30 3057.3 949.4/95.88 3057.3 3.9
CD-H7.5W6 75/60 5095.5 922.2/93.14 5095.5 4.3
CD-H7.5W9 75/90 8025.5 883.2/89.2 8025.5 4.5

CD-H7.5W15 75/150 10,445.9 850.9/85.94 10,445.9 5.4
CD-H9W3 90/30 5350.3 930.7/93.99 5350.3 4.3
CD-H9W6 90/60 10,573.2 872.7/88.14 10,573.2 3.6
CD-H9W9 90/90 15,923.6 813.2/82.13 15,923.6 3.6

CD-H9W15 90/150 26,624.2 694.3/70.12 26,624.2 12.0

As shown in Figure 9, the compressive strengths of the tubular members with artificial
cross-sectional damage were affected by the cross-sectional damaged conditions. To compare the
effect of the cross-sectional damaged width of the tubular members on their compressive behavior,
the compressive load-displacement relationships of the tubular members were compared separately in
accordance with the cross-sectional damaged condition, as derived from Figures 10a–d and 11a–d.
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3.2.2. Effect of the Cross-Sectional Damaged Condition on Compressive Strength

For specimens with the same cross-sectional damaged width, the compressive strengths were
determined from the certain cross-sectional damaged width within a certain range as shown in
Figure 10. For the specimens with a greater cross-sectional damaged width, as shown in Figure 10d,
the compressive strengths were more strongly affected by the cross-sectional damaged height than
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by the cross-sectional damaged width. Their compressive behaviors were also shown to concur with
the change in their compressive strength. Thus, for specimens with different cross-sectional damaged
widths ranging from 30 mm to 90 mm, their compressive behaviors from yield load to failure were
relatively similar to those of specimens with the same cross-sectional damaged widths. Conversely,
for the specimen with a 150 mm damaged width, the compressive behaviors changed depending on
their cross-sectional damaged height. Figure 12 summarizes the compressive strength of each tubular
specimen depending on the artificial cross-sectional damaged width. The compressive strength of the
tubular specimen series with the same artificial cross-sectional damaged width was slightly decreased
compared to that of the specimen series with no cross-sectional damage, except for the CD-W15 series,
since their compressive strengths were determined from their cross-sectional damaged width within a
specific range. However, their critical value was not clear.Materials 2018, 11, x FOR PEER REVIEW  9 of 19 
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Figure 10. Compressive load-displacement relationships depending on cross-sectional damaged width:
(a) 30 mm damaged width; (b) 60 mm damaged width; (c) 90 mm damaged width; and (d) 150 mm
damaged width.

Figure 11 shows that the compressive strengths and behaviors of specimens were compared to
those of specimens with the same cross-sectional damaged. The compressive strength of CD-H3W15
specimen was decreased by compared to CD-H3W3 which is affected by the cross-sectional damaged
width for the same damaged height condition as shown in Figure 12. Figure 13 summarizes
the compressive strength of each tubular specimen depending on the artificial cross-sectional
damaged height. In the compressive strength of the tubular specimen series with the same
artificial cross-sectional damaged height, the compressive strengths decreased depending on each
cross-sectional damaged condition. For specimens with relatively lower cross-sectional damaged
height, the difference between the compressive strength of each specimen decreased, as shown
in Figure 13. In the case of the specimens with lower cross-sectional damaged height (less than
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60 mm in damaged height), the compressive strength decreased, which affected the cross-sectional
damaged width.
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Figure 11. Compressive load-displacement relationships depending on cross-sectional damaged height:
(a) 30 mm damaged height; (b) 60 mm damaged height; (c) 75 mm damaged height; and (d) 90 mm
damaged height.
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3.3. FEA of Compressive Loading Cases

3.3.1. FEA Model and Parameters

In order to compare the compressive strength of the stub steel tubular member in the test result and
determine the factors that affect the compressive strength of stub tubular members with cross-sectional
damage, their compressive strengths were examined using the FEA program Abaqus 6.14. The FEA
model was made with the same dimensions as the model for the loading tests; thus, the model has
three components: a pipe of 600 mm length with a diameter of 89.1 mm and a thickness of 3.2 mm,
and two 120 mm rectangular plates with a thickness of 10 mm. The FEA model simulated in this
research was fabricated of steel with a modulus of elasticity of 205 GPa and Poisson’s ratio of 0.3.
The yield stress value was selected to be 310 MPa, based on the material tests. The bilinear isotropic
hardening behavior of this model was made to simulate the plastic behavior of the material tested.
In addition, the plates were rigid plates to avoid deformation. In this model, displacement was applied
at the center of the top plate to simulate the real loading test. In addition, the boundary condition was
considered to ensure the simulation was as close to the experiment as possible. The bottom plate was
defined as the fixed boundary condition and the lateral displacement of the top plate was restrained.
Figure 14 shows the FEA model for this study.

To simulate and identify the compressive strength values and behaviors of the specimens, their cross-
sectional damage parameters were selected. A range of models were developed with different corroded
depths, heights, and widths: the corroded depth varied from 0.5 mm to 2 mm with a 0.5 mm increment,
the corroded height varied from 60 mm to 300 mm with a 60 mm increment, and the corroded width
varied from 28 mm to 280 mm with a 28 mm increment. Similar to the compressive loading test
specimens, the name of the FEA model was determined such that “C” refers to the compressive
test, “D” refers to a damaged specimen, “W” indicates the damaged width, and “H” indicates the
damaged height. The value after “CD” refers to the damaged thickness of the FEA model. Thus,
the CD0.5-H60W28 model refers to a compressive analysis model with an artificial damage of 0.5 mm
thickness, a 60 mm height, and a 28 mm width. Table 3 summarizes the properties of the FEA models.

Table 3. Analysis parameters of the tubular members with localized cross-sectional damage.

Parameter of Analysis Model

Corroded depth 0.5, 1, 1.5, 2 mm
Corroded height 60, 120, 180, 240, 300 mm
Corroded width 28, 56, 84, 112, 140, 280 mm
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3.3.2. FEA Model and Parameters

To verify the FEA model, the compressive loading test result was compared to the result of the FEA
model. It is difficult to develop an FEA model for a compressive loading test specimen with irregular
cross-sectional damage. The CR-H0W0 specimen without cross-sectional damage was modeled and
its load-displacement curves were compared. For this comparison, the measured dimensions were
applied to the FEA model. Figure 15 shows the load-displacement comparison for the CR-H0W0
specimen. As shown in Figure 15, its ultimate strength and yield load were similar to those of the
test results and the tendency of the load-displacement curve also agreed with that of the test results.
Thus, the compressive strength and behavior of the stub compressive tubular members with local
cross-sectional damage by corrosion can be examined using this model.Materials 2018, 11, x FOR PEER REVIEW  12 of 19 
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In this study, tubular specimens with localized artificial cross-sectional damage were tested for
their cross-sectional damage ratio for their diameter. The loading test results showed that squashed
or folded failure modes occurred in the artificially-damaged section. The FEA results showed that
the compressive failure modes were similar to the six failure cases shown in Figure 16. To determine
the failure mode, local buckling failure and lateral buckling failure were considered from each FEA
model result. In failure mode 2, lateral buckling failure occurred and two local buckling failures
were observed at the cross-sectional damage boundary. In failure mode 3, lateral buckling failure
occurred and one local buckling failure was observed at the cross-sectional damage section. In failure
mode 4, two local buckling failures were observed at the damaged boundary, without lateral buckling.
In failure mode 5, only one local buckling failure was observed at the cross-sectional damage section.
Failure mode 6 as similar to that of failure mode 4, but was determined by other factors (cross-sectional
damage condition) than those for failure mode 3. The failure modes of the specimen were affected by
their damaged condition, such as the damaged height and damaged width. Their damaged depth was
also affected by their failure mode.

In the case of a relatively higher cross-sectional damaged model with lower damaged depth,
their failure modes showed that it might be due to Failures 2 or 3. For higher damaged depth
modes, the failure modes could be due to Failures 4 and 5. In particular, Failure 6 occurred in the
fully-damaged model. However, because it was difficult to select the critical damage case to determine
the failure mode of the specimen, the critical damage case was determined by the damaged condition
and boundary condition from the compressive loading test results. However, it can be concluded
that local buckling failure accompanied by lateral buckling failure, as well as local buckling failure
occurred in the damaged region.
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Figure 16. Representative failure modes from FEA: (a) failure mode 1; (b) failure mode 2; (c) failure
mode 3; (d) failure mode 4 (e); failure mode 5; and (f) failure mode 6.

To examine the compressive behaviors, the load-displacement relationships were compared
depending on their damaged depth, as shown in Figure 17. These load-displacement relationships were
selected from the compressive failure modes. As shown in Figure 17, the compressive behaviors and
strengths (yield loads) were affected by their damaged depth and condition. Their compressive yield
load and strengths decreased with the damaged depth. For the same damaged depth, the compressive
yield load and strengths distinctly changed based on their failure modes and compressive behaviors.
For a greater damaged depth, their displacement behaviors showed that it was not clear and was
shorter, without ductile behaviors. From these load-displacement relationships, the FEA results of
the tubular members with localized cross-sectional damage are summarized in Table 4 as yield loads,
compressive strengths, and failure modes.

To evaluate the relationships between the cross-sectional damage and compressive strength of
small tubular members, their yield loads and compressive strengths were evaluated based on the
equivalent cross-sectional area ratio and damaged volume ratio from the test results, as shown in
Figures 18 and 19. To determine the main factor affecting compressive strength, other cross-sectional
properties of the tubular member were also considered. However, the two values were similar to
the decrease in the yield loads and compressive strengths of the stub compressive tubular members
with local cross-sectional damage by corrosion. As shown in Figures 18 and 19, the yield loads and
compressive strengths were proportionally decreased depending on the equivalent cross-sectional area
ratio and damaged volume ratio. However, the test results were distributed to decrease about 40%
of the regression line for the FEA results, and it was shown to be effective by the minimum residual
thickness and corroded shape. The yield loads decreased according to the equivalent cross-sectional
area ratio and volume ratio. The compressive strengths also constantly decreased from a compressive
strength of 95%, depending on their cross-sectional area ratios and volume ratios.
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Table 4. Summary of FEA results of the tubular members with localized cross-sectional damage.

Specimens Equivalent Cross-
Sectional Area (mm2)/(%)

Volume Ratio in the
Damaged Zone (%)

Yield Load
(kN)/(%)

Ultimate Load
(kN)/(%) Failure Mode

CR-H0W0 863.6/100 100 267.7/100 297.7/100 1
CD0.5-H60W28 849.6/98.39 98.39 263.1/95.01 275.4/92.51 3
CD0.5-H120W28 849.6/98.39 98.39 263.3/95.01 275.9/92.68 2
CD0.5-H180W28 849.6/98.39 98.39 262.8/95.01 277.5/93.23 2
CD0.5-H240W28 849.6/98.39 98.39 262.8/95.01 278.1/93.4 3
CD0.5-H300W28 849.6/98.39 98.39 262.8/95.01 278.1/93.43 3
CD0.5-H60W56 835.7/96.78 96.78 258.7/90.39 268.7/90.27 2
CD0.5-H120W56 835.7/96.78 96.78 258.1/90.39 269.1/90.39 2
CD0.5-H180W56 835.7/96.78 96.78 258/90.39 271.7/91.26 2
CD0.5-H240W56 835.7/96.78 96.78 258/90.39 273.3/91.8 3
CD0.5-H300W56 835.7/96.78 96.78 258.1/90.39 273.5/91.87 3
CD0.5-H60W84 821.8/95.17 95.17 254.7/86.49 265.4/89.16 2
CD0.5-H120W84 821.8/95.17 95.17 253.8/86.49 265/89.03 2
CD0.5-H180W84 821.8/95.17 95.17 253.5/86.49 267.2/89.76 2
CD0.5-H240W84 821.8/95.17 95.17 253.5/86.49 268.7/90.27 3
CD0.5-H300W84 821.8/95.17 95.17 253.7/86.49 269.2/90.43 3
CD0.5-H60W112 807.9/93.55 93.55 251.1/83.55 263.1/88.36 2
CD0.5-H120W112 807.9/93.55 93.55 249.9/83.55 262/88 2
CD0.5-H180W112 807.9/93.55 93.55 249.6/83.55 263.8/88.61 2
CD0.5-H240W112 807.9/93.55 93.55 249.5/83.55 264.5/88.85 3
CD0.5-H300W112 807.9/93.55 93.55 249.6/83.55 265.1/89.06 3
CD0.5-H60W140 794/91.94 91.94 247.7/81.62 261.1/87.71 2
CD0.5-H120W140 794/91.94 91.94 246.3/81.62 259.6/87.2 4
CD0.5-H180W140 794/91.94 91.94 245.9/81.62 261.1/87.69 4
CD0.5-H240W140 794/91.94 91.94 245.8/81.62 261.3/87.78 5
CD0.5-H300W140 794/91.94 91.94 245.8/81.62 261.6/87.89 5
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Table 4. Cont.

CD0.5-H60W280 724.4/83.88 84.87 226.4/83.88 250.4/84.1 5
CD0.5-H120W280 724.4/83.88 84.87 225.2/83.88 247.6/83.19 6
CD0.5-H180W280 724.4/83.88 84.87 224.8/83.88 247.6/83.18 6
CD0.5-H240W280 724.4/83.88 84.87 224.3/83.88 247.7/83.21 6
CD0.5-H300W280 724.4/83.88 84.87 225.2/83.88 247.6/83.19 6
CD1-H60W28 835.9/96.79 96.79 258.1/90.13 266.7/89.6 2
CD1-H120W28 835.9/96.79 96.79 257.8/90.13 267.8/89.94 2
CD1-H180W28 835.9/96.79 96.79 257.7/90.13 270.2/90.77 2
CD1-H240W28 835.9/96.79 96.79 257.8/90.13 272.9/91.69 3
CD1-H300W28 835.9/96.79 96.79 258/90.13 273.1/91.74 3
CD1-H60W56 808.2/93.59 93.59 248.9/81.12 256.6/86.19 2
CD1-H120W56 808.2/93.59 93.59 248.2/81.12 257.5/86.48 2
CD1-H180W56 808.2/93.59 93.59 248/81.12 259.3/87.11 2
CD1-H240W56 808.2/93.59 93.59 248.2/81.12 263.5/88.5 2
CD1-H300W56 808.2/93.59 93.59 248.5/81.12 263.8/88.63 3
CD1-H60W84 780.5/90.38 90.38 240.5/73.76 248.5/83.47 2
CD1-H120W84 780.5/90.38 90.38 239.4/73.76 249.1/83.69 2
CD1-H180W84 780.5/90.38 90.38 239.4/73.76 249.1/83.69 2
CD1-H240W84 780.5/90.38 90.38 239.3/73.76 254.1/85.34 3
CD1-H300W84 780.5/90.38 90.38 235.5/73.76 254.2/85.37 3
CD1-H60W112 752.9/87.18 87.18 233/68.41 241.3/81.06 4
CD1-H120W112 752.9/87.18 87.18 231.5/68.41 241.8/81.22 4
CD1-H180W112 752.9/87.18 87.18 231.2/68.41 243.8/81.89 4
CD1-H240W112 752.9/87.18 87.18 231.2/68.41 245.6/82.49 5
CD1-H300W112 752.9/87.18 87.18 231.4/68.41 245.2/82.37 5
CD1-H60W140 725.2/83.97 83.97 226/65 234.9/78.9 4
CD1-H120W140 725.2/83.97 83.97 224.2/65 235.1/78.96 4
CD1-H180W140 725.2/83.97 83.97 223.7/65 237.1/79.64 4
CD1-H240W140 725.2/83.97 83.97 223.6/65 239.2/80.34 4
CD1-H300W140 725.2/83.97 83.97 223.7/65 237.9/79.91 5
CD1-H60W280 586.8/67.95 69.55 183.9/67.95 196.9/66.14 6
CD1-H120W280 586.8/67.95 69.55 182.5/67.95 194.4/65.32 6
CD1-H180W280 586.8/67.95 69.55 182/67.95 194.8/65.44 6
CD1-H240W280 586.8/67.95 69.55 182.5/67.95 194.9/65.47 6
CD1-H300W280 586.8/67.95 69.55 182.2/67.95 194.9/65.48 6
CD1.5-H60W28 822.3/95.22 95.22 253.1/85.38 260.6/87.55 2
CD1.5-H120W28 822.3/95.22 95.22 252.8/85.38 261.6/87.87 2
CD1.5-H180W28 822.3/95.22 95.22 252.8/85.38 263.6/88.55 2
CD1.5-H240W28 822.3/95.22 95.22 253/85.38 267.4/89.81 2
CD1.5-H300W28 822.3/95.22 95.22 253.2/85.38 268.4/90.14 3
CD1.5-H60W56 781/90.44 90.44 238.9/72.28 244.7/82.19 2
CD1.5-H120W56 781/90.44 90.44 238.2/72.28 246/82.64 2
CD1.5-H180W56 781/90.44 90.44 238.2/72.28 247.5/83.13 2
CD1.5-H240W56 781/90.44 90.44 238.6/72.28 250.5/84.16 2
CD1.5-H300W56 781/90.44 90.44 239.1/72.28 254.1/85.35 3
CD1.5-H60W84 739.7/85.66 85.66 227.1/61.96 231/77.58 2
CD1.5-H120W84 739.7/85.66 85.66 225.1/61.96 232.9/78.22 2
CD1.5-H180W84 739.7/85.66 85.66 224.9/61.96 234.6/78.81 2
CD1.5-H240W84 739.7/85.66 85.66 225.3/61.96 237.5/79.79 2
CD1.5-H300W84 739.7/85.66 85.66 225.9/61.96 239.6/80.48 2
CD1.5-H60W112 698.4/80.88 80.88 215.2/54.79 218.6/73.42 4
CD1.5-H120W112 698.4/80.88 80.88 213.1/54.79 220.6/74.11 4
CD1.5-H180W112 698.4/80.88 80.88 212.9/54.79 222.7/74.81 4
CD1.5-H240W112 698.4/80.88 80.88 213.1/54.79 225.2/75.64 4
CD1.5-H300W112 698.4/80.88 80.88 213.5/54.79 226.1/75.95 2
CD1.5-H60W140 657.2/76.1 76.10 203.9/50.34 206.7/69.44 4
CD1.5-H120W140 657.2/76.1 76.10 200.4/50.34 208.7/70.09 4
CD1.5-H180W140 657.2/76.1 76.10 202.9/50.34 210.5/70.7 4
CD1.5-H240W140 657.2/76.1 76.10 203.3/50.34 212.8/71.47 4
CD1.5-H300W140 657.2/76.1 76.10 203.6/50.34 214.2/71.95 4
CD1.5-H60W280 450.8/52.2 54.05 140/52.2 144.2/48.42 6
CD1.5-H120W280 450.8/52.2 54.05 140.2/52.2 144.5/48.53 6
CD1.5-H180W280 450.8/52.2 54.05 139.9/52.2 144.7/48.59 6
CD1.5-H240W280 450.8/52.2 54.05 141/52.2 144.5/48.55 6
CD1.5-H300W280 450.8/52.2 54.05 139.9/52.2 144.8/48.63 6
CD2-H60W28 808.8/93.66 93.66 248.2/80.77 254.7/85.55 2
CD2-H120W28 808.8/93.66 93.66 247.8/80.77 255.7/85.91 2
CD2-H180W28 808.8/93.66 93.66 247.9/80.77 257.5/86.48 2
CD2-H240W28 808.8/93.66 93.66 248.1/80.77 261.1/87.7 2
CD2-H300W28 808.8/93.66 93.66 248.5/80.77 264/88.68 3
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Table 4. Cont.

CD2-H60W56 754.1/87.33 87.33 228.6/63.93 232.4/78.06 2
CD2-H120W56 754.1/87.33 87.33 228.6/63.93 233.9/78.55 2
CD2-H180W56 754.1/87.33 87.33 228.6/63.93 234.4/78.75 2
CD2-H240W56 754.1/87.33 87.33 229.5/63.93 236.7/79.5 2
CD2-H300W56 754.1/87.33 87.33 229.1/63.93 241.7/81.18 2
CD2-H60W84 699.4/80.99 80.99 204.9/51.22 212.8/71.48 4
CD2-H120W84 699.4/80.99 80.99 211.9/51.22 215/72.22 2
CD2-H180W84 699.4/80.99 80.99 210.9/51.22 215.9/72.52 2
CD2-H240W84 699.4/80.99 80.99 206.1/51.22 218.5/73.41 2
CD2-H300W84 699.4/80.99 80.99 206.8/51.22 220.3/73.99 5
CD2-H60W112 644.7/74.65 74.65 188/42.83 194.5/65.33 4
CD2-H120W112 644.7/74.65 74.65 193/42.83 196.5/66.02 4
CD2-H180W112 644.7/74.65 74.65 192.7/42.83 198.4/66.64 4
CD2-H240W112 644.7/74.65 74.65 187/42.83 201.5/67.68 4
CD2-H300W112 644.7/74.65 74.65 196.2/42.83 201.8/67.79 4
CD2-H60W140 589.9/68.31 68.31 173.9/37.75 177.5/59.63 4
CD2-H120W140 589.9/68.31 68.31 170.4/37.75 179.6/60.34 4
CD2-H180W140 589.9/68.31 68.31 166.8/37.75 181.4/60.95 4
CD2-H240W140 589.9/68.31 68.31 172.5/37.75 184.4/61.93 4
CD2-H300W140 589.9/68.31 68.31 177.6/37.75 183.7/61.72 5
CD2-H60W280 316.3/36.63 38.37 97.8/36.63 98.3/33.03 6
CD2-H120W280 316.3/36.63 38.37 89.9/36.63 98.3/33.02 6
CD2-H180W280 316.3/36.63 38.37 97.2/36.63 98.3/33.03 6
CD2-H240W280 316.3/36.63 38.37 98.1/36.63 98.3/33.03 6
CD2-H300W280 316.3/36.63 38.37 95.9/36.63 98.3/33.03 6
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Figure 19. Yield strength and compressive strength depending on the volume of the damaged zone:
(a) yield load ratio-volume ratio in the damaged zone; and (b) the ultimate load ratio-volume ratio in
the damaged zone.

4. Conclusions

This study examined the structural behavior and strength of stub tubular steel members with
localized cross-sectional damage. To consider the localized cross-sectional damage caused by corrosion,
compressive loading tests and numerical analyses of stub circular members were conducted. For the
compressive loading test, artificial cross-sectional damages, with various damaged widths and heights,
were induced on the surface of the tubular specimens to examine the major variables that affect the
compressive behaviors of circular tubular members. For numerical analyses, FEA was conducted to
clarify the compressive resistant capacities of the circular tubular specimens for various damaged
parameters, such as corroded depth, damaged width, and damaged height. A total of 120 FEA models
were analyzed to investigate the major variables of compressive strength with cross-sectional damage
by corrosion.

The compressive loading test results showed that the compressive strengths were affected by
the damaged width within a certain range. The effect of compressive strength according to the
damaged height was greater than that according to the damaged widths. Thus, the tendencies of yield
load and failure on the same damaged width under lower damaged width were similar; however,
those of the greater damaged width changed depending on the damaged height. To verify the
FEA, the compressive strengths (yield loads) affected by the damaged depth and condition were
determined. The compressive yield load was decreased to change the failure modes depending on
the damaged depth. To clarity the compressive strength of the circular tubular member according
to cross-sectional damage, the equivalent cross-sectional area ratio and damaged volume ratio were
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calculated. The compressive strength was decreased proportionally with the equivalent cross-sectional
area ratio and damaged volume ratio.
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